
REST API Cookbook with
Working Examples
Version: 1.5





REST API Cookbook with Working Examples
Version 1.5
Last Revision: 17/01/2017

Objectif Lune, Inc.
2030 Pie-IX, Suite 500
Montréal, QC, Canada, H1V 2C8

+1 (514) 875-5863
www.objectiflune.com

All trademarks displayed are the property of their respective owners.

http://www.objectiflune.com/


© Objectif Lune, Inc. 1994-2017. All rights reserved. No part of this documentation may be
reproduced, transmitted or distributed outside of Objectif Lune Inc. by any means whatsoever
without the express written permission of Objectif Lune Inc. Objectif Lune Inc. disclaims
responsibility for any errors and omissions in this documentation and accepts no responsibility
for damages arising from such inconsistencies or their further consequences of any kind.
Objectif Lune Inc. reserves the right to alter the information contained in this documentation
without notice.

Page 4



Table of Contents
Table of Contents 5

Welcome to the PlanetPress Connect REST API Cookbook 7

Technical Overview 8

Workflow & Workflow Processes 9

Workflow Components 16

Workflow Operations 20

JSON Structures 21

Working Examples 33

Getting Started 34

Server Security & Authentication 43

Working with the File Store 48

Working with the Entity Services 78

Working with the Workflow Services 99

REST API Reference 211

Authentication Service 215

Content Creation Service 220

Content Item Entity Service 232

Page 5



Content Set Entity Service 243

Data Record Entity Service 256

Data Set Entity Service 271

Data Mapping Service 281

Content Creation (Email) Service 297

File Store Service 308

Content Creation (HTML) Service 329

Job Creation Service 338

Job Entity Service 352

Job Set Entity Service 362

Output Creation Service 372

All-In-One Service 388

Copyright Information 400

Legal Notices and Acknowledgments 401

Page 6



Welcome to the PlanetPress Connect
REST API Cookbook
This guide is aimed at technically experienced users who wish to learn and use the REST API
available in PlanetPress Connect version 1.5.

The PlanetPress Connect REST API consists of many services that expose access to a
number of areas including workflow, data entity management and file store operations.

These services can be used to perform various interactions with the PlanetPress Connect
server such as:

l Upload & Manage Data Files, Data Mapping Configurations & Design Templates in File
Store

l Create, Manage & Find Data Entities internal to the PlanetPress Connect Server

l Create & Monitor Processing Operations within the Workflow

The REST API also supports added security to restrict unauthorized access to the services.

This guide is broken down into three sections:

l Technical Overview - Overview of the concepts and structures used in PlanetPress
Connect and the REST API

l Working Examples - Working examples of the PlanetPress Connect REST API in action
(HTML5 & JavaScript/jQuery)

l REST API Reference - A complete reference to the PlanetPress Connect REST API &
Services

It is recommended that the technical overview section be read first, followed by the working
examples, using the REST API reference for greater detail on implementing any specific
example.

Page 7



Technical Overview
This section provides an overview of the concepts and structures used within PlanetPress
Connect and the REST API.

l Workflow & Workflow Processes

l Workflow Components

l Workflow Operations

l JSON Structures

Page 8



Workflow & Workflow Processes
In PlanetPress Connect there are four main workflow processes: Data Mapping, Content
Creation, Job Creation, and Output Creation.

There is also an additional workflow process, named All-In-One, which embodies all four other
workflow processes in a singular process.

The following flowchart illustrates the primary workflow in PlanetPress Connect:

Page 9



Data Mapping
The Data Mapping process involves taking a data file or source, applying a data mapping
configuration to it, and producing a structured set of data or data records (a Data Set). This
process can also produce a data set from a PDF/VT file using its internal meta data instead of a
data mapping configuration.

The following flowchart illustrates the standard workflow for the Data Mapping process:

The following flowchart illustrates the alternative workflow for the Data Mapping process when
using PDF/VT data files specifically:

Page 10



Page 11



Content Creation
The Content Creation process involves taking a number of data records (from a Data Set)
combining it with a suitable design template, and producing a set or sets of content (Content
Sets). If the content is for the email or web context then output can be published at this stage.

The following flowchart illustrates the standard workflow for the Content Creation process:

Page 12



Job Creation
The Job Creation process involves taking one or more content sets and applying a preset for
organising/sorting/grouping them into sets of logical jobs (a Job Set). This includes data
filtering and finishing options.

The following flowchart illustrates the standard workflow for the Job Creation process:

Page 13



Output Creation
The Output Creation process involves taking a set of jobs, applying a preset and generating the
printed output.

The following flowchart illustrates the standard workflow for the Output Creation process:

Page 14



All-In-One
The following flowchart illustrates the potential inputs, outputs and workflows for the All-In-One
process:

Page 15



Workflow Components
Each process in the overall PlanetPress Connect workflow takes a series of inputs and
produces output. These can be divided into Input Components and Data Entities.

Page 16



Input Components
Input components are used as input to a specific workflow process. The following table lists the
types of input components used in the PlanetPress Connect workflow:

Name Relevant Workflow
Process

File Name Examples

Data File Data Mapping l Promo-EN-10.csv

l Promo-EN-10000.csv

l PDFVT-Data.pdf

Data Mapping
Configuration

Data Mapping l Promo-EN.OL-datamapper

l Transact-EN.OL-
datamapper

Design Template Content Creation l letter-ol.OL-template

l invoice-ol-transpromo.OL-
template

Job Creation Preset Job Creation l Promo-EN-JC-Config.OL-
jobpreset

Output Creation Preset Output Creation l FX4112_Hold_Config.OL-
outputpreset

l Promo-EN-OC-Config.OL-
outputpreset

Page 17



Data Entities
There are many data entity types used by PlanetPress Connect, but not all entities can be
accessed through the REST API. The main types to be aware of when working with the API are
Data Sets, Data Records, Content Sets, Content Items, Jobs Sets and Jobs. The following table
lists these entity types in greater detail:

Entity Description

Data
Set &
Data
Records

The data set is the artefact produced by a data mapping operation. It holds the
data that was mapped out of the input data file. A data mapping operation
produces a single data set, which contains as many data records as there are
documents. Each data record contains a collection of data values. The data
records in the data set form the master record, or document record, which
typically contains document recipient information. The master record can also
contain a collection of data tables, which form the detail records that hold data
such as invoice line items. Each data table contains a collection of data records,
where each data record contains a collection of data values and a collection of
data tables, and so on.

Content
Sets &
Content
Items

The content set is the artefact produced by a content creation operation. It holds
all the pages that were produced by the operation. A content creation operation
produces one or more content sets, which contain as many content items as
there were data records given at the start of the operation. Because the data
records used may have different data set owners, a content set cannot be linked
to a single data set, but rather content items are linked to data records. A content
item is further divided in content sections and content pages.

Job Set
& Jobs

The job set is the artefact produced by a job creation operation. It consists in a
hierarchical structure that divides documents is various structures and basically
decides which documents are to be printed and in which order. A job creation
operation creates a single job set with contains a series of containers where
every level contains one or more of the next level down: jobs, job segments,
document sets, documents and document pages. The last level in the chain, the
document pages, contains a single content item. Hence, at the job creation
level, a document may consist of one or more content items.

Page 18



Data entities can be produced as output from a workflow process and can then be used as
input to another workflow process.

Page 19



Workflow Operations
Each individual process in the overall workflow process can potentially be a long running
operation.

Accordingly, an initial HTTP request is submitted to initiate the workflow operation, then
additional requests are required to monitor progress and retrieve the final result. All the required
detail is included in the HTTP response headers of the initial request, including the URIs that
should be used for further processing

A successful request will return a response that will include the headers listed in the following
table:

Header Description

operationId The unique id of the operation being processed

Link Contains multiple link headers which provide details on which URI to use to
retrieve further information on the operation:

l Header with rel="progress" - The URL to use to check the progress of
the operation

l Header with rel="result" - The URL to use to retrieve the result of the
operation

l Header with rel="cancel" - The URL to use to cancel the operation

A request made to the progress URI during processing will return a progress percentage value
of 0 to 100, and finally the value of ‘done’ once the operation has completed.

A request made to the cancel URI during processing will immediately cancel the operation.

A request made to the result URI after processing has completed will return the final result of
the operation.

This approach is replicated across most workflow based services as demonstrated in the
Working with the Workflow Services page of the Working Examples section.

Page 20



JSON Structures
The following table lists the various JSON structures used by the PlanetPress Connect REST
API:

Name Example

JSON
Identifier

{ 

"identifier": 12345

}

JSON
Identifier
(Named)

{ 

"identifier": "Promo-EN-1000.csv"

}

JSON
Identifier List

{

"identifiers": [ 12345, 23456, 34567 ]

}

JSON
Identifier (with
createOnly
flag)

{ 

"identifier": 12345,

"createOnly": true

}

JSON
Identifier List
(with
createOnly
flag)

{

"identifiers": [ 12345, 23456, 34567 ],

"createOnly": true

}

JSON
Name/Value
List
(Properties
Only)

[

{

"name": "start",

"value": "2015-01-01 00:00:00T-0500"

},

{

Page 21



Name Example

"name": "end",

"value": "2015-12-31 23:59:59T-0500"

}

]

JSON
Name/Value
List

{

"id": 12345,

"properties": [

{

"name": "start",

"value": "2015-01-01 00:00:00T-0500"

},

{

"name": "end",

"value": "2015-12-31 23:59:59T-0500"

},

]

}

JSON
Name/Value
Lists

[

{

"id": 12345,

"properties": [

{

"name": "start",

"value": "2015-01-01 00:00:00T-0500"

},

{

"name": "end",

"value": "2015-12-31 23:59:59T-0500"

},

]

},

Page 22



Name Example

{

"id": 23456,

"properties": [

{

"name": "start",

"value": "2015-01-01 00:00:00T-0500"

},

{

"name": "end",

"value": "2015-12-31 23:59:59T-0500"

},

]

}

]

JSON Record
Content List

{

"id": 12345,

"table": "record",

"fields":[

{

"name": "ID",

"value": "CU00048376"

},

{

"name": "Gender",

"value": "M."

},

{

"name": "FirstName",

"value": "Benjamin"

},

{

"name": "LastName",

"value": "Verret"

Page 23



Name Example

}

]

}

JSON Record
Content Lists

[

{

"id": 12345,

"table": "record",

"fields":[

{

"name": "ID",

"value": "CU00048376"

},

{

"name": "Gender",

"value": "M."

},

{

"name": "FirstName",

"value": "Benjamin"

},

{

"name": "LastName",

"value": "Verret"

}

]

},

{

"id": 23456,

"table": "record",

"fields":[

{

"name": "ID",

"value": "CU01499303"

Page 24



Name Example

},

{

"name": "Gender",

"value": "Miss"

},

{

"name": "FirstName",

"value": "Dianne"

},

{

"name": "LastName",

"value": "Straka"

}

]

}

]

JSON Content
Item Identifier
List

{

"identifiers": [

{

"item": 12345,

"record": 54321

},

{

"item": 23456,

"record": 65432

},

{

"item": 34567,

"record": 76543

}

]

}

Page 25



Name Example

JSON Data
Record
Identifier

{

"record": 12345

}

JSON
Identifier List
(with Email
Parameters)

{

"identifiers": [

12345,

23456

],

"host": "mail.company.com",

"user": "johns",

"password": "password5",

"sender": "john.smith@company.com",

"useAuth": true,

"useStartTLS": false,

"useSender": true,

"attachWebPage": true,

"attachPdfPage": true

}

JSON Job Set
Structure

{

"jobs": [

{ 

// First Job in JobSet

"segments": [

{ 

// First JobSegment in first Job

"documentsets": [

{

// First DocumentSet in

first JobSegment in first Job

Page 26



Name Example

"documents": [

{

// First

Document in first DocumentSet in first JobSegment in

first Job

"documentpages":

[

{

// First

DocumentPages in first Document in first DocumentSet

in first JobSegment in first Job

"contentitem": 111

},

{

//

Second DocumentPages in first Document in first

DocumentSet in first JobSegment in first Job

"contentitem": 222

}

]

},

{

// Second

Document in first DocumentSet in first JobSegment in

first Job

"documentpages":

[

{

// First

DocumentPages in second Document in first

Page 27



Name Example

}

]

},

{

// Second Job in JobSet

"segments": [

{ 

// First JobSegment in second

Job

"documentsets": [

{

// First DocumentSet in

first JobSegment in second Job

"documents": [

{

// First

Document in first DocumentSet in first JobSegment in

second Job

"documentpages":

[

{

// First

DocumentPages in first Document in first DocumentSet

in first JobSegment in second Job

"contentitem": 789

}

]

}

]

}

]

}

]

Page 28



Name Example

JSON HTML
Parameters
List

{

"section": "Section 1",

"inline": "ALL"

}

JSON All-In-
One
Configuration

{

"datamining":

{

"identifier": "Promo-EN-1000.csv",

"config": "Promo-EN.OL-datamapper"

},

"contentcreation":

{

"config": "letter-ol.OL-template"

},

"jobcreation":

{

"config": "4567"

},

"outputcreation":

{

"config": "5678",

"createOnly": true

},

"printRange":

{

"printRange": "1-3, 6, 10"

}

}

JSON Page
Details
Summary

{

Page 29



Name Example

"pages": [

{

"count": 200,

"media": {

"name": "Plain A4 Paper",

"size": "A4",

"width": "210mm",

"height": "297mm"

}

},

{

"count": 108,

"media": {

"name": "Plain Letter Paper",

"size": "Letter",

"width": "8.5in",

"height": "11in"

}

}

]

}

JSON Page
Details List

[

{

"id": 12345,

"pages": [

{

"count": 2,

"media": {

"name": "Plain A4 Paper",

"size": "A4",

"width": "210mm",

"height": "297mm"

Page 30



Name Example

}

},

{

"count": 1,

"media": {

"name": "Plain Letter Paper",

"size": "Letter",

"width": "8.5in",

"height": "11in"

}

}

]

},

{

"id": 23456,

"pages": [

{

"count": 2,

"media": {

"name": "Plain A4 Paper",

"size": "A4",

"width": "210mm",

"height": "297mm"

}

},

{

"count": 2,

"media": {

"name": "Plain Letter Paper",

"size": "Letter",

"width": "8.5in",

"height": "11in"

}

}

Page 31



Name Example

Page 32



Working Examples
This section provides a number of working examples that demonstrate the use of the various
resources and methods available in the PlanetPress Connect REST API.

For help on getting started with the PlanetPress Connect REST API Cookbook and the working
examples, see the Getting Started page.

l Server Security & Authentication

l Working with the File Store

l Working with the Entity Services

l Working with the Workflow Services

Page 33



Getting Started
This guide provides many working examples to help illustrate the correct use of a given
API/method. To achieve this, the guide uses HTML5 & JavaScript/jQuery syntax, and thus,
some basic experience and knowledge of these technologies is assumed.

HTML5: http://www.w3schools.com/html/

jQuery: https://jquery.com/

Help on installing and getting started with the working examples can be found on the
Requirements & Installation and Structure of the Working Examples pages.

Important notes on general use of the working examples can be found in the HTML Input
Placeholders & Multiple Value Fields and Display of Working Example Results pages.

If you have server security settings enabled on your PlanetPress Connect server then the Using
the Working Examples with Server Security page should be read also.

Page 34

http://www.w3schools.com/html/
https://jquery.com/


Requirements & Installation
Requirements

To use the PlanetPress Connect REST API Cookbook with Working Examples source you will
require the following:

1. A working installation of PlanetPress Connect

2. Any modern web browser able to display HTML51

Warning

If using Internet Explorer, you may find issues when using the working examples with
PlanetPress Connect's Server Security Settings set to enabled.

The working examples use HTML5 Local Storage to facilitate authentication and certain
simplicity / ease-of-use (across browser tabs). Depending on how your Internet Explorer
security settings are configured, you may experience issues if the security level of your
zone is set too high.

Essentially, the security zone needs to have the security option Userdata persistence
(underMiscellaneous) set to enabled. Without this option enabled, the working
examples will not function correctly when using them with PlanetPress Connect's Server
Security Settings set to enabled.

After running the Authenticate/Login to Server working example to re-authenticate, you
should only need to refresh existing pages in order for the authentication credentials
(token) to be picked up. In the case of Internet Explorer, you may need to restart the
browser for the changes to be picked up.

If all else fails, disabling of the Sever Security Settings in the PlanetPress Connect
Server Preferences should avoid issues with running the various examples on Internet
Explorer.

It is recommended that you use a modern web-browser other than Internet Explorer
when running the working examples.

1Any recent version of Mozilla Firefox, Google Chrome, or Opera with support for HTML5 should be
suitable for running the working examples contained in this guide. Versions of Internet Explorer 10+ may
also be suitable in some cases.

Page 35



Installation

The working examples source comes pre-installed with PlanetPress Connect and can be
located in a sub-directory of your existing PlanetPress Connect installation directory.

To locate the source on Windows:

1. Open upWindows Explorer and navigate to the PlanetPress Connect installation
directory followed by its plugins sub-directory.

2. Find the com.objectiflune.serverengine.rest.gui directory and navigate to its www sub-
directory

3. You should now be exploring the following or similar location:

C:\Program Files\Objectif Lune\OL
Connect\plugins\com.objectiflune.serverengine.rest.gui_1.X.XXXXX.XXXXXXXX-
XXXX\www

4. The www directory contains a cookbook sub-directory, which contains all of the working
examples source. You should find a directory structure matching that shown on the
Structure of the Working Examples page.

Note

You can access the PlanetPress Connect REST API Cookbook with Working Examples
source locally by entering the following URL in your web browser:

http://localhost:9340/serverengine/html/cookbook/index.html

Page 36

http://localhost:9340/serverengine/html/cookbook/index.html


Structure of theWorking Examples
The working examples are designed to be complete examples, and will generally consists of
one HTML5 file paired with a JavaScript/jQuery module which can be found in the
examples/<service-name>/js/ sub-directory.

Where any frequent or boilerplate functionality is commonly used across the examples, this has
been moved to the common/js/common.js JavaScript/jQuery module.

The examples make use of this module for functionality such as setting up the example, and
displaying output results.

Page 37



The examples also make use of some simple CSS classes as defined in
common/css/styles.css and HTML snippets for the presentation of output results.

Page 38



HTML Input Placeholders & Multiple Value Fields
In the working examples, HTML input elements make use of the placeholder attribute to help
provide some indication of the type and format of the value expected to be entered / specified.

The following table lists examples of placeholders commonly used in the working examples:

HTML Expected Type Example Values

Single ID Value l 2341

l 3

Single ID or Name Value (File Name) l 2341

l Promo-EN-1000.csv

One or More ID Values (comma
separated)

l 2341, 2342

l 3456

Name (Text) Value l ol-admin

l Section 2

Numerical Range l 1, 2, 3

l 1-5

l 1, 2, 3-5, 6

Email Address Value l john.smith@contoso.com

Server Hostname Value l mailbox.contoso.com

Page 39



Display of Working Example Results
When a working example is run, any results will be displayed in a Results area that will appear
below the working example existing HTML interface.

For example:

Note

In some examples the same result will displayed in both plain and JSON structure based
formats. This is to assist ease-of-use when working with outputs of one example that will
be needed as an input to another example.

Page 40



A working example can be run multiple times, and each time the results will be appended
below allowing you to compare the output of varying inputs. The Clear button can be selected
at any time to clear all existing results.

Page 41



Using theWorking Examples with Server Security
If you have the Server Security Settings set to enabled in your PlanetPress Connect Server
Preferences, then you may see the following dialog box initially display when working with the
examples:

In the event of this dialog box, just follow the instructions and either refresh the page or re-
authenticate by running the Authenticating with the Server (Authenticate/Login to Server)
working example covered under the Server Security & Authentication section.

Note

Once re-authenticated, you shouldn’t see this dialog box again for as long as your
session remains active.

Page 42



Server Security & Authentication
This section consists of a number of pages covering various useful working examples:

1. Authenticating with the Server

See the Authentication Service page of the REST API Reference section for further detail.

Note

A complete listing including these examples can be found in the index.html file located
at the root of the working example source code which contains links to all working
examples.

Page 43



Authenticating with the Server
Problem

Your PlanetPress Connect Server is configured to use server security, and you want to
authenticate with the server to obtain the correct access to make future requests.

Solution

The solution is to create a request using the following URI and method type to authenticate with
the server via the Authentication REST service:

Authenticate/Login to Server /rest/serverengine/authentication/login POST

Example

HTML5

auth-login-server.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Authenticate/Login to Server Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/auth-login-server.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Authentication Service - Authenticate/Login to Server
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="username">Username:</label>
<input id="username" type="text"

placeholder="Username" required>
</div>

Page 44

http://localhost:9340/rest/serverengine/authentication/login


<div>
<label for="password">Password:</label>
<input id="password" type="password"

placeholder="Password" required>
</div>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

auth-login-server.js

/* Authentication Service - Authenticate/Login to Server Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();

var username = $("#username").val(),
password = $("#password").val();

$.ajax({
beforeSend: function (xhr) {

var base64 = "Basic " + btoa(username + ":"
+ password);

xhr.setRequestHeader("Authorization", base64);
},
type: "POST",
url: "/rest/serverengine/authentication/login"

}).done(function (response) {
displayStatus("User '" + username + "'

Page 45



Authenticated Successfully");
displayResult("Authorization Token", response);
setSessionToken(response);

}).fail(function (xhr, status, error) {
displayStatus("Authentication of User '" + username

+ "' failed!");
displayResult("Status", xhr.status + " " + error);
displayResult("Error", xhr.responseText);
setSessionToken(null);

});
});

});
}(jQuery));

Screenshot & Output

Usage

To run the example simply enter your credentials into the Username and Password fields and
select the Submit button.

Once selected, a request containing the credentials will be sent to the server and the result will
be returned and displayed to the Results area.

Page 46



If authentication was successful then the response will contain an Authorization Token that
can be then used in the submission of future requests to the server.

Discussion

Firstly, we define an event handler that will run in response to the submission of the HTML form
via the selection of the Submit button.

When our event hander function is called, we then obtain the value of the Username and
Password fields. We define two variables, username to hold the value of the Username text
field and password to hold the value of the Password text field.

Next we construct an jQuery AJAX request which will be sent to the Authentication REST
service:

Method type and url arguments are specified as shown earlier.

We specify a beforeSend argument containing a function that will add an additional
Authorization header to the request to facilitate Basic HTTP Authentication. The value of
the Authorization request header is a Base64 digest of the username and password

variables.

When the request is successful or done, a request response is received and the content of that
response is passed as the function parameter response. In the example, we then display the
value of this parameter which should be the new Authorization Token which can then be used
in the submission of future requests to the server.

This is achieved by placing the value of the Authorization Token in the auth_token request
header of a future request. In the example the common function setSessionToken is used to
facilitate this function for all future working example requests.

Further Reading

See the Authentication Service page of the REST API Reference section for further detail.

Page 47



Working with the File Store
This section consists of a number of pages covering various useful working examples:

1. Uploading a Data File to the File Store

2. Uploading a Data Mapping Configuration to the File Store

3. Uploading a Design Template to the File Store

4. Uploading a Job Creation Preset to the File Store

5. Uploading an Output Creation Preset to the File Store

See the File Store Service page of the REST API Reference section for further detail.

Note

A complete listing including these examples can be found in the index.html file located
at the root of the working example source code which contains links to all working
examples.

Page 48



Uploading a Data File to the File Store
Problem

You want to upload a data file to the File Store so that it can be used as part of a Data Mapping
operation.

Solution

The solution is to create a request using the following URI and method type to submit the data
file to the server via the File Store REST service:

Upload Data File /rest/serverengine/filestore/DataFile POST

Example

HTML5

fs-datafile-upload.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Upload Data File Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/fs-datafile-upload.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>File Store Service - Upload Data File Example</h2>
<form>

<fieldset>
<legend>Inputs</legend>
<div>

<label for="datafile">Data File:</label>
<input id="datafile" type="file" required>

</div>
</fieldset>
<fieldset>

Page 49

http://localhost:9340/rest/serverengine/filestore/DataFile


<legend>Options</legend>
<div>

<label for="named">Named:</label>
<input id="named" type="checkbox">

</div>
<div>

<label for="persistent">Persistent:</label>
<input id="persistent" type="checkbox">

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

fs-datafile-upload.js

/* File Store Service - Upload Data File Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var file = $("#datafile")[0].files[0],
named = $("#named").is(":checked"),
persistent = $("#persistent").is(":checked");

var settings = {

Page 50



type: "POST",
url:

"/rest/serverengine/filestore/DataFile?persistent=" + persistent,
data: file,
processData: false,
contentType: "application/octet-stream"

};
if (named) { settings.url += "&filename=" + file.name;

}
$.ajax(settings).done(function (response) {

displayStatus("Request Successful");
displayInfo("Data File '" + file.name + "' Uploaded

Successfully");
displayResult("Managed File ID", response);

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Screenshot & Output

Page 51



Usage

To run the example simply select the Browse button and then select the data file you wish to
upload using the selection dialog box.

Next you can specify the following options to use with the upload of the data file:

l Named - allow this file to be identified/referenced by its Managed File Name as well as its
Managed File ID

l Persistent - make this file persistent in the file store

Note

Only one Managed File in the file store can be associated with a specific name. If two
files are uploaded to the file store under the same name, then only the most recently
uploaded file will be associated with (or can be referenced using) that name.

Once the file and options are selected, simply select the Submit button to upload the file to the
server's file store and the resulting Managed File ID for the data file will be returned and
displayed to the Results area.

Discussion

Firstly, we define an event handler that will run in response to the submission of the HTML form
via the selection of the Submit button.

When our event handler function is called, we then obtain a reference to the local data file
previously selected. This is achieved by getting the first value of the files attribute of the HTML
element with the ID of datafile (in this case a file type input HTML element) and storing it in a
variable file.

We also obtain boolean values for the Named and Persistent options (both checkbox type
input HTML elements) and store them in the named and persistent variables respectively.

Next we construct a jQuery AJAX request which will be sent to the File Store REST service.
We use an object called settings to hold the arguments for our request:

Method type and url arguments are specified as shown earlier, with the addition of a

Page 52



persistent query parameter which specifies whether the file is to be persistent in the file
store when uploaded.

We specify the variable file as the data or contents of the request, a contentType argument
of "application/octet-stream", and because we are sending file data we also specify a
processData argument set to false.

If the Named option is checked in our form, and the named variable is true, then a filename

query parameter is also added which contains the file name of the file selected (file.name).

Lastly, the settings object is passed as an argument to the jQuery AJAX function ajax and the
request is executed.

When the request is successful or done, a request response is received and the content of that
response is passed as the function parameter response. In the example, we then display the
value of this parameter which should be the new Managed File ID of the data file in the file
store.

Further Reading

See the File Store Service page of the REST API Reference section for further detail.

Page 53



Uploading a Data Mapping Configuration to the File Store
Problem

You want to upload a data mapping configuration to the File Store so that it can be used as part
of a Data Mapping operation.

Solution

The solution is to create a request using the following URI and method type to submit the data
mapping configuration to the server via the File Store REST service:

Upload Data Mapping
Configuration

/rest/serverengine/filestore/DataMiningConfig POST

Example

HTML5

fs-datamapper-upload.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Upload Data Mapping Configuration Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/fs-datamapper-upload.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>File Store Service - Upload Data Mapping Configuration
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datamapper">Data Mapping
Configuration:</label>

<input id="datamapper" type="file" required>

Page 54

http://localhost:9340/rest/serverengine/filestore/DataMiningConfig


</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="named">Named:</label>
<input id="named" type="checkbox">

</div>
<div>

<label for="persistent">Persistent:</label>
<input id="persistent" type="checkbox">

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

fs-datamapper-upload.js

/* File Store Service - Upload Data Mapping Configuration Example
*/
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var file = $("#datamapper")[0].files[0],

Page 55



named = $("#named").is(":checked"),
persistent = $("#persistent").is(":checked");

var settings = {
type: "POST",
url:

"/rest/serverengine/filestore/DataMiningConfig?persistent=" +
persistent,

data: file,
processData: false,
contentType: "application/octet-stream"

};
if (named) { settings.url += "&filename=" + file.name;

}
$.ajax(settings).done(function (response) {

displayStatus("Request Successful");
displayInfo("Data Mapping Configuration '" +

file.name + "' Uploaded Successfully");
displayResult("Managed File ID", response);

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 56



Screenshot & Output

Usage

To run the example simply select the Browse button and then select the data mapping
configuration you wish to upload using the selection dialog box.

Next you can specify the following options to use with the upload of the data mapping
configuration:

l Named - allow this configuration to be identified/referenced by its Managed File Name as
well as its Managed File ID

l Persistent - make this configuration persistent in the file store

Note

Only one Managed File in the file store can be associated with a specific name. If two

Page 57



files are uploaded to the file store under the same name, then only the most recently
uploaded file will be associated with (or can be referenced using) that name.

Once the configuration and options are selected, simply select the Submit button to upload the
configuration to the server's file store and the resulting Managed File ID for the data mapping
configuration will be returned and displayed to the Results area.

Discussion

Firstly, we define an event handler that will run in response to the submission of the HTML form
via the selection of the Submit button.

When our event handler function is called, we then obtain a reference to the local data mapping
configuration previously selected. This is achieved by getting the first value of the files

attribute of the HTML element with the ID of datamapper (in this case a file type input HTML
element) and storing it in a variable file.

We also obtain boolean values for the Named and Persistent options (both checkbox type
input HTML elements) and store them in the named and persistent variables respectively.

Next we construct a jQuery AJAX request which will be sent to the File Store REST service.
We use an object called settings to hold the arguments for our request:

Method type and url arguments are specified as shown earlier, with the addition of a
persistent query parameter which specifies whether the configuration is to be persistent in
the file store when uploaded.

We specify the variable file as the data or contents of the request, a contentType argument
of "application/octet-stream", and because we are sending file data we also specify a
processData argument set to false.

If the Named option is checked in our form, and the named variable is true, then a filename

query parameter is also added which contains the file name of the configuration selected
(file.name).

Page 58



Lastly, the settings object is passed as an argument to the jQuery AJAX function ajax and the
request is executed.

When the request is successful or done, a request response is received and the content of that
response is passed as the function parameter response. In the example, we then display the
value of this parameter which should be the new Managed File ID of the data mapping
configuration in the file store.

Further Reading

See the File Store Service page of the REST API Reference section for further detail.

Page 59



Uploading a Design Template to the File Store
Problem

You want to upload a design template to the File Store so that it can be used as part of a
Content Creation operation.

Solution

The solution is to create a request using the following URI and method type to submit the
design template to the server via the File Store REST service:

Upload Design Template /rest/serverengine/filestore/template POST

Example

HTML5

fs-designtemplate-upload.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Upload Design Template Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/fs-designtemplate-upload.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>File Store Service - Upload Design Template
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="designtemplate">Design
Template:</label>

<input id="designtemplate" type="file"
required>

Page 60

http://localhost:9340/rest/serverengine/filestore/template


</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="named">Named:</label>
<input id="named" type="checkbox" checked>

</div>
<div>

<label for="persistent">Persistent:</label>
<input id="persistent" type="checkbox">

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

fs-designtemplate-upload.js

/* File Store Service - Upload Design Template Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var file = $("#designtemplate")[0].files[0],
named = $("#named").is(":checked"),

Page 61



persistent = $("#persistent").is(":checked");

var settings = {
type: "POST",
url:

"/rest/serverengine/filestore/template?persistent=" + persistent,
data: file,
processData: false,
contentType: "application/zip"

};
if (named) { settings.url += "&filename=" + file.name;

}
$.ajax(settings).done(function (response) {

displayStatus("Request Successful");
displayInfo("Design Template '" + file.name + "'

Uploaded Successfully");
displayResult("Managed File ID", response);

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 62



Screenshot & Output

Usage

To run the example simply select the Browse button and then select the design template you
wish to upload using the selection dialog box.

Next you can specify the following options to use with the upload of the design template:

l Named - allow this template to be identified/referenced by its Managed File Name as well
as its Managed File ID

l Persistent - make this template persistent in the file store

Note

Only one Managed File in the file store can be associated with a specific name. If two
files are uploaded to the file store under the same name, then only the most recently

Page 63



uploaded file will be associated with (or can be referenced using) that name.

Once the template and options are selected, simply select the Submit button to upload the
template to the server's file store and the resulting Managed File ID for the design template will
be returned and displayed to the Results area.

Discussion

Firstly, we define an event handler that will run in response to the submission of the HTML form
via the selection of the Submit button.

When our event handler function is called, we then obtain a reference to the local design
template previously selected. This is achieved by getting the first value of the files attribute of
the HTML element with the ID of designtemplate (in this case a file type input HTML element)
and storing it in a variable file.

We also obtain boolean values for the Named and Persistent options (both checkbox type
input HTML elements) and store them in the named and persistent variables respectively.

Next we construct a jQuery AJAX request which will be sent to the File Store REST service.
We use an object called settings to hold the arguments for our request:

Method type and url arguments are specified as shown earlier, with the addition of a
persistent query parameter which specifies whether the template is to be persistent in the
file store when uploaded.

We specify the variable file as the data or contents of the request, a contentType argument
of "application/zip", and because we are sending file data we also specify a processData

argument set to false.

If the Named option is checked in our form, and the named variable is true, then a filename

query parameter is also added which contains the file name of the template selected
(file.name).

Lastly, the settings object is passed as an argument to the jQuery AJAX function ajax and the
request is executed.

Page 64



When the request is successful or done, a request response is received and the content of that
response is passed as the function parameter response. In the example, we then display the
value of this parameter which should be the new Managed File ID of the design template in the
file store.

Further Reading

See the File Store Service page of the REST API Reference section for further detail.

Page 65



Uploading a Job Creation Preset to the File Store
Problem

You want to upload a job creation preset to the File Store so that it can be used as part of a Job
Creation operation.

Solution

The solution is to create a request using the following URI and method type to submit the job
creation preset to the server via the File Store REST service:

Upload Job Creation
Preset

/rest/serverengine/filestore/JobCreationConfig POST

Example

HTML5

fs-jcpreset-upload.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Upload Job Creation Preset Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/fs-jcpreset-upload.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>File Store Service - Upload Job Creation Preset
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="jcpreset">Job Creation
Preset:</label>

<input id="jcpreset" type="file" required>

Page 66

http://localhost:9340/rest/serverengine/filestore/JobCreationConfig


</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="named">Named:</label>
<input id="named" type="checkbox">

</div>
<div>

<label for="persistent">Persistent:</label>
<input id="persistent" type="checkbox">

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

fs-jcpreset-upload.js

/* File Store Service - Upload Job Creation Preset Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var file = $("#jcpreset")[0].files[0],
named = $("#named").is(":checked"),

Page 67



persistent = $("#persistent").is(":checked");

var settings = {
type: "POST",
url:

"/rest/serverengine/filestore/JobCreationConfig?persistent=" +
persistent,

data: file,
processData: false,
contentType: "application/xml"

};
if (named) { settings.url += "&filename=" + file.name;

}
$.ajax(settings).done(function (response) {

displayStatus("Request Successful");
displayInfo("Job Creation Preset '" + file.name +

"' Uploaded Successfully");
displayResult("Managed File ID", response);

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 68



Screenshot & Output

Usage

To run the example simply select the Browse button and then select the job creation preset you
wish to upload using the selection dialog box.

Next you can specify the following options to use with the upload of the job creation preset:

l Named - allow this preset to be identified/referenced by its Managed File Name as well
as its Managed File ID

l Persistent - make this preset persistent in the file store

Note

Only one Managed File in the file store can be associated with a specific name. If two
files are uploaded to the file store under the same name, then only the most recently

Page 69



uploaded file will be associated with (or can be referenced using) that name.

Once the preset and options are selected, simply select the Submit button to upload the preset
to the server's file store and the resulting Managed File ID for the job creation preset will be
returned and displayed to the Results area.

Discussion

Firstly, we define an event handler that will run in response to the submission of the HTML form
via the selection of the Submit button.

When our event handler function is called, we then obtain a reference to the local job creation
preset previously selected. This is achieved by getting the first value of the files attribute of the
HTML element with the ID of jcpreset (in this case a file type input HTML element) and storing
it in a variable file.

We also obtain boolean values for the Named and Persistent options (both checkbox type
input HTML elements) and store them in the named and persistent variables respectively.

Next we construct a jQuery AJAX request which will be sent to the File Store REST service.
We use an object called settings to hold the arguments for our request:

Method type and url arguments are specified as shown earlier, with the addition of a
persistent query parameter which specifies whether the preset is to be persistent in the file
store when uploaded.

We specify the variable file as the data or contents of the request, a contentType argument
of "application/xml", and because we are sending file data we also specify a processData

argument set to false.

If the Named option is checked in our form, and the named variable is true, then a filename

query parameter is also added which contains the file name of the preset selected
(file.name).

Lastly, the settings object is passed as an argument to the jQuery AJAX function ajax and the
request is executed.

Page 70



When the request is successful or done, a request response is received and the content of that
response is passed as the function parameter response. In the example, we then display the
value of this parameter which should be the new Managed File ID of the job creation preset in
the file store.

Further Reading

See the File Store Service page of the REST API Reference section for further detail.

Page 71



Uploading an Output Creation Preset to the File Store
Problem

You want to upload an output creation preset to the File Store so that it can be used as part of a
Output Creation operation.

Solution

The solution is to create a request using the following URI and method type to submit the output
creation preset to the server via the File Store REST service:

Upload Output Creation
Preset

/rest/serverengine/filestore/OutputCreationConfig POST

Example

HTML5

fs-ocpreset-upload.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Upload Output Creation Preset Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/fs-ocpreset-upload.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>File Store Service - Upload Output Creation Preset
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="ocpreset">Output Creation
Preset:</label>

<input id="ocpreset" type="file" required>

Page 72

http://localhost:9340/rest/serverengine/filestore/OutputCreationConfig


</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="named">Named:</label>
<input id="named" type="checkbox">

</div>
<div>

<label for="persistent">Persistent:</label>
<input id="persistent" type="checkbox">

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

fs-ocpreset-upload.js

/* File Store Service - Upload Output Creation Preset Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var file = $("#ocpreset")[0].files[0],
named = $("#named").is(":checked"),

Page 73



persistent = $("#persistent").is(":checked");

var settings = {
type: "POST",
url:

"/rest/serverengine/filestore/OutputCreationConfig?persistent=" +
persistent,

data: file,
processData: false,
contentType: "application/xml"

};
if (named) { settings.url += "&filename=" + file.name;

}
$.ajax(settings).done(function (response) {

displayStatus("Request Successful");
displayInfo("Output Creation Preset '" + file.name

+ "' Uploaded Successfully");
displayResult("Managed File ID", response);

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 74



Screenshot & Output

Usage

To run the example simply select the Browse button and then select the output creation preset
you wish to upload using the selection dialog box.

Next you can specify the following options to use with the upload of the output creation preset:

l Named - allow this preset to be identified/referenced by its Managed File Name as well
as its Managed File ID

l Persistent - make this preset persistent in the file store

Note

Only one Managed File in the file store can be associated with a specific name. If two
files are uploaded to the file store under the same name, then only the most recently

Page 75



uploaded file will be associated with (or can be referenced using) that name.

Once the preset and options are selected, simply select the Submit button to upload the preset
to the server's file store and the resulting Managed File ID for the output creation preset will be
returned and displayed to the Results area.

Discussion

Firstly, we define an event handler that will run in response to the submission of the HTML form
via the selection of the Submit button.

When our event handler function is called, we then obtain a reference to the local output
creation preset previously selected. This is achieved by getting the first value of the files

attribute of the HTML element with the ID of ocpreset (in this case a file type input HTML
element) and storing it in a variable file.

We also obtain boolean values for the Named and Persistent options (both checkbox type
input HTML elements) and store them in the named and persistent variables respectively.

Next we construct a jQuery AJAX request which will be sent to the File Store REST service.
We use an object called settings to hold the arguments for our request:

Method type and url arguments are specified as shown earlier, with the addition of a
persistent query parameter which specifies whether the preset is to be persistent in the file
store when uploaded.

We specify the variable file as the data or contents of the request, a contentType argument
of "application/xml", and because we are sending file data we also specify a processData

argument set to false.

If the Named option is checked in our form, and the named variable is true, then a filename

query parameter is also added which contains the file name of the preset selected
(file.name).

Lastly, the settings object is passed as an argument to the jQuery AJAX function ajax and the
request is executed.

Page 76



When the request is successful or done, a request response is received and the content of that
response is passed as the function parameter response. In the example, we then display the
value of this parameter which should be the new Managed File ID of the output creation preset
in the file store.

Further Reading

See the File Store Service page of the REST API Reference section for further detail.

Page 77



Working with the Entity Services
This section consists of a number of pages covering various useful working examples:

1. Finding all the Data Sets in the Server

2. Finding the Data Records in a Data Set

3. Finding all the Content Sets in the Server

4. Finding the Content Items in a Content Set

5. Finding all the Job Sets in the Server

6. Finding the Jobs in a Job Set

See the Data Set Entity Service, Content Set Entity Service and Job Set Entity Service pages
of the REST API Reference section for further detail.

Note

A complete listing including these examples can be found in the index.html file located
at the root of the working example source code which contains links to all working
examples.

Page 78



Finding all the Data Sets in the Server
Problem

You want to obtain a list of all the previously generated Data Sets contained in the PlanetPress
Connect Server potentially for use in a Content Creation operation.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Data Set Entity REST service:

Get All Data Set Entities /rest/serverengine/entity/datasets GET

Example

HTML5

dse-get-all-datasets.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Get All Data Sets Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/dse-get-all-datasets.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Data Set Entity Service - Get All Data Sets
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="submit">No Input Required</label>
<input id="submit" type="submit"

value="Submit">
</div>

Page 79

http://localhost:9340/rest/serverengine/entity/datasets


</fieldset>
</form>

</body>
</html>

JavaScript/jQuery

dse-get-all-datasets.js

/* Data Set Entity Service - Get All Data Sets Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

$.ajax({
type: "GET",
url: "/rest/serverengine/entity/datasets"

}).done(function (response) {
displayStatus("Request Successful");
displayHeading("Data Set IDs");
displaySubResult("Plain", jsonIDListToPlain

(response));
displaySubResult("JSON Identifier List",

jsonPrettyPrint(response));
}).fail(displayDefaultFailure);

});
});

}(jQuery));

Page 80



Screenshot & Output

Usage

To run the example simply select the Submit button to request a list of the all the data sets
currently contained within the server.

The resulting list will then be returned and displayed to the Results area in both Plain list and
JSON Identifier List formats.

Further Reading

See the Data Set Entity Service page of the REST API Reference section for further detail.

Page 81



Finding the Data Records in a Data Set
Problem

You want to obtain a list of all the previously generated Data Records contained within a
specific Data Set potentially for use in a Content Creation operation.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Data Set Entity REST service:

Get Data Records for Data
Set

/rest/serverengine/entity/datasets/{dataSetId} GET

Example

HTML5

dse-get-datarecords.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Get Data Records for Data Set Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/dse-get-datarecords.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Data Set Entity Service - Get Data Records for Data Set
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="dataset">Data Set ID:</label>
<input id="dataset" type="text"

placeholder="1234" required>

Page 82

http://localhost:9340/rest/serverengine/entity/datasets/{dataSetId}


</div>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

dse-get-datarecords.js

/* Data Set Entity Service - Get Data Records for Data Set Example
*/
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var dataSetId = $("#dataset").val();

$.ajax({
type: "GET",
url: "/rest/serverengine/entity/datasets/" +

dataSetId
}).done(function (response) {

displayStatus("Request Successful");
displayHeading("Data Record IDs for Data Set '" +

dataSetId + "'");
displaySubResult("Plain", jsonIDListToPlain

(response));
displaySubResult("JSON Identifier List",

jsonPrettyPrint(response));
}).fail(displayDefaultFailure);

Page 83



});
});

}(jQuery));

Screenshot & Output

Usage

To run the example simply enter the Data Set ID and select the Submit button to request a list
of the all the data records contained within the specific data set in the server.

Page 84



The resulting list will then be returned and displayed to the Results area in both Plain list and
JSON Identifier List formats.

Further Reading

See the Data Set Entity Service page of the REST API Reference section for further detail.

Page 85



Finding all the Content Sets in the Server
Problem

You want to obtain a list of all the previously generated Content Sets contained in the
PlanetPress Connect Server potentially for use in a Job Creation operation.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Content Set Entity REST service:

Get All Content Set Entities /rest/serverengine/entity/contentsets GET

Example

HTML5

cse-get-all-contentsets.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Get All Content Sets Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/cse-get-all-contentsets.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Set Entity Service - Get All Content Sets
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="submit">No Input Required</label>
<input id="submit" type="submit"

value="Submit">
</div>

Page 86

http://localhost:9340/rest/serverengine/entity/contentsets


</fieldset>
</form>

</body>
</html>

JavaScript/jQuery

cse-get-all-contentsets.js

/* Content Set Entity Service - Get All Content Sets Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

$.ajax({
type: "GET",
url: "/rest/serverengine/entity/contentsets"

}).done(function (response) {
displayStatus("Request Successful");
displayHeading("Content Set IDs");
displaySubResult("Plain", jsonIDListToPlain

(response));
displaySubResult("JSON Identifier List",

jsonPrettyPrint(response));
}).fail(displayDefaultFailure);

});
});

}(jQuery));

Page 87



Screenshot & Output

Usage

To run the example simply select the Submit button to request a list of the all the content sets
currently contained within the server.

The resulting list will then be returned and displayed to the Results area in both Plain list and
JSON Identifier List formats.

Further Reading

See the Content Set Entity Service page of the REST API Reference section for further detail.

Page 88



Finding the Content Items in a Content Set
Problem

You want to obtain a list of all the previously generated Content Items contained within a
specific Content Set potentially for use in a Job Creation operation.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Content Set Entity REST service:

Get Content Items for
Content Set

/rest/serverengine/entity/contentsets/{contentSetId} GET

Example

HTML5

cse-get-contentitems.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Get Content Items for Content Set Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/cse-get-contentitems.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Set Entity Service - Get Content Items for
Content Set Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="contentset">Content Set ID:</label>
<input id="contentset" type="text"

placeholder="1234" required>

Page 89

http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}


</div>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

cse-get-contentitems.js

/* Content Set Entity Service - Get Content Items for Content Set
Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var contentSetId = $("#contentset").val();

$.ajax({
type: "GET",
url: "/rest/serverengine/entity/contentsets/" +

contentSetId
}).done(function (response) {

displayStatus("Request Successful");
displayHeading("Content Item IDs for Content Set '"

+ contentSetId + "'");
displaySubResult("Plain",

jsonContentItemIDListToTable(response));
displaySubResult("JSON Content Item Identifier

List", jsonPrettyPrint(response));
}).fail(displayDefaultFailure);

Page 90



});
});

}(jQuery));

Screenshot & Output

Page 91



Usage

To run the example simply enter the Content Set ID and select the Submit button to request a
list of the all the content items contained within the specific content set in the server.

The resulting list will then be returned as a list of Content Item and Data Record ID pairs which
will be displayed to the Results area in both Plain table and JSON Content Item Identifier List
formats.

Further Reading

See the Content Set Entity Service page of the REST API Reference section for further detail.

Page 92



Finding all the Job Sets in the Server
Problem

You want to obtain a list of all the previously generated Job Sets contained in the PlanetPress
Connect Server potentially for use in a Output Creation operation.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Job Set Entity REST service:

Get All Job Set Entities /rest/serverengine/entity/jobsets GET

Example

HTML5

jse-get-all-jobsets.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Get All Job Sets Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/jse-get-all-jobsets.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Job Set Entity Service - Get All Job Sets Example</h2>
<form>

<fieldset>
<legend>Inputs</legend>
<div>

<label for="submit">No Input Required</label>
<input id="submit" type="submit"

value="Submit">
</div>

</fieldset>

Page 93

http://localhost:9340/rest/serverengine/entity/jobsets


</form>
</body>

</html>

JavaScript/jQuery

jse-get-all-jobsets.js

/* Job Set Entity Service - Get All Job Sets Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

$.ajax({
type: "GET",
url: "/rest/serverengine/entity/jobsets"

}).done(function (response) {
displayStatus("Request Successful");
displayHeading("Job Set IDs");
displaySubResult("Plain", jsonIDListToPlain

(response));
displaySubResult("JSON Identifier List",

jsonPrettyPrint(response));
}).fail(displayDefaultFailure);

});
});

}(jQuery));

Page 94



Screenshot & Output

Usage

To run the example simply select the Submit button to request a list of the all the job sets
currently contained within the server.

The resulting list will then be returned and displayed to the Results area in both Plain list and
JSON Identifier List formats.

Further Reading

See the Job Set Entity Service page of the REST API Reference section for further detail.

Page 95



Finding the Jobs in a Job Set
Problem

You want to obtain a list of all the previously generated Jobs contained within a specific Job
Set potentially for use in a Output Creation operation.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Job Set Entity REST service:

Get Jobs for Job Set /rest/serverengine/entity/jobsets/{jobSetId} GET

Example

HTML5

jse-get-jobs.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Get Jobs for Job Set Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/jse-get-jobs.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Job Set Entity Service - Get Jobs for Job Set
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="jobset">Job Set ID:</label>
<input id="jobset" type="text"

placeholder="1234" required>
</div>

Page 96

http://localhost:9340/rest/serverengine/entity/jobsets/{jobSetId}


<div>
<input id="submit" type="submit"

value="Submit">
</div>

</fieldset>
</form>

</body>
</html>

JavaScript/jQuery

jse-get-jobs.js

/* Job Set Entity Service - Get Jobs for Job Set Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var jobSetId = $("#jobset").val();

$.ajax({
type: "GET",
url: "/rest/serverengine/entity/jobsets/" +

jobSetId
}).done(function (response) {

displayStatus("Request Successful");
displayHeading("Job IDs for Job Set '" + jobSetId +

"'");
displaySubResult("Plain", jsonIDListToPlain

(response));
displaySubResult("JSON Identifier List",

jsonPrettyPrint(response));
}).fail(displayDefaultFailure);

});
});

Page 97



}(jQuery));

Screenshot & Output

Usage

To run the example simply enter the Job Set ID and select the Submit button to request a list of
the all the jobs contained within the specific job set in the server.

The resulting list will then be returned and displayed to the Results area in both Plain list and
JSON Identifier List formats.

Further Reading

See the Job Set Entity Service page of the REST API Reference section for further detail.

Page 98



Working with the Workflow Services
This section consists of a number of pages covering various useful working examples:

1. Running a Data Mapping Operation

2. Running a Data Mapping Operation (Using JSON)

3. Running a Data Mapping Operation for PDF/VT File (to Data Set)

4. Running a Data Mapping Operation for PDF/VT File (to Content Set)

5. Running a Content Creation Operation for Print

6. Running a Content Creation Operation for Print By Data Record (Using JSON)

7. Running a Content Creation Operation for Email By Data Record (Using JSON)

8. Creating Content for Web By Data Record

9. Creating Content for Web By Data Record (Using JSON)

10. Running a Job Creation Operation (Using JSON)

11. Running an Output Creation Operation

12. Running an Output Creation Operation (Using JSON)

13. Running an Output Creation Operation By Job (Using JSON)

14. Running an All-In-One Operation (Using JSON)

See the Data Mapping Service, Content Creation Service, Content Creation (Email) Service,
Content Creation (HTML) Service, Job Creation Service, Output Creation Service and All-In-
One Service pages of the REST API Reference section for further detail.

Note

A complete listing including these examples can be found in the index.html file located
at the root of the working example source code which contains links to all working
examples.

Page 99



Running a Data Mapping Operation
Problem

You want to run a data mapping operation to generate a Data Set using a data file and a data
mapping configuration as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the data mapping operation. There
is also the option of cancelling an operation during processing if required. These requests can
be submitted via the Data Mapping REST service:

Process Data Mapping /rest/serverengine/workflow/datamining/{configId}/
{dataFileId}

POST

Get Progress of
Operation

/rest/serverengine/workflow/datamining/getProgress/
{operationId}

GET

Get Result of Operation /rest/serverengine/workflow/datamining/getResult/
{operationId}

POST

Cancel an Operation /rest/serverengine/workflow/datamining/cancel/
{operationId}

POST

Example

HTML5

dm-process.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Data Mapping Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/dm-process.js"></script>

Page 100

http://localhost:9340/rest/serverengine/workflow/datamining/{configId}/{dataFileId}
http://localhost:9340/rest/serverengine/workflow/datamining/{configId}/{dataFileId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}


<link rel="stylesheet" href="../../common/css/styles.css">
</head>
<body>

<h2>Data Mapping Service - Process Data Mapping
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datafile">Data File
ID/Name:</label>

<input id="datafile" type="text"
placeholder="1234 or Filename" required>

</div>
<div>

<label for="datamapper">Data Mapping
Configuration ID/Name:</label>

<input id="datamapper" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

dm-process.js

Page 101



/* Data Mapping Service - Process Data Mapping Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/cancel/" + operationId
}).done(function (response) {

displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr("disabled");
$cancelButton.attr("disabled", "disabled");

}, 100);
}).fail(displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var configId = $("#datamapper").val(),
dataFileId = $("#datafile").val();

var getFinalResult = function () {

/* Get Result of Operation */

Page 102



$.ajax({
type: "POST",
url:

"/rest/serverengine/workflow/datamining/getResult/" + operationId
}).done(function (response, status, request) {

displayHeading("Operation Result");
displaySubResult("Data Set ID", response);

}).fail(displayDefaultFailure);
};

/* Process Data Mapping */
$.ajax({

type: "POST",
url: "/rest/serverengine/workflow/datamining/" +

configId + "/" + dataFileId
}).done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.attr("disabled", "disabled");
$cancelButton.removeAttr("disabled");

displayStatus("Data Mapping Operation Successfully
Submitted");

displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/datamining/getProgress/" + operationId
}).done(function (response, status,

request) {

if (response !== "done") {
if (response !== progress) {

progress = response;

Page 103



$progressBar.attr("value",
progress);

}
setTimeout(getProgress, 1000);

} else {
$progressBar.attr("value",

(progress = 100));
displayInfo("Operation Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr

("disabled");
$cancelButton.attr("disabled",

"disabled");
}, 100);

}
}).fail(displayDefaultFailure);

}
};
getProgress();

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 104



Screenshot & Output

Usage

To run the example simply enter the Managed File ID or Name for your data file and your data
mapping configuration (previously uploaded to the file store) into the appropriate text fields, and
then select the Submit button to start the data mapping operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the data mapping
operation has completed, the ID of the generated Data Set will be returned and displayed to the
Results area.

Page 105



Further Reading

See the Data Mapping Service page of the REST API Reference section for further detail.

Page 106



Running a Data Mapping Operation (Using JSON)
Problem

You want to run a data mapping operation to generate a Data Set using a data file and a data
mapping configuration as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the data mapping operation. There
is also the option of cancelling an operation during processing if required. These requests can
be submitted via the Data Mapping REST service:

Process Data Mapping
(JSON)

/rest/serverengine/workflow/datamining/{configId} POST

Get Progress of
Operation

/rest/serverengine/workflow/datamining/getProgress/
{operationId}

GET

Get Result of Operation /rest/serverengine/workflow/datamining/getResult/
{operationId}

POST

Cancel an Operation /rest/serverengine/workflow/datamining/cancel/
{operationId}

POST

Example

HTML5

dm-process-json.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Data Mapping (JSON) Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/dm-process-json.js"></script>

Page 107

http://localhost:9340/rest/serverengine/workflow/datamining/{configId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}


<link rel="stylesheet" href="../../common/css/styles.css">
</head>
<body>

<h2>Data Mapping Service - Process Data Mapping (JSON)
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datafile">Data File
ID/Name:</label>

<input id="datafile" type="text"
placeholder="1234 or Filename" required>

</div>
<div>

<label for="datamapper">Data Mapping
Configuration ID/Name:</label>

<input id="datamapper" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

dm-process-json.js

Page 108



/* Data Mapping Service - Process Data Mapping (JSON) Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/cancel/" + operationId
}).done(function (response) {

displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr("disabled");
$cancelButton.attr("disabled", "disabled");

}, 100);
}).fail(displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var configId = $("#datamapper").val(),
dataFileId = $("#datafile").val();

var getFinalResult = function () {

/* Get Result of Operation */

Page 109



$.ajax({
type: "POST",
url:

"/rest/serverengine/workflow/datamining/getResult/" + operationId
}).done(function (response, status, request) {

displayHeading("Operation Result");
displaySubResult("Data Set ID", response);

}).fail(displayDefaultFailure);
};

/* Process Data Mapping (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/" + configId,
data: JSON.stringify(plainIDToJson

(dataFileId)),
contentType: "application/json"

}).done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.attr("disabled", "disabled");
$cancelButton.removeAttr("disabled");

displayStatus("Data Mapping Operation Successfully
Submitted");

displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/datamining/getProgress/" + operationId
}).done(function (response, status,

request) {

Page 110



if (response !== "done") {
if (response !== progress) {

progress = response;
$progressBar.attr("value",

progress);
}
setTimeout(getProgress, 1000);

} else {
$progressBar.attr("value",

(progress = 100));
displayInfo("Operation Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr

("disabled");
$cancelButton.attr("disabled",

"disabled");
}, 100);

}
}).fail(displayDefaultFailure);

}
};
getProgress();

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 111



Screenshot & Output

Usage

To run the example simply enter the Managed File ID or Name for your data file and your data
mapping configuration (previously uploaded to the file store) into the appropriate text fields, and
then select the Submit button to start the data mapping operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the data mapping
operation has completed, the ID of the generated Data Set will be returned and displayed to the
Results area.

Page 112



Further Reading

See the Data Mapping Service page of the REST API Reference section for further detail.

Page 113



Running a Data Mapping Operation for PDF/VT File (to
Data Set)
Problem

You want to run a data mapping operation to generate a Data Set using only a PDF/VT file as
input.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the data mapping operation. There
is also the option of cancelling an operation during processing if required. These requests can
be submitted via the Data Mapping REST service:

Process Data Mapping
(PDF/VT to Data Set)

/rest/serverengine/workflow/datamining/pdfvtds/
{dataFileId}

POST

Get Progress of
Operation

/rest/serverengine/workflow/datamining/getProgress/
{operationId}

GET

Get Result of Operation /rest/serverengine/workflow/datamining/getResult/
{operationId}

POST

Cancel an Operation /rest/serverengine/workflow/datamining/cancel/
{operationId}

POST

Example

HTML5

dm-process-pdfvt-ds.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Data Mapping (PDF/VT to Data Set)

Example</title>
<script src="../../common/lib/js/jquery-

Page 114

http://localhost:9340/rest/serverengine/workflow/datamining/pdfvtds/{dataFileId}
http://localhost:9340/rest/serverengine/workflow/datamining/pdfvtds/{dataFileId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}


1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/dm-process-pdfvt-ds.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Data Mapping Service - Process Data Mapping (PDF/VT to
Data Set) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datafile">Data File
ID/Name:</label>

<input id="datafile" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

dm-process-pdfvt-ds.js

/* Data Mapping Service - Process Data Mapping (PDF/VT to Data Set)
Example */
(function ($) {

Page 115



"use strict";
$(document).ready(function () {

setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/cancel/" + operationId
}).done(function (response) {

displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr("disabled");
$cancelButton.attr("disabled", "disabled");

}, 100);
}).fail(displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var dataFileId = $("#datafile").val();

var getFinalResult = function () {

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

Page 116



"/rest/serverengine/workflow/datamining/getResult/" + operationId
}).done(function (response, status, request) {

displayHeading("Operation Result");
displaySubResult("Data Set ID", response);

}).fail(displayDefaultFailure);
};

/* Process Data Mapping (PDF/VT to Data Set) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/pdfvtds/" + dataFileId
}).done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.attr("disabled", "disabled");
$cancelButton.removeAttr("disabled");

displayStatus("Data Mapping Operation Successfully
Submitted");

displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/datamining/getProgress/" + operationId
}).done(function (response, status,

request) {

if (response !== "done") {
if (response !== progress) {

progress = response;
$progressBar.attr("value",

progress);
}

Page 117



setTimeout(getProgress, 1000);
} else {

$progressBar.attr("value",
(progress = 100));

displayInfo("Operation Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr

("disabled");
$cancelButton.attr("disabled",

"disabled");
}, 100);

}
}).fail(displayDefaultFailure);

}
};
getProgress();

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 118



Screenshot & Output

Usage

To run the example simply enter the Managed File ID or Name for your PDF/VT file (previously
uploaded to the file store) into the appropriate text field, and then select the Submit button to
start the data mapping operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the data mapping
operation has completed, the ID of the generated Data Set will be returned and displayed to the
Results area.

Page 119



Further Reading

See the Data Mapping Service page of the REST API Reference section for further detail.

Page 120



Running a Data Mapping Operation for PDF/VT File (to
Content Set)
Problem

You want to run a data mapping operation to generate a Content Set using only a PDF/VT file
as input.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the data mapping operation. There
is also the option of cancelling an operation during processing if required. These requests can
be submitted via the Data Mapping REST service:

Process Data Mapping
(PDF/VT to Content Set)

/rest/serverengine/workflow/datamining/pdfvtcs/
{dataFileId}

POST

Get Progress of
Operation

/rest/serverengine/workflow/datamining/getProgress/
{operationId}

GET

Get Result of Operation /rest/serverengine/workflow/datamining/getResult/
{operationId}

POST

Cancel an Operation /rest/serverengine/workflow/datamining/cancel/
{operationId}

POST

Example

HTML5

dm-process-pdfvt-cs.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Data Mapping (PDF/VT to Content Set)

Example</title>
<script src="../../common/lib/js/jquery-

Page 121

http://localhost:9340/rest/serverengine/workflow/datamining/pdfvtcs/{dataFileId}
http://localhost:9340/rest/serverengine/workflow/datamining/pdfvtcs/{dataFileId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}


1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/dm-process-pdfvt-cs.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Data Mapping Service - Process Data Mapping (PDF/VT to
Content Set) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datafile">Data File
ID/Name:</label>

<input id="datafile" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

dm-process-pdfvt-cs.js

/* Data Mapping Service - Process Data Mapping (PDF/VT to Content
Set) Example */
(function ($) {

"use strict";

Page 122



$(document).ready(function () {

setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/cancel/" + operationId
}).done(function (response) {

displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr("disabled");
$cancelButton.attr("disabled", "disabled");

}, 100);
}).fail(displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var dataFileId = $("#datafile").val();

var getFinalResult = function () {

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/getResult/" + operationId

Page 123



}).done(function (response, status, request) {
displayHeading("Operation Result");
displaySubResult("Content Set ID", response);

}).fail(displayDefaultFailure);
};

/* Process Data Mapping (PDF/VT to Content Set) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/pdfvtcs/" + dataFileId
}).done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.attr("disabled", "disabled");
$cancelButton.removeAttr("disabled");

displayStatus("Data Mapping Operation Successfully
Submitted");

displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/datamining/getProgress/" + operationId
}).done(function (response, status,

request) {

if (response !== "done") {
if (response !== progress) {

progress = response;
$progressBar.attr("value",

progress);
}
setTimeout(getProgress, 1000);

Page 124



} else {
$progressBar.attr("value",

(progress = 100));
displayInfo("Operation Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr

("disabled");
$cancelButton.attr("disabled",

"disabled");
}, 100);

}
}).fail(displayDefaultFailure);

}
};
getProgress();

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 125



Screenshot & Output

Usage

To run the example simply enter the Managed File ID or Name for your PDF/VT file (previously
uploaded to the file store) into the appropriate text field, and then select the Submit button to
start the data mapping operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the data mapping
operation has completed, the ID of the generated Content Set will be returned and displayed to
the Results area.

Page 126



Further Reading

See the Data Mapping Service page of the REST API Reference section for further detail.

Page 127



Running a Content Creation Operation for Print
Problem

You want to run a content creation operation to generate a Content Set using a design template
and an existing set of Data Records as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the content creation operation.
There is also the option of cancelling an operation during processing if required. These
requests can be submitted via the Content Creation REST service:

Process Content
Creation

/rest/serverengine/workflow/contentcreation/{templateId}/
{dataSetId}

POST

Get Progress of
Operation

/rest/serverengine/workflow/contentcreation/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/contentcreation/getResult/
{operationId}

POST

Cancel an Operation /rest/serverengine/workflow/contentcreation/cancel/
{operationId}

POST

Example

HTML5

cc-process.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Content Creation Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/cc-process.js"></script>

Page 128

http://localhost:9340/rest/serverengine/workflow/contentcreation/{templateId}/{dataSetId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/{templateId}/{dataSetId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/cancel/{operationId}


<link rel="stylesheet" href="../../common/css/styles.css">
</head>
<body>

<h2>Content Creation Service - Process Content Creation
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="dataset">Data Set ID:</label>
<input id="dataset" type="text"

placeholder="1234" required>
</div>
<div>

<label for="designtemplate">Design Template
ID/Name:</label>

<input id="designtemplate" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

cc-process.js

/* Content Creation Service - Process Content Creation Example */
(function ($) {

Page 129



"use strict";
$(document).ready(function () {

setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/cancel/" + operationId
}).done(function (response) {

displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr("disabled");
$cancelButton.attr("disabled", "disabled");

}, 100);
}).fail(displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var dataSetId = $("#dataset").val(),
templateId = $("#designtemplate").val();

var getFinalResult = function () {

/* Get Result of Operation */
$.ajax({

type: "POST",

Page 130



url:
"/rest/serverengine/workflow/contentcreation/getResult/" +
operationId

}).done(function (response, status, request) {
displayHeading("Operation Result");
displaySubResult("Content Set IDs", response);

}).fail(displayDefaultFailure);
};

/* Process Content Creation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/" + templateId + "/" +
dataSetId

}).done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.attr("disabled", "disabled");
$cancelButton.removeAttr("disabled");

displayStatus("Content Creation Operation
Successfully Submitted");

displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/contentcreation/getProgress/" +
operationId

}).done(function (response, status,
request) {

if (response !== "done") {
if (response !== progress) {

Page 131



progress = response;
$progressBar.attr("value",

progress);
}
setTimeout(getProgress, 1000);

} else {
$progressBar.attr("value",

(progress = 100));
displayInfo("Operation Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr

("disabled");
$cancelButton.attr("disabled",

"disabled");
}, 100);

}
}).fail(displayDefaultFailure);

}
};
getProgress();

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 132



Screenshot & Output

Usage

To run the example simply enter the Data Set ID and the Managed File ID or Name of your
design template (previously uploaded to the file store) into the appropriate text fields, and then
select the Submit button to start the content creation operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the content
creation operation has completed, the IDs of the generated Content Sets will be returned and
displayed to the Results area.

Page 133



Further Reading

See the Content Creation Service page of the REST API Reference section for further detail.

Page 134



Running a Content Creation Operation for Print By Data
Record (Using JSON)
Problem

You want to run a content creation operation to generate a Content Set using a design template
and an existing set of Data Records as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the content creation operation.
There is also the option of cancelling an operation during processing if required. These
requests can be submitted via the Content Creation REST service:

Process Content
Creation (By Data
Record) (JSON)

/rest/serverengine/workflow/contentcreation/{templateId} POST

Get Progress of
Operation

/rest/serverengine/workflow/contentcreation/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/contentcreation/getResult/
{operationId}

POST

Cancel an Operation /rest/serverengine/workflow/contentcreation/cancel/
{operationId}

POST

Example

HTML5

cc-process-by-dre-json.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Content Creation (By Data Record) (JSON)

Example</title>

Page 135

http://localhost:9340/rest/serverengine/workflow/contentcreation/{templateId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/cancel/{operationId}


<script src="../../common/lib/js/jquery-
1.11.3.min.js"></script>

<script src="../../common/js/common.js"></script>
<script src="js/cc-process-by-dre-json.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Creation Service - Process Content Creation (By
Data Record) (JSON) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datarecords">Data Record ID
(s):</label>

<input id="datarecords" type="text"
placeholder="1234, 2345, 3456, ..." required>

</div>
<div>

<label for="designtemplate">Design Template
ID/Name:</label>

<input id="designtemplate" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

Page 136



JavaScript/jQuery

cc-process-by-dre-json.js

/* Content Creation Service - Process Content Creation (By Data
Record) (JSON) Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/cancel/" + operationId
}).done(function (response) {

displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr("disabled");
$cancelButton.attr("disabled", "disabled");

}, 100);
}).fail(displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var dataRecordIds = $("#datarecords").val(),

Page 137



templateId = $("#designtemplate").val();

var getFinalResult = function () {

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/getResult/" +
operationId

}).done(function (response, status, request) {
displayHeading("Operation Result");
displaySubResult("Content Set IDs", response);

}).fail(displayDefaultFailure);
};

/* Process Content Creation (By Data Record) (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/" + templateId,
data: JSON.stringify(plainIDListToJson

(dataRecordIds)),
contentType: "application/json"

}).done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.attr("disabled", "disabled");
$cancelButton.removeAttr("disabled");

displayStatus("Content Creation Operation
Successfully Submitted");

displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",

Page 138



cache: false,
url:

"/rest/serverengine/workflow/contentcreation/getProgress/" +
operationId

}).done(function (response, status,
request) {

if (response !== "done") {
if (response !== progress) {

progress = response;
$progressBar.attr("value",

progress);
}
setTimeout(getProgress, 1000);

} else {
$progressBar.attr("value",

(progress = 100));
displayInfo("Operation Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr

("disabled");
$cancelButton.attr("disabled",

"disabled");
}, 100);

}
}).fail(displayDefaultFailure);

}
};
getProgress();

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 139



Screenshot & Output

Usage

To run the example simply enter a comma delimited list of your Data Record IDs and the
Managed File ID or Name of your design template (previously uploaded to the file store) into
the appropriate text fields, and then select the Submit button to start the content creation
operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the content
creation operation has completed, the IDs of the generated Content Sets will be returned and
displayed to the Results area.

Page 140



Further Reading

See the Content Creation Service page of the REST API Reference section for further detail.

Page 141



Running a Content Creation Operation for Email By Data
Record (Using JSON)
Problem

You want to run a content creation operation to generate and send email content using a
design template and an existing set of Data Records as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the content creation operation.
There is also the option of cancelling an operation during processing if required. These
requests can be submitted via the Content Creation (Email) REST service:

Process
Content
Creation (By
Data Record)
(JSON)

/rest/serverengine/workflow/contentcreation/email/{templateId} POST

Get Progress of
Operation

/rest/serverengine/workflow/contentcreation/email/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/contentcreation/email/getResult/
{operationId}

POST

Cancel an
Operation

/rest/serverengine/workflow/contentcreation/email/cancel/
{operationId}

POST

Example

HTML5

cce-process-by-dre-json.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">

Page 142

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/{templateId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/cancel/{operationId}


<title>Process Content Creation (By Data Record) (JSON)
Example</title>

<script src="../../common/lib/js/jquery-
1.11.3.min.js"></script>

<script src="../../common/js/common.js"></script>
<script src="js/cce-process-by-dre-json.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Creation (Email) Service - Process Content
Creation (By Data Record) (JSON) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datarecords">Data Record ID
(s):</label>

<input id="datarecords" type="text"
placeholder="1234, 2345, 3456, ..." required>

</div>
<div>

<label for="designtemplate">Design Template
ID/Name:</label>

<input id="designtemplate" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Email Parameters</legend>
<div>

<label for="section">Section:</label>
<input id="section" type="text"

placeholder="Section Name">
</div>
<div>

<label for="sender">From:</label>
<input id="sender" type="text"

placeholder="sender@email.com" required>
</div>
<div>

<label for="host">Host:</label>
<input id="host" type="text"

placeholder="mail.server.com" required>

Page 143



</div>
<div>

<label for="usesender">Use From as To Email
Address:</label>

<input id="usesender" type="checkbox" checked>
</div>
<div>

<label for="attachpdf">Attach PDF Page to
Email:</label>

<input id="attachpdf" type="checkbox">
</div>
<div>

<label for="attachweb">Attach Web Page to
Email:</label>

<input id="attachweb" type="checkbox">
</div>

</fieldset>
<fieldset>

<legend>Email Security</legend>
<div>

<label for="useauth">Use
Authentication:</label>

<input id="useauth" type="checkbox" checked>
</div>
<div>

<label for="starttls">Start TLS:</label>
<input id="starttls" type="checkbox">

</div>
<div>

<label for="username">Username:</label>
<input id="username" type="text"

placeholder="Username">
</div>
<div>

<label for="password">Password:</label>
<input id="password" type="password"

placeholder="Password">
</div>

</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>

Page 144



</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

cce-process-by-dre-json.js

/* Content Creation (Email) Service - Process Content Creation (By
Data Record) (JSON) Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

var $useAuth = $("#useauth"),
$startTLS = $("#starttls"),
$username = $("#username"),
$password = $("#password"),
$submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/email/cancel/" +
operationId

Page 145



}).done(function (response) {
displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr("disabled");
$cancelButton.attr("disabled", "disabled");

}, 100);
}).fail(displayDefaultFailure);

}
});

$useAuth.on("click", function (event) {
if (event.target.checked) {

$startTLS.removeAttr("disabled");
$username.removeAttr("disabled");
$password.removeAttr("disabled");

} else {
$startTLS.attr("disabled", "disabled");
$username.attr("disabled", "disabled");
$password.attr("disabled", "disabled");

}
});

$("form").on("submit", function (event) {
event.preventDefault();
if (!checkSessionValid()) { return; }

var dataRecordIds = $("#datarecords").val(),
templateId = $("#designtemplate").val(),
section = $("#section").val().trim();

var getFinalResult = function () {

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/email/getResult/" +
operationId

}).done(function (response, status, request) {
displayHeading("Operation Result");
displaySubResult("Email Report", response);

Page 146



}).fail(displayDefaultFailure);
};

/* Construct JSON Identifier List (with Email
Parameters) */

var config = {
"sender": $("#sender").val(),
"host": $("#host").val(),
"useAuth" : $useAuth.is(":checked"),
"useSender": $("#usesender").is(":checked"),
"attachWebPage": $("#attachweb").is

(":checked"),
"attachPdfPage": $("#attachpdf").is

(":checked")
},
drids = plainIDListToJson(dataRecordIds);

if (config.useAuth) {
config.useStartTLS = $startTLS.is(":checked");
config.user = $username.val();
config.password = $password.val();

} else {
config.user = "";

}
config.identifiers = drids.identifiers;

/* Process Content Creation (By Data Record) (JSON) */
var settings = {

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/email/" + templateId,
data: JSON.stringify(config),
contentType: "application/json; charset=utf-8"

};
if (section.length) { settings.url += "?section=" +

section; }
$.ajax(settings).done(function (response, status,

request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

Page 147



$submitButton.attr("disabled", "disabled");
$cancelButton.removeAttr("disabled");

displayStatus("Content Creation Operation
Successfully Submitted");

displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/contentcreation/email/getProgress/" +
operationId

}).done(function (response, status,
request) {

if (response !== "done") {
if (response !== progress) {

progress = response;
$progressBar.attr("value",

progress);
}
setTimeout(getProgress, 1000);

} else {
$progressBar.attr("value",

(progress = 100));
displayInfo("Operation Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr

("disabled");
$cancelButton.attr("disabled",

"disabled");
}, 100);

}
}).fail(displayDefaultFailure);

}

Page 148



};
getProgress();

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 149



Screenshot & Output

Page 150



Usage

To run the example you first need to enter a comma delimited list of your Data Record IDs and
the Managed File ID or Name of your design template (previously uploaded to the file store)
into the appropriate text fields as your inputs.

Next you need to specify the email parameters to use with the content creation operation:

l Section - the section within the email context of the template to use
l From - the email address to be shown as the sender in the email output

l Host - the network address or name of your SMTP mail server through which the emails
will be sent

l Use From as To Address - use the sender address as the receiver address for all emails
in the output

l Attach PDF Page to Email - if a Print Context exists in the template, generate it's output
as a PDF and attach it to the email output

l Attach Web Page to Email - if a Web Context exists in the template, generate it's output
as a single HTML (with embedded resources) and attach it to email output

Then you need to specify how email security is to be used with the content creation operation:

l Use Authentication - if authentication is to be used with the mail server
l Start TLS - if Transport Layer Security (TLS) is to be used when sending emails

l Username - the username to authenticate/login with
l Password - the password to authenticate/login with

Lastly, select the Submit button to start the content creation operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the content
creation operation has completed, a report of the emails successfully sent will be returned and
displayed to the Results area.

Page 151



Further Reading

See the Content Creation (Email) Service page of the REST API Reference section for further
detail.

Page 152



Creating Content for Web By Data Record
Problem

You want to create and retrieve web content using a design template and an existing Data
Record as inputs.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Content Creation (HTML) REST service:

Process Content
Creation (By Data
Record)

/rest/serverengine/workflow/contentcreation/html/
{templateId}/{dataRecordId: [0-9]+}

GET

Example

HTML5

cch-process-by-dre.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Content Creation (By Data Record)

Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/cch-process-by-dre.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Creation (HTML) Service - Process Content
Creation (By Data Record) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datarecord">Data Record ID:</label>

Page 153

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}
http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}


<input id="datarecord" type="text"
placeholder="1234" required>

</div>
<div>

<label for="designtemplate">Design Template
ID/Name:</label>

<input id="designtemplate" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>HTML Parameters</legend>
<div>

<label for="section">Section:</label>
<input id="section" type="text"

placeholder="Section Name">
</div>
<div>

<label for="inline">Inline Mode:</label>
<select id="inline">

<option value="NONE">None</option>
<option value="CSS">CSS</option>
<option value="ALL">All</option>

</select>
</div>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

cch-process-by-dre.js

/* Content Creation (HTML) Service - Process Content Creation (By
Data Record) Example */
(function ($) {

"use strict";

Page 154



$(document).ready(function () {

setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var dataRecordId = $("#datarecord").val(),
templateId = $("#designtemplate").val(),
section = $("#section").val().trim(),
params = {

inline: $("#inline").val()
};

if (section.length) { params.section = section; }

/* Process Content Creation (By Data Record) */
$.ajax({

type: "GET",
url:

"/rest/serverengine/workflow/contentcreation/html/" +
templateId + "/" + dataRecordId,

data: params
}).done(function (response, status, request) {

displayHeading("Result");
displaySubResult("Response", htmlToLinkWindow

(response, "Result Link"), false);
}).fail(displayDefaultFailure);

});
});

}(jQuery));

Page 155



Screenshot & Output

Page 156



Usage

To run the example you first need to enter your Data Record ID and the Managed File ID or
Name of your design template (previously uploaded to the file store) into the appropriate text
fields as your inputs.

Next you need to specify the HTML parameters to use when creating the web content:

Page 157



l Section - the section within the web context of the template to use
l Inline Mode - the inline mode to be used in the creation of content

Lastly, select the Submit button to create and retrieve the web content. When the response
returns a Results Link will be displayed in the Results area. This link can be selected to view
the resulting web content that was created.

Further Reading

See the Content Creation (HTML) Service page of the REST API Reference section for further
detail.

Page 158



Creating Content for Web By Data Record (Using JSON)
Problem

You want to create and retrieve web content using a design template and an existing Data
Record as inputs.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Content Creation (HTML) REST service:

Process Content Creation
(By Data Record) (JSON)

/rest/serverengine/workflow/contentcreation/html/
{templateId}/{dataRecordId: [0-9]+}

POST

Example

HTML5

cch-process-by-dre-json.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Content Creation (By Data Record) (JSON)

Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/cch-process-by-dre-json.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Creation (HTML) Service - Process Content
Creation (By Data Record) (JSON) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datarecord">Data Record ID:</label>
<input id="datarecord" type="text"

Page 159

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}
http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}


placeholder="1234" required>
</div>
<div>

<label for="designtemplate">Design Template
ID/Name:</label>

<input id="designtemplate" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>HTML Parameters</legend>
<div>

<label for="section">Section:</label>
<input id="section" type="text"

placeholder="Section Name">
</div>
<div>

<label for="inline">Inline Mode:</label>
<select id="inline">

<option value="NONE">None</option>
<option value="CSS">CSS</option>
<option value="ALL">All</option>

</select>
</div>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

cch-process-by-dre-json.js

/* Content Creation (HTML) Service - Process Content Creation (By
Data Record) (JSON) Example */
(function ($) {

"use strict";
$(document).ready(function () {

Page 160



setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var dataRecordId = $("#datarecord").val(),
templateId = $("#designtemplate").val(),
section = $("#section").val().trim(),
params = {

inline: $("#inline").val()
};

if (section.length) { params.section = section; }

/* Process Content Creation (By Data Record) (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/html/" +
templateId + "/" +

dataRecordId,
data: JSON.stringify(params),
contentType: "application/json; charset=utf-8"

}).done(function (response, status, request) {
displayHeading("Result");
displaySubResult("Response", htmlToLinkWindow

(response, "Result Link"), false);
}).fail(displayDefaultFailure);

});
});

}(jQuery));

Page 161



Screenshot & Output

Page 162



Usage

To run the example you first need to enter your Data Record ID and the Managed File ID or
Name of your design template (previously uploaded to the file store) into the appropriate text
fields as your inputs.

Next you need to specify the HTML parameters to use when creating the web content:

Page 163



l Section - the section within the web context of the template to use
l Inline Mode - the inline mode to be used in the creation of content

Lastly, select the Submit button to create and retrieve the web content. When the response
returns a Results Link will be displayed in the Results area. This link can be selected to view
the resulting web content that was created.

Further Reading

See the Content Creation (HTML) Service page of the REST API Reference section for further
detail.

Page 164



Running a Job Creation Operation (Using JSON)
Problem

You want to run a job creation operation to generate a Job Set using a job creation preset and
an existing set of Content Sets as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the job creation operation. There is
also the option of cancelling an operation during processing if required. These requests can be
submitted via the Job Creation REST service:

Process Job Creation
(JSON)

/rest/serverengine/workflow/jobcreation/{configId} POST

Get Progress of
Operation

/rest/serverengine/workflow/jobcreation/getProgress/
{operationId}

GET

Get Result of Operation /rest/serverengine/workflow/jobcreation/getResult/
{operationId}

POST

Cancel an Operation /rest/serverengine/workflow/jobcreation/cancel/
{operationId}

POST

Example

HTML5

jc-process-json.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Job Creation (JSON) Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/jc-process-json.js"></script>

Page 165

http://localhost:9340/rest/serverengine/workflow/jobcreation/{configId}
http://localhost:9340/rest/serverengine/workflow/jobcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/jobcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/jobcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/jobcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/jobcreation/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/jobcreation/cancel/{operationId}


<link rel="stylesheet" href="../../common/css/styles.css">
</head>
<body>

<h2>Job Creation Service - Process Job Creation (JSON)
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="contentsets">Content Set ID
(s):</label>

<input id="contentsets" type="text"
placeholder="1234, 2345, 3456, ..." required>

</div>
<div>

<label for="jcpreset">Job Creation Preset
ID/Name:</label>

<input id="jcpreset" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

jc-process-json.js

Page 166



/* Job Creation Service - Process Job Creation (JSON) Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/jobcreation/cancel/" + operationId
}).done(function (response) {

displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr("disabled");
$cancelButton.attr("disabled", "disabled");

}, 100);
}).fail(displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var contentSetIds = $("#contentsets").val(),
configId = $("#jcpreset").val();

var getFinalResult = function () {

/* Get Result of Operation */

Page 167



$.ajax({
type: "POST",
url:

"/rest/serverengine/workflow/jobcreation/getResult/" + operationId
}).done(function (response, status, request) {

displayHeading("Operation Result");
displaySubResult("Job Set ID", response);

}).fail(displayDefaultFailure);
};

/* Process Job Creation (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/jobcreation/" + configId,
data: JSON.stringify(plainIDListToJson

(contentSetIds)),
contentType: "application/json"

}).done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.attr("disabled", "disabled");
$cancelButton.removeAttr("disabled");

displayStatus("Job Creation Operation Successfully
Submitted");

displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/jobcreation/getProgress/" +
operationId

}).done(function (response, status,
request) {

Page 168



if (response !== "done") {
if (response !== progress) {

progress = response;
$progressBar.attr("value",

progress);
}
setTimeout(getProgress, 1000);

} else {
$progressBar.attr("value",

(progress = 100));
displayInfo("Operation Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr

("disabled");
$cancelButton.attr("disabled",

"disabled");
}, 100);

}
}).fail(displayDefaultFailure);

}
};
getProgress();

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 169



Screenshot & Output

Usage

To run the example simply enter a comma delimited list of your Content Set IDs and the
Managed File ID or Name of your job creation preset (previously uploaded to the file store) into
the appropriate text fields, and then select the Submit button to start the job creation operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the job creation
operation has completed, the ID of the generated Job Set will be returned and displayed to the
Results area.

Page 170



Further Reading

See the Job Creation Service page of the REST API Reference section for further detail.

Page 171



Running an Output Creation Operation
Problem

You want to run an output creation operation to generate print output using an output creation
preset and an existing Job Set as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the output creation operation.
There is also the option of cancelling an operation during processing if required. These
requests can be submitted via the Output Creation REST service:

Process Output
Creation

/rest/serverengine/workflow/outputcreation/{configId}/
{jobSetId}

POST

Get Progress of
Operation

/rest/serverengine/workflow/outputcreation/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/outputcreation/getResult/
{operationId}

POST

Get Result of
Operation (as Text)

/rest/serverengine/workflow/outputcreation/getResultTxt/
{operationId}

POST

Cancel an Operation /rest/serverengine/workflow/outputcreation/cancel/
{operationId}

POST

Example

HTML5

oc-process.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Output Creation Example</title>

Page 172

http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}/{jobSetId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}/{jobSetId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}


<script src="../../common/lib/js/jquery-
1.11.3.min.js"></script>

<script src="../../common/js/common.js"></script>
<script src="js/oc-process.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Output Creation Service - Process Output Creation
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="jobset">Job Set ID:</label>
<input id="jobset" type="text"

placeholder="1234" required>
</div>
<div>
<label for="ocpreset">Output Creation Preset

ID/Name:</label>
<input id="ocpreset" type="text"

placeholder="1234 or Filename" required>
</div>

</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="resultstxt">Get Results as
Text:</label>

<input id="resultstxt" type="checkbox">
</div>

</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>

Page 173



</fieldset>
</form>

</body>
</html>

JavaScript/jQuery

oc-process.js

/* Output Creation Service - Process Output Creation Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/cancel/" + operationId
}).done(function (response) {

displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr("disabled");
$cancelButton.attr("disabled", "disabled");

}, 100);
}).fail(displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

Page 174



event.preventDefault();
if (!checkSessionValid()) { return; }

var jobSetId = $("#jobset").val(),
configId = $("#ocpreset").val();

var getFinalResult = function () {

var results = ($("#resultstxt").is(":checked")) ?
"getResultTxt" : "getResult";

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/" + results + "/" +
operationId

}).done(function (response, status, request) {
if (request.getResponseHeader("Content-Type")

=== "application/octet-stream") {
response = "&lt;&lt;OCTET-STREAM FILE

DATA&gt;&gt;";
}
displayHeading("Operation Result");
displaySubResult("Output", response);

}).fail(displayDefaultFailure);
};

/* Process Output Creation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/" + configId + "/" +
jobSetId

}).done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.attr("disabled", "disabled");
$cancelButton.removeAttr("disabled");

Page 175



displayStatus("Output Creation Operation
Successfully Submitted");

displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/outputcreation/getProgress/" +
operationId

}).done(function (response, status,
request) {

if (response !== "done") {
if (response !== progress) {

progress = response;
$progressBar.attr("value",

progress);
}
setTimeout(getProgress, 1000);

} else {
$progressBar.attr("value",

(progress = 100));
displayInfo("Operation Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr

("disabled");
$cancelButton.attr("disabled",

"disabled");
}, 100);

}
}).fail(displayDefaultFailure);

}
};
getProgress();

Page 176



}).fail(displayDefaultFailure);
});

});
}(jQuery));

Screenshot & Output

Usage

To run the example simply enter the Job Set ID and the Managed File ID or Name of your
output creation preset (previously uploaded to the file store) into the appropriate text fields, and
then check any options that you may require:

l Get Results as Text - Return the result as text specifically. In this example this would
return the absolute path to the output file(s).

Page 177



Lastly, select the Submit button to start the Output creation operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the output
creation operation has completed, the output result will be returned and displayed to the
Results area.

Note

If the result returned is expected to be file data, then the value <<OCTET-STREAM FILE
DATA>> will be displayed.

Further Reading

See the Output Creation Service page of the REST API Reference section for further detail.

Page 178



Running an Output Creation Operation (Using JSON)
Problem

You want to run an output creation operation to generate print output using an output creation
preset and an existing Job Set as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the output creation operation.
There is also the option of cancelling an operation during processing if required. These
requests can be submitted via the Output Creation REST service:

Process Output
Creation (JSON)

/rest/serverengine/workflow/outputcreation/{configId} POST

Get Progress of
Operation

/rest/serverengine/workflow/outputcreation/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/outputcreation/getResult/
{operationId}

POST

Get Result of
Operation (as Text)

/rest/serverengine/workflow/outputcreation/getResultTxt/
{operationId}

POST

Cancel an Operation /rest/serverengine/workflow/outputcreation/cancel/
{operationId}

POST

Example

HTML5

oc-process-json.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Output Creation (JSON) Example</title>

Page 179

http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}


<script src="../../common/lib/js/jquery-
1.11.3.min.js"></script>

<script src="../../common/js/common.js"></script>
<script src="js/oc-process-json.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Output Creation Service - Process Output Creation
(JSON) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="jobset">Job Set ID:</label>
<input id="jobset" type="text"

placeholder="1234" required>
</div>
<div>

<label for="ocpreset">Output Creation Preset
ID/Name:</label>

<input id="ocpreset" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="createonly">Create Only:</label>
<input id="createonly" type="checkbox">

</div>
<div>

<label for="resultstxt">Get Results as
Text:</label>

<input id="resultstxt" type="checkbox">
</div>

</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"

Page 180



disabled>
<input id="submit" type="submit"

value="Submit">
</div>

</fieldset>
</form>

</body>
</html>

JavaScript/jQuery

oc-process-json.js

/* Output Creation Service - Process Output Creation (JSON) Example
*/
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/cancel/" + operationId
}).done(function (response) {

displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr("disabled");
$cancelButton.attr("disabled", "disabled");

}, 100);

Page 181



}).fail(displayDefaultFailure);
}

});

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var jobSetId = $("#jobset").val(),
configId = $("#ocpreset").val(),
createOnly = $("#createonly").is(":checked");

var getFinalResult = function () {

var results = ($("#resultstxt").is(":checked")) ?
"getResultTxt" : "getResult";

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/" + results + "/" +
operationId

}).done(function (response, status, request) {
if (request.getResponseHeader("Content-Type")

=== "application/octet-stream") {
response = "&lt;&lt;OCTET-STREAM FILE

DATA&gt;&gt;";
}
displayHeading("Operation Result");
displaySubResult("Output", response);

}).fail(displayDefaultFailure);
};

/* Process Output Creation (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/" + configId,
data: JSON.stringify(plainIDToJson

(jobSetId, createOnly)),
contentType: "application/json"

Page 182



}).done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.attr("disabled", "disabled");
$cancelButton.removeAttr("disabled");

displayStatus("Output Creation Operation
Successfully Submitted");

displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/outputcreation/getProgress/" +
operationId

}).done(function (response, status,
request) {

if (response !== "done") {
if (response !== progress) {

progress = response;
$progressBar.attr("value",

progress);
}
setTimeout(getProgress, 1000);

} else {
$progressBar.attr("value",

(progress = 100));
displayInfo("Operation Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr

("disabled");

Page 183



$cancelButton.attr("disabled",
"disabled");

}, 100);
}

}).fail(displayDefaultFailure);
}

};
getProgress();

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Screenshot & Output

Page 184



Usage

To run the example simply enter the Job Set ID and the Managed File ID or Name of your
output creation preset (previously uploaded to the file store) into the appropriate text fields, and
then check any options that you may require:

l Create Only - Create the output in server but do not send spool file to its final destination.
In this example this would mean that the output files(s) would not be sent to the output
directory specified in the output creation preset.

l Get Results as Text - Return the result as text specifically. In this example this would
return the absolute path to the output file(s).

Lastly, select the Submit button to start the Output creation operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the output
creation operation has completed, the output result will be returned and displayed to the
Results area.

Note

If the result returned is expected to be file data, then the value <<OCTET-STREAM FILE
DATA>> will be displayed.

Further Reading

See the Output Creation Service page of the REST API Reference section for further detail.

Page 185



Running an Output Creation Operation By Job (Using
JSON)
Problem

You want to run an output creation operation to generate print output using an output creation
preset and a list of existing Jobs as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the output creation operation.
There is also the option of cancelling an operation during processing if required. These
requests can be submitted via the Output Creation REST service:

Process Output
Creation (By Job)
(JSON)

/rest/serverengine/workflow/outputcreation/
{configId}/jobs

POST

Get Progress of
Operation

/rest/serverengine/workflow/outputcreation/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/outputcreation/getResult/
{operationId}

POST

Get Result of
Operation (as Text)

/rest/serverengine/workflow/outputcreation/getResultTxt/
{operationId}

POST

Cancel an Operation /rest/serverengine/workflow/outputcreation/cancel/
{operationId}

POST

Example

HTML5

oc-process-by-je-json.html

<!DOCTYPE html>
<html>

<head>

Page 186

http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}/jobs
http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}/jobs
http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}


<meta charset="utf-8">
<title>Process Output Creation (By Job) (JSON)

Example</title>
<script src="../../common/lib/js/jquery-

1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/oc-process-by-je-json.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Output Creation Service - Process Output Creation (By
Job) (JSON) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="jobs">Job ID(s):</label>
<input id="jobs" type="text" placeholder="1234,

2345, 3456, ..." required>
</div>
<div>

<label for="ocpreset">Output Creation Preset
ID/Name:</label>

<input id="ocpreset" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="createonly">Create Only:</label>
<input id="createonly" type="checkbox">

</div>
<div>

<label for="resultstxt">Get Results as
Text:</label>

<input id="resultstxt" type="checkbox">
</div>

</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>

Page 187



</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

oc-process-by-je-json.js

/* Output Creation Service - Process Output Creation (By Job)
(JSON) Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/cancel/" + operationId
}).done(function (response) {

displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);

Page 188



$submitButton.removeAttr("disabled");
$cancelButton.attr("disabled", "disabled");

}, 100);
}).fail(displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

var jobIds = $("#jobs").val(),
configId = $("#ocpreset").val(),
createOnly = $("#createonly").is(":checked");

var getFinalResult = function () {

var results = ($("#resultstxt").is(":checked")) ?
"getResultTxt" : "getResult";

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/" + results + "/" +
operationId

}).done(function (response, status, request) {
if (request.getResponseHeader("Content-Type")

=== "application/octet-stream") {
response = "&lt;&lt;OCTET-STREAM FILE

DATA&gt;&gt;";
}
displayHeading("Operation Result");
displaySubResult("Output", response);

}).fail(displayDefaultFailure);
};

/* Process Output Creation (By Job) (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/" + configId + "/jobs",

Page 189



data: JSON.stringify(plainIDListToJson
(jobIds, createOnly)),

contentType: "application/json"
}).done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.attr("disabled", "disabled");
$cancelButton.removeAttr("disabled");

displayStatus("Output Creation Operation
Successfully Submitted");

displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/outputcreation/getProgress/" +
operationId

}).done(function (response, status,
request) {

if (response !== "done") {
if (response !== progress) {

progress = response;
$progressBar.attr("value",

progress);
}
setTimeout(getProgress, 1000);

} else {
$progressBar.attr("value",

(progress = 100));
displayInfo("Operation Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

Page 190



$progressBar.attr("value", 0);
$submitButton.removeAttr

("disabled");
$cancelButton.attr("disabled",

"disabled");
}, 100);

}
}).fail(displayDefaultFailure);

}
};
getProgress();

}).fail(displayDefaultFailure);
});

});
}(jQuery));

Page 191



Screenshot & Output

Usage

To run the example simply enter a comma delimited list of your Job IDs and the Managed File
ID or Name of your output creation preset (previously uploaded to the file store) into the
appropriate text fields, and then check any options that you may require:

l Create Only - Create the output in server but do not send spool file to its final destination.
In this example this would mean that the output files(s) would not be sent to the output
directory specified in the output creation preset.

Page 192



l Get Results as Text - Return the result as text specifically. In this example this would
return the absolute path to the output file(s).

Lastly, select the Submit button to start the Output creation operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the output
creation operation has completed, the output result will be returned and displayed to the
Results area.

Note

If the result returned is expected to be file data, then the value <<OCTET-STREAM FILE
DATA>> will be displayed.

Further Reading

See the Output Creation Service page of the REST API Reference section for further detail.

Page 193



Running an All-In-One Operation (Using JSON)
Problem

You want to run an All-In-One operation to generate either a data set, content set or printed
output using one the following input combinations:

Process Steps Input Combination Expected
Output

Data Mapping Only Data File + Data Mapping Configuration Data Set

Data Mapping +
Content Creation

Data File + Data Mapping Configuration +
Design Template

Content Set(s)

Content Creation Only Data Records + Design Template Content Set(s)

Data Mapping +
Content Creation + Job
Creation

Data File + Data Mapping Configuration +
Design Template

Job Set

Content Creation + Job
Creation

Data Records + Design Template Job Set

Content Creation + Job
Creation + Output
Creation

Data Records + Design Template + Output
Creation Preset

Printed Output

Output Creation Only Jobs + Output Creation Preset Printed Output

Data Mapping +
Content Creation + Job
Creation + Output
Creation

Data File + Data Mapping Configuration +
Design Template + Output Creation Preset

Printed Output

Data Mapping +
Content Creation + Job

Data File + Data Mapping Configuration +
Design Template + Job Creation Preset +

Printed Output

Page 194



Process Steps Input Combination Expected
Output

Creation + Output
Creation

Output Creation Preset

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the All-In-One operation. There is
also the option of cancelling an operation during processing if required. These requests can be
submitted via the All-In-One REST service:

Process All-In-One
(JSON)

/rest/serverengine/workflow/print/submit POST

Get Progress of Operation /rest/serverengine/workflow/print/getProgress/
{operationId}

GET

Get Result of Operation /rest/serverengine/workflow/print/getResult/
{operationId}

POST

Get Result of Operation
(as Text)

/rest/serverengine/workflow/print/getResultTxt/
{operationId}

POST

Cancel an Operation /rest/serverengine/workflow/print/cancel/
{operationId}

POST

Example

HTML5

aio-process-json.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process All-In-One (JSON) Example</title>
<script src="../../common/lib/js/jquery-

Page 195

http://localhost:9340/rest/serverengine/workflow/print/submit
http://localhost:9340/rest/serverengine/workflow/print/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/cancel/{operationId}


1.11.3.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/aio-process-json.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>All-In-One Service - Process All-In-One (JSON)
Example</h2>

<form>
<fieldset id="inputs">

<legend>Inputs</legend>
<div>

<label for="datamining">Data Mapping:</label>
<input id="datamining" type="checkbox">

</div>
<div>

<label for="contentcreation">Content
Creation:</label>

<input id="contentcreation" type="checkbox">
</div>
<div>

<label for="jobcreation">Job Creation:</label>
<input id="jobcreation" type="checkbox">

</div>
<div>

<label for="outputcreation">Output
Creation:</label>

<input id="outputcreation" type="checkbox">
</div>

</fieldset>
<fieldset id="datamining-inputs" disabled>

<legend>Data Mapping</legend>
<div>

<label for="datafile">Data File
ID/Name:</label>

<input id="datafile" type="text"
placeholder="1234 or Filename" required>

</div>
<div>

<label for="datamapper">Data Mapping
Configuration ID/Name:</label>

<input id="datamapper" type="text"
placeholder="1234 or Filename" required>

Page 196



</div>
</fieldset>
<fieldset id="contentcreation-inputs" disabled>

<legend>Content Creation</legend>
<div>

<label for="datarecords">Data Record ID
(s):</label>

<input id="datarecords" type="text"
placeholder="1234, 2345, 3456, ..." required>

</div>
<div>

<label for="designtemplate">Design Template
ID/Name:</label>

<input id="designtemplate" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset id="jobcreation-inputs" disabled>

<legend>Job Creation</legend>
<div>

<label for="jcpreset">Job Creation Preset
ID/Name:</label>

<input id="jcpreset" type="text"
placeholder="1234 or Filename" disabled>

</div>
</fieldset>
<fieldset id="outputcreation-inputs" disabled>

<legend>Output Creation</legend>
<div>

<label for="jobs">Job ID(s):</label>
<input id="jobs" type="text" placeholder="1234,

2345, 3456, ..." required>
</div>
<div>

<label for="ocpreset">Output Creation Preset
ID/Name:</label>

<input id="ocpreset" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

Page 197



<label for="createonly">Create Only:</label>
<input id="createonly" type="checkbox"

disabled>
</div>
<div>

<label for="resultstxt">Get Results as
Text:</label>

<input id="resultstxt" type="checkbox"
disabled>

</div>
<div>

<label for="printrange">Print Range:</label>
<input id="printrange" type="text"

placeholder="1, 2, 3-5, 6" disabled>
</div>

</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

aio-process-json.js

/* All-In-One Service - Process All-In-One (JSON) Example */
(function ($) {

"use strict";
$(document).ready(function () {

setupExample();

Page 198



var $form = $("form"),
$inputs = $("#inputs input"),

$datafile = $("#datafile"),
$datamapper = $("#datamapper"),
$datarecords = $("#datarecords"),
$template = $("#designtemplate"),
$jcpreset = $("#jcpreset"),
$jobs = $("#jobs"),
$ocpreset = $("#ocpreset"),
$createonly = $("#createonly"),
$resultstxt = $("#resultstxt"),
$printrange = $("#printrange"),

AIOConfig = null,
outputDesc = null,
operationId = null,

$submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress");

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/print/cancel/" + operationId
}).done(function (response) {

displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr("disabled");
$cancelButton.attr("disabled", "disabled");

}, 100);
}).fail(displayDefaultFailure);

}
});

Page 199



/**
* @function generateAIOConfig
* @description Validates the workflow selected by the user
* and constructs and an All-In-One Configuration using the

relevant
* input fields in the HTML Form.
* Any invalid inputs or workflow selections will be red-

flagged in
* the HTML Form. Null can also be returned if no workflow

selections
* are made or if the workflow selections made are of an

invalid sequence.
* @private
* @returns {Object} The All-In-One Configuration Object or

Null
*/

function generateAIOConfig() {

var config = {},
required = [],
i = null,

/* Parse Input Value to JSON Identifier List
(Helper Function) */

jsonIDListValue = function ($input) {
return (plainIDListToJson($input.val

())).identifiers;
},

/* Parse Input Value to Boolean (Helper Function)
*/

booleanValue = function ($input) {
return $input.is(":checked");

};

/* Get Input Value and add it to the Configuration
(Helper Function) */

function getInputValue($input, process, field, parser)
{

var value = $input.val();
if (value !== "") {

if (parser) {
value = parser($input);

Page 200



}
if (config[process] === undefined) {

config[process] = {};
}
config[process][field] = value;

}
}

/* Get Required & Actual Workflow Selections */
$inputs.each(function () {

if ($(this).prop("checked")) {
config[this.id] = {};

}
$(this).removeAttr("required");
required.push(this.id);

});
var selections = (Object.keys(config)).length;

/* Verify the Workflow Selections and note any
omissions */

var matches = 0,
missing = [];

for (i = 0; i < required.length; i += 1) {
var step = required[i];
if (config[step]) {

if (!matches && step === "jobcreation") {
missing.push("contentcreation");

}
matches += 1;

} else {
if (matches !== 0) {

missing.push(step);
}

}
if (matches === selections) {

break;
}

}

/* Add the inputs to the Workflow Selections to Create
the All-In-One Configuration */

if (config.datamining) {
getInputValue($datafile, "datamining",

Page 201



"identifier");
getInputValue($datamapper, "datamining", "config");
outputDesc = "Data Set ID";

}
if (config.contentcreation) {

getInputValue($template, "contentcreation",
"config");

if (!config.datamining) {
getInputValue($datarecords, "contentcreation",

"identifiers", jsonIDListValue);
$datarecords.removeAttr("disabled");

} else {
$datarecords.attr("disabled", "disabled");

}
outputDesc = "Content Set ID(s)";

}
if (config.jobcreation) {

outputDesc = "Job Set ID";
}
if (config.outputcreation) {

getInputValue($ocpreset, "outputcreation",
"config");

getInputValue($createonly, "outputcreation",
"createOnly", booleanValue);

if (!config.contentcreation) {
getInputValue($jobs, "outputcreation",

"identifiers", jsonIDListValue);
$jobs.removeAttr("disabled");

} else {
$jobs.attr("disabled", "disabled");

}
$createonly.removeAttr("disabled");
$resultstxt.removeAttr("disabled");
outputDesc = "Output";

} else {
$createonly.attr("disabled", "disabled");
$resultstxt.attr("disabled", "disabled");

if (!$resultstxt.is(":checked")) { $resultstxt.prop
("checked", true); }

}

if (config.datamining && config.contentcreation &&

Page 202



config.jobcreation && config.outputcreation) {

getInputValue($jcpreset, "jobcreation", "config");
getInputValue($printrange, "printRange",

"printRange");
$jcpreset.removeAttr("disabled");
$printrange.removeAttr("disabled");

} else {
$jcpreset.attr("disabled", "disabled");
$printrange.attr("disabled", "disabled");

}

/* Red-flag any omissions in Workflow Selections */
if (!selections || missing.length) {

for (i = 0; i < missing.length; i += 1) {
$("#" + missing[i]).attr("required",

"required");
}
return null;

}
return config;

}

$inputs.on("change", function (event) {
var input = event.target;
var process = $("#" + input.id + "-inputs");
if ($(input).prop("checked")) {

process.removeAttr("disabled");
} else {

process.attr("disabled", "disabled");
}

}).trigger("change");

$form.on("change", function (event) {
AIOConfig = generateAIOConfig();

}).trigger("change");

$form.on("submit", function (event) {

event.preventDefault();
if (!checkSessionValid()) { return; }

if (!AIOConfig) {

Page 203



alert("Invalid All-In-One Configuration!\n\nPlease
enter a valid " +

"combination of input fields, and try again.");
return;

}

var getFinalResult = function () {

var results = ($resultstxt.is(":checked")) ?
"getResultTxt" : "getResult";

/* Get Result of Operation */
$.ajax({

type: "POST",
url: "/rest/serverengine/workflow/print/" +

results + "/" + operationId
}).done(function (response, status, request) {

if (request.getResponseHeader("Content-Type")
=== "application/octet-stream") {

response = "&lt;&lt;OCTET-STREAM FILE
DATA&gt;&gt;";

}
displayHeading("Operation Result");
displaySubResult(outputDesc, response);

}).fail(displayDefaultFailure);
};

/* Process All-In-One (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/print/submit",
data: JSON.stringify(AIOConfig),
contentType: "application/json"

}).done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.attr("disabled", "disabled");
$cancelButton.removeAttr("disabled");

Page 204



displayStatus("All-In-One Operation Successfully
Submitted");

displayHeading("Input Configuration");
displaySubResult("JSON All-In-One Configuration",

jsonPrettyPrint(AIOConfig));
displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/print/getProgress/" + operationId
}).done(function (response, status,

request) {

if (response !== "done") {
if (response !== progress) {

progress = response;
$progressBar.attr("value",

progress);
}
setTimeout(getProgress, 1000);

} else {
$progressBar.attr("value",

(progress = 100));
displayInfo("Operation Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.removeAttr

("disabled");
$cancelButton.attr("disabled",

"disabled");
}, 100);

}
}).fail(displayDefaultFailure);

}
};

Page 205



getProgress();
}).fail(displayDefaultFailure);

});
});

}(jQuery));

Page 206



Screenshot & Output

Page 207



Page 208



Usage

To run the example simply select the input combination of your choosing, populate the
appropriate input fields and then check any options that you may require.

The following file based input fields can be referenced by Managed File ID or Name:

l Data file

l Data Mapping configuration

l Design template

l Job Creation preset

l Output Creation preset

The following options are only available if the input combination includes an output creation
step:

l Create Only - Create the output in server but do not send spool file to its final destination.
In this example this would mean that the output files(s) would not be sent to the output
directory specified in the output creation preset.

l Get Results as Text - Return the result as text specifically. If our All-In-One Configuration
includes an output creation step, then in this example this would return the absolute path
to the output file(s).

l Print Range - Restrict the printed output to a specific range of records in the input data,
not a specific range of pages (requires combination with all workflow steps).

Lastly, select the Submit button to start the All-In-One operation.

Once the operation has started processing, the JSON All-In-One Configuration along with the
Operation ID will be displayed in the Results area and the Cancel button will become enabled,
giving you the option to cancel the running operation.

The progress of the operation will be displayed in the progress bar, and once the All-in-One
operation has completed, the result will be returned and displayed to the Results area.

If the All-In-One configuration includes a output creation step, then the result returned will be
the output files (either their absolute path(s) or the output file itself). If the configuration does not
include an output creation step, then the result returned will be either a Data Set ID, Content
Set IDs or Job Set ID.

Page 209



Note

If the result returned is expected to be file data, then the value <<OCTET-STREAM FILE
DATA>> will be displayed.

Further Reading

See the All-In-One Service page of the REST API Reference section for further detail.

Page 210



REST API Reference
The PlanetPress Connect REST API defines a number of RESTful services that facilitate
various functionality within the server during workflow processing.

The following table is a summary of the services available in the PlanetPress Connect REST
API:

Service
Name

Internal Name Description

Authentication
Service

AuthenticationRestService Exposes methods for authenticated
access (login & password) to the
PlanetPress Connect REST API. Uses a
combination of basic and token based
authorisation.

Content
Creation
Service

ContentCreationRestService Exposes methods for the manual
creation, monitoring & cancellation of
new print context based content creation
operations within the workflow, including
a method for accessing the result of a
successful operation.

Content Item
Entity Service

ContentItemEntityRestService Exposes methods specific to the
Content Item entity type including
property value accessor methods and an
associated data record lookup method.

Content Set
Entity Service

ContentSetEntityRestService Exposes methods specific to the
Content Set entity type including
property value accessor methods,
methods to access all content sets and
delete specific content sets, and a
method to access the content item IDs
contained within a specific content set.

Page 211



Service
Name

Internal Name Description

Data Record
Entity Service

DataRecordEntityRestService Exposes methods specific to the Data
Record entity type including accessor
methods for data records and the value
& property values for a specific data
record.

Data Set
Entity Service

DataSetEntityRestService Exposes methods specific to the Data
Set entity type including property value
accessor methods, methods to access
all data sets and delete specific data
sets, and a method to access the data
record IDs contained within a specific
data set.

Data Mapping
Service

DataminingRestService Exposes methods for the manual
creation, monitoring & cancellation of
data mapping operations within the
workflow, including a method for
accessing the result of a successful
operation. Also exposes methods for
basic data mapping pass-throughs
specific to PDF VT data files.

Content
Creation
(Email)
Service

EmailExportRestService Exposes methods for the manual
creation, monitoring & cancellation of
new email context based content
creation operations within the workflow,
including a method for accessing the
result of a successful operation.

File Store
Service

FilestoreRestService Exposes methods specific to file store
operations in PlanetPress Connect
including the upload of data files, data
mapping configurations, design
templates, job creation presets & output
creation presets. Also includes generic

Page 212



Service
Name

Internal Name Description

methods for the upload of directories
and files to the file store, and the
download & deletion of managed files
already contained within the file store.

Content
Creation
(HTML)
Service

HTMLMergeRestService Exposes methods for the manual
creation of new web context based
content. Also exposes additional method
to access the generated HTML
content/resources.

Job Creation
Service

JobCreationRestService Exposes methods for the manual
creation, monitoring & cancellation of
job creation operations within the
workflow, including a method for
accessing the result of a successful
operation.

Job Entity
Service

JobEntityRestService Exposes methods specific to the Job
entity type including property value
accessor methods and get job contents
method.

Job Set Entity
Service

JobSetEntityRestService Exposes methods specific to the Job Set
entity type including property value
accessor methods, methods to access
all jobs sets and delete specific data
sets, and a method to access the job IDs
contained within a specific job set.

Output
Creation
Service

OutputCreationRestService Exposes methods for the manual
creation, monitoring & cancellation of
output creation operations within the
workflow, including methods for
accessing the result of a successful
operation.

Page 213



Service
Name

Internal Name Description

All-In-One
Service

PrintRestService Exposes methods for the manual
creation, monitoring & cancellation of
"All-In-One" operations within the
workflow, including methods for
accessing the result of a successful
operation. Also includes a test output
destination method.

Page 214



Authentication Service
The following table is a summary of the resources and methods available in the Authentication
service:

Method Name Uniform Resource Identifier (URI) Method Type

Service Handshake /authentication GET

Authenticate/Login to Server /authentication/login POST

Service Version /authentication/version GET

Page 215



Service Handshake
Queries the availability of the Authentication service.

Type: GET

URI: /rest/serverengine/authentication

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Handshake message:

Server Engine REST Service available:
AuthenticationRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 216

http://localhost:9340/rest/serverengine/authentication


Authenticate/Login to Server
Submits an authentication request (using credentials) to the PlanetPress Connect server and if
successful provides access to the various other REST API services available.

Request takes no content, but requires an additional Authorization header which contains a
base64 encoded set of credentials (basic user name & password). On success, the response
with return an authorization token which can then be used as an additional auth_token header
in any future requests made to the REST API services.

Warning

If server security settings are enabled and a request is made to any resource of any
service in the REST API, if that request contains no authorization token and no
Authorization header, then the response will come back as Unauthorized and will contain
an additionalWWW-Authenticate response header.

Type: POST

URI: /rest/serverengine/authentication/login

Parameters: -

Request:
Add.
Headers:

Authorization – Basic User name & Password
credentials (Base64 encoded)

Content: -

Content
Type:

-

Response:
Add.
Headers:

WWW-Authenticate – BASIC (Prompt for Basic
Authorization Credentials when no Authorization header
specified)

Page 217

http://localhost:9340/rest/serverengine/authentication/login


Content: Authorization Token

Content
Type:

text/plain

Status: l 200 OK – Server authentication successful, new
token generated

l 401 Unauthorized – Server authentication has failed
or no credentials have been provided/specified in
request header

Page 218



Service Version
Returns the version of the Authentication service.

Type: GET

URI: /rest/serverengine/authentication/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 219

http://localhost:9340/rest/serverengine/authentication/version


Content Creation Service
The following table is a summary of the resources and methods available in the Content
Creation service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/contentcreation GET

Process Content Creation /workflow/contentcreation/{templateId}/
{dataSetId}

POST

Process Content Creation (By Data
Record) (JSON)

/workflow/contentcreation/{templateId} POST

Get Progress of Operation /workflow/contentcreation/getProgress/
{operationId}

GET

Get Result of Operation /workflow/contentcreation/getResult/
{operationId}

POST

Cancel an Operation /workflow/contentcreation/cancel/
{operationId}

POST

Service Version /workflow/contentcreation/version GET

Page 220



Service Handshake
Queries the availability of the Content Creation service.

Type: GET

URI: /rest/serverengine/workflow/contentcreation

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Handshake message:

Server Engine REST Service available:
ContentCreationRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 221

http://localhost:9340/rest/serverengine/workflow/contentcreation


Process Content Creation
Submits a request to initiate a new Content Creation operation.

Request takes no content, and on success returns a response containing additional headers
that specify the ID of the new operation as well as link URLs that can be used to retrieve further
information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/{templateId}/{dataSetId}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design template in
File Store

l dataSetId – the ID of the Data Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

l operationId – Operation ID of new Content
Creation operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Content: -

Content -

Page 222

http://localhost:9340/rest/serverengine/workflow/contentcreation/{templateId}/{dataSetId}


Type:

Status: l 202 Accepted – Creation of new operation
successful

l 400 Bad Request – Design template or Data Set
entity not found in File Store/Server

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

Page 223



Process Content Creation (By Data Record) (JSON)
Submits a request to initiate a new Content Creation operation.

Request takes a JSON Identifier List of Data Record IDs as content, and on success returns a
response containing additional headers that specify the ID of the new operation as well as link
URLs that can be used to retrieve further information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/{templateId}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design template in
File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Identifier List specifying a list of Data Record entity
IDs

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Content
Creation operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Content: -

Content -

Page 224

http://localhost:9340/rest/serverengine/workflow/contentcreation/{templateId}


Type:

Status: l 202 Accepted – Creation of new operation
successful

l 400 Bad Request – Design template or Data
Record entity not found in File Store/Server

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

Page 225



Get Progress of Operation
Retrieves the progress of a running Content Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing the current value of
operation progress (values ranging from 0 – 100, followed by the value of 'done' on
completion).

Type: GET

URI: /rest/serverengine/workflow/contentcreation/getProgress/{operationId}

Parameters: Path:

l operationId – Operation ID of Content Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Progress value of Content Creation operation

Content
Type:

text/plain

Status: l 200 OK – Progress of operation successfully
retrieved

l 401 Unauthorized – Server authentication required

Page 226

http://localhost:9340/rest/serverengine/workflow/contentcreation/getProgress/{operationId}


l 403 Forbidden – Server authentication has failed
or expired

Page 227



Get Result of Operation
Retrieves the final result of a completed Content Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing the IDs of the
generated Content Sets.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/getResult/{operationId}

Parameters: Path:

l operationId – Operation ID of Content Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Content Set IDs

Content
Type:

text/plain

Status: l 200 OK – Result of completed operation
successfully retrieved

l 401 Unauthorized – Server authentication required

Page 228

http://localhost:9340/rest/serverengine/workflow/contentcreation/getResult/{operationId}


l 403 Forbidden – Server authentication has failed
or expired

Page 229



Cancel an Operation
Requests the cancellation of a running Content Creation operation of a specific operation ID.

Request takes no content, and on success returns a response with no content.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/cancel/{operationId}

Parameters: Path:

l operationId – Operation ID of Content Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: -

Content
Type:

-

Status: l 204 No Content – Operation cancellation
requested

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 230

http://localhost:9340/rest/serverengine/workflow/contentcreation/cancel/{operationId}


Service Version
Returns the version of the Content Creation service.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 231

http://localhost:9340/rest/serverengine/workflow/contentcreation/version


Content Item Entity Service
The following table is a summary of the resources and methods available in the Content Item
Entity service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /entity/contentitems GET

Get Data Record for Content Item /entity/contentitems/
{contentItemId}/datarecord

GET

Get Content Item Properties /entity/contentitems/
{contentItemId}/properties

GET

Update Content Item Properties /entity/contentitems/
{contentItemId}/properties

PUT

Update Multiple Content Item
Properties

/entity/contentitems/properties PUT

Service Version /entity/contentitems/version GET

Page 232



Service Handshake
Queries the availability of the Content Item Entity service.

Type: GET

URI: /rest/serverengine/entity/contentitems

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Handshake message:

Server Engine REST Service available:
ContentItemEntityRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

Page 233

http://localhost:9340/rest/serverengine/entity/contentitems


Get Data Record for Content Item
Returns the ID of the corresponding Data Record for a specific Content Item entity.

Request takes no content, and on success returns a response containing a JSON Data Record
Identifier for the Data Record of the Content Item.

Type: GET

URI: /rest/serverengine/entity/contentitems/{contentItemId}/datarecord

Parameters: Path:

l contentItemId – the ID of the Content Item entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Data Record Identifier for the Data Record of
Content Item

Content
Type:

application/json

Status: l 200 OK – Data Record Identifier returned

l 401 Unauthorized – Server authentication required

Page 234

http://localhost:9340/rest/serverengine/entity/contentitems/{contentItemId}/datarecord


l 403 Forbidden – Server authentication has failed
or expired

Page 235



Get Content Item Properties
Returns a list of the properties for a specific Content Item entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the properties for the Content Item.

Type: GET

URI: /rest/serverengine/entity/contentitems/{contentItemId}/properties

Parameters: Path:

l contentItemId – the ID of the Content Item entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Name/Value List (Properties Only) of properties for
Content Item

Content
Type:

application/json

Status: l 200 OK – Content Item entity properties
successfully retrieved

l 401 Unauthorized – Server authentication required

Page 236

http://localhost:9340/rest/serverengine/entity/contentitems/{contentItemId}/properties


l 403 Forbidden – Server authentication has failed or
expired

Page 237



Update Content Item Properties
Submits a request to update (and replace) the properties for a specific Content Item entity in the
Server.

Request takes a JSON Name/Value List as content (the Content Item ID and the new
properties), and on success returns a response containing the result of the request for
update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/contentitems/{contentItemId}/properties

Parameters: Path:

l contentItemId – the ID of the Content Item entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of properties for Content Item

Content
Type:

application/json

Response:
Add.
Headers:

-

Content: Result of request to update Content Item

Content
Type:

text/plain

Status: l 200 OK – Update of Content Item properties
successfully requested (response of “true” for

Page 238

http://localhost:9340/rest/serverengine/entity/contentitems/{contentItemId}/properties


success)

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 500 Server Error – Internal Server Error or Content
Item ID mismatch in JSON

Page 239



Update Multiple Content Item Properties
Submits a request to update one or more properties for one or more Content Item entities in the
Server.

Request takes multiple JSON Name/Value Lists as content (each with the Content Item ID and
the new properties), and on success returns a response containing no content.

Type: PUT

URI: /rest/serverengine/entity/contentitems/properties

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value Lists of the properties of the Content
Items

Content
Type:

application/json

Response:
Add.
Headers:

-

Content: -

Content
Type:

-

Status: l 200 OK – Properties of Content Item entities
successfully updated

l 401 Unauthorized – Server authentication required

Page 240

http://localhost:9340/rest/serverengine/entity/contentitems/properties


l 403 Forbidden – Server authentication has failed
or expired

Page 241



Service Version
Returns the version of the Content Item Entity service.

Type: GET

URI: /rest/serverengine/entity/contentitems/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 242

http://localhost:9340/rest/serverengine/entity/contentitems/version


Content Set Entity Service
The following table is a summary of the resources and methods available in the Content Set
Entity service:

Method Name Uniform Resource Identifier (URI) Method
Type

Get All Content Set Entities /entity/contentsets GET

Get Content Items for Content
Set

/entity/contentsets/{contentSetId} GET

Get Page Details for Content
Set

/entity/contentsets/{contentSetId}/pages GET

Delete Content Set Entity /entity/contentsets/{contentSetId}/delete POST

Get Content Set Properties /entity/contentsets/
{contentSetId}/properties

GET

Update Content Set Properties /entity/contentsets/
{contentSetId}/properties

PUT

Service Version /entity/contentsets/version GET

Page 243



Get All Content Set Entities
Returns a list of all the Content Set entities currently contained within the Server.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Content Sets.

Type: GET

URI: /rest/serverengine/entity/contentsets

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Identifier List of all the Content Sets in Server

Content
Type:

application/json

Status: l 200 OK – Identifier List of Content Sets returned

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 244

http://localhost:9340/rest/serverengine/entity/contentsets


Get Content Items for Content Set
Returns a list of all the Content Item entities (and their corresponding Data Record entities)
contained within a specific Content Set entity.

Request takes no content, and on success returns a response containing a JSON Content Item
Identifier List of all the Content Items in the Content Set.

Type: GET

URI: /rest/serverengine/entity/contentsets/{contentSetId}

Parameters: Path:

l contentSetId – the ID of the Content Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Content Item Identifier List of all the Content Items
in Content Set

Content
Type:

application/json

Status: l 200 OK – Content Item Identifier List returned

l 401 Unauthorized – Server authentication required

Page 245

http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}


l 403 Forbidden – Server authentication has failed or
expired

Page 246



Get Page Details for Content Set
Returns a list of the page details for a specific Content Set entity.

Request takes no content, and on success returns a response containing either:

l a JSON Page Details Summary, or

l a JSON Page Details List (page details broken down by Content Items)

Type: GET

URI: /rest/serverengine/entity/contentsets/{contentSetId}/pages

Parameters: Path:

l contentSetId – the ID of the Content Set entity in Server

Query:

l detail – Return a full list of details instead of a summary (Possible
values: true or false. Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Page Details Summary or Page Details List
containing page details for Content Set

Page 247

http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}/pages


Content
Type:

application/json

Status: l 200 OK – Content Set entity page details
successfully retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

Page 248



Delete Content Set Entity
Submits a request for a specific Content Set entity to be marked for deletion from the Server.

Request takes no content, and on success returns a response containing the result of the
request for deletion (“true” or “false”).

Type: POST

URI: /rest/serverengine/entity/contentsets/{contentSetId}/delete

Parameters: Path:

l contentSetId – the ID of the Content Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Result of request for Content Set removal

Content
Type:

text/plain

Status: l 200 OK – Deletion of Content Set successfully
requested from Server (response of “true” for
success or “false” for failure)

l 401 Unauthorized – Server authentication required

Page 249

http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}/delete


l 403 Forbidden – Server authentication has failed or
expired

Page 250



Get Content Set Properties
Returns a list of the properties for a specific Content Set entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the properties for the Content Set.

Type: GET

URI: /rest/serverengine/entity/contentsets/{contentSetId}/properties

Parameters: Path:

l contentSetId – the ID of the Content Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Name/Value List (Properties Only) of properties
for Content Set

Content
Type:

application/json

Status: l 200 OK – Content Set entity properties
successfully retrieved

l 401 Unauthorized – Server authentication required

Page 251

http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}/properties


l 403 Forbidden – Server authentication has failed
or expired

Page 252



Update Content Set Properties
Submits a request to update (and replace) the properties for a specific Content Set entity in the
Server.

Request takes a JSON Name/Value List as content (the Content Set ID and the new
properties), and on success returns a response containing the result of the request for
update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/contentsets/{contentSetId}/properties

Parameters: Path:

l contentSetId – the ID of the Content Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of properties for Content Set

Content
Type:

application/json

Response:
Add.
Headers:

-

Content: Result of request to update Content Set

Content
Type:

text/plain

Status: l 200 OK – Update of Content Set properties
successfully requested (response of “true” for

Page 253

http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}/properties


success)

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 500 Server Error – Internal Server Error or Content
Set ID mismatch in JSON

Page 254



Service Version
Returns the version of the Content Set Entity service.

Type: GET

URI: /rest/serverengine/entity/contentsets/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 255

http://localhost:9340/rest/serverengine/entity/contentsets/version


Data Record Entity Service
The following table is a summary of the resources and methods available in the Data Record
Entity service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /entity/datarecords GET

Get Data Record Values /entity/datarecords/
{dataRecordId}/values

GET

Update Data Record Values /entity/datarecords/
{dataRecordId}/values

PUT

Get Data Record Properties /entity/datarecords/
{dataRecordId}/properties

GET

Update Data Record Properties /entity/datarecords/
{dataRecordId}/properties

PUT

Update Multiple Data Record
Values

/entity/datarecords PUT

Update Multiple Data Record
Properties

/entity/datarecords/properties PUT

Service Version /entity/datarecords/version GET

Page 256



Service Handshake
Queries the availability of the Data Record Entity service.

Type: GET

URI: /rest/serverengine/entity/datarecords

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Handshake message:

Server Engine REST Service available:
DataRecordEntityRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

Page 257

http://localhost:9340/rest/serverengine/entity/datarecords


Get Data Record Values
Returns a list of the values for a specific Data Record entity.

Request takes no content, and on success returns a response containing a JSON Record
Content List of all the values in the Data Record.

Type: GET

URI: /rest/serverengine/entity/datarecords/{dataRecordId}/values

Parameters: Path:

l dataRecordId – the ID of the Data Record entity in Server

Query:

l recursive – recurse all Data Tables within the Data Record and
retrieve the values of any nested Data Records also (Default Value:
"false")

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Record Content List of the values in Data Record

Content application/json

Page 258

http://localhost:9340/rest/serverengine/entity/datarecords/{dataRecordId}/values


Type:

Status: l 200 OK – Data Record entity values successfully
retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 259



Update Data Record Values
Submits a request to update one or more values for a specific Data Record entity in the Server.

Request takes a JSON Record Content List as content (the Data Record ID and the new
values), and on success returns a response containing no content.

Type: PUT

URI: /rest/serverengine/entity/datarecords/{dataRecordId}/values

Parameters: Path:

l dataRecordId – the ID of the Data Record entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Record Content List of the values for Data Record

Content
Type:

application/json

Response:
Add.
Headers:

-

Content: -

Content
Type:

-

Status: l 200 OK – Data Record entity values successfully
updated

l 401 Unauthorized – Server authentication required

Page 260

http://localhost:9340/rest/serverengine/entity/datarecords/{dataRecordId}/values


l 403 Forbidden – Server authentication has failed or
expired

l 500 Server Error – Internal Server Error or Data
Record ID mismatch in JSON

Page 261



Get Data Record Properties
Returns a list of the properties for a specific Data Record entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the properties for the Data Record.

Type: GET

URI: /rest/serverengine/entity/datarecords/{dataRecordId}/properties

Parameters: Path:

l dataRecordId – the ID of the Data Record entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Name/Value List (Properties Only) of properties for
Data Record

Content
Type:

application/json

Status: l 200 OK – Data Record entity properties
successfully retrieved

l 401 Unauthorized – Server authentication required

Page 262

http://localhost:9340/rest/serverengine/entity/datarecords/{dataRecordId}/properties


l 403 Forbidden – Server authentication has failed or
expired

Page 263



Update Data Record Properties
Submits a request to update (and replace) the properties for a specific Data Record entity in the
Server.

Request takes a JSON Name/Value List as content (the Data Record ID and the new
properties), and on success returns a response containing the result of the request for
update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/datarecords/{dataRecordId}/properties

Parameters: Path:

l dataRecordId – the ID of the Data Record entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of properties for Data Record

Content
Type:

application/json

Response:
Add.
Headers:

-

Content: Result of request to update Data Record

Content
Type:

text/plain

Status: l 200 OK – Update of Data Record properties
successfully requested (response of “true” for

Page 264

http://localhost:9340/rest/serverengine/entity/datarecords/{dataRecordId}/properties


success)

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 500 Server Error – Internal Server Error or Data
Record ID mismatch in JSON

Page 265



Update Multiple Data Record Values
Submits a request to update one or more values for one or more Data Record entities in the
Server.

Request takes multiple JSON Record Content Lists as content (each with the Data Record ID
and the new values), and on success returns a response containing no content.

Type: PUT

URI: /rest/serverengine/entity/datarecords

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Record Content Lists of the values for the Data
Records

Content
Type:

application/json

Response:
Add.
Headers:

-

Content: -

Content
Type:

-

Status: l 200 OK – Values of Data Record entities
successfully updated

l 401 Unauthorized – Server authentication required

Page 266

http://localhost:9340/rest/serverengine/entity/datarecords


l 403 Forbidden – Server authentication has failed
or expired

Page 267



Update Multiple Data Record Properties
Submits a request to update one or more properties for one or more Data Record entities in the
Server.

Request takes multiple JSON Name/Value Lists as content (each with the Data Record ID and
the new properties), and on success returns a response containing no content.

Type: PUT

URI: /rest/serverengine/entity/datarecords/properties

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value Lists of the properties of the Data
Records

Content
Type:

application/json

Response:
Add.
Headers:

-

Content: -

Content
Type:

-

Status: l 200 OK – Properties of Data Record entities
successfully updated

l 401 Unauthorized – Server authentication required

Page 268

http://localhost:9340/rest/serverengine/entity/datarecords/properties


l 403 Forbidden – Server authentication has failed
or expired

Page 269



Service Version
Returns the version of the Data Record Entity service.

Type: GET

URI: /rest/serverengine/entity/datarecords/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 270

http://localhost:9340/rest/serverengine/entity/datarecords/version


Data Set Entity Service
The following table is a summary of the resources and methods available in the Data Set Entity
service:

Method Name Uniform Resource Identifier (URI) Method Type

Get All Data Set Entities /entity/datasets GET

Get Data Records for Data Set /entity/datasets/{dataSetId} GET

Delete Data Set Entity /entity/datasets/{dataSetId}/delete POST

Get Data Set Properties /entity/datasets/{dataSetId}/properties GET

Update Data Set Properties /entity/datasets/{dataSetId}/properties PUT

Service Version /entity/datasets/version GET

Page 271



Get All Data Set Entities
Returns a list of all the Data Set entities currently contained within the Server.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Data Sets.

Type: GET

URI: /rest/serverengine/entity/datasets

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Identifier List of all the Data Sets in Server

Content
Type:

application/json

Status: l 200 OK – Identifier List of Data Sets returned

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 272

http://localhost:9340/rest/serverengine/entity/datasets


Get Data Records for Data Set
Returns a list of all the Data Records entities contained within a specific Data Set entity.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Data Records in the Data Set.

Type: GET

URI: /rest/serverengine/entity/datasets/{dataSetId}

Parameters: Path:

l dataSetId – the ID of the Data Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Identifier List of all the Data Records in Data Set

Content
Type:

application/json

Status: l 200 OK – Identifier List of Data Records returned

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 273

http://localhost:9340/rest/serverengine/entity/datasets/{dataSetId}


Delete Data Set Entity
Submits a request for a specific Data Set entity to be marked for deletion from the Server.

Request takes no content, and on success returns a response containing the result of the
request for deletion (“true” or “false”).

Type: POST

URI: /rest/serverengine/entity/datasets/{dataSetId}/delete

Parameters: Path:

l dataSetId – the ID of the Data Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Result of request for Data Set removal

Content
Type:

text/plain

Status: l 200 OK – Deletion of Data Set successfully
requested from Server (response of “true” for
success or “false” for failure)

l 401 Unauthorized – Server authentication required

Page 274

http://localhost:9340/rest/serverengine/entity/datasets/{dataSetId}/delete


l 403 Forbidden – Server authentication has failed or
expired

Page 275



Get Data Set Properties
Returns a list of the properties for a specific Data Set entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the properties for the Data Set.

Type: GET

URI: /rest/serverengine/entity/datasets/{dataSetId}/properties

Parameters: Path:

l dataSetId – the ID of the Data Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Name/Value List (Properties Only) of properties
for Data Set

Content
Type:

application/json

Status: l 200 OK – Data Set entity properties successfully
retrieved

l 401 Unauthorized – Server authentication required

Page 276

http://localhost:9340/rest/serverengine/entity/datasets/{dataSetId}/properties


l 403 Forbidden – Server authentication has failed
or expired

Page 277



Update Data Set Properties
Submits a request to update (and replace) the properties for a specific Data Set entity in the
Server.

Request takes a JSON Name/Value List as content (the Data Set ID and the new properties),
and on success returns a response containing the result of the request for update/replacement
(“true”).

Type: PUT

URI: /rest/serverengine/entity/datasets/{dataSetId}/properties

Parameters: Path:

l dataSetId – the ID of the Data Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of properties for Data Set

Content
Type:

application/json

Response:
Add.
Headers:

-

Content: Result of request to update Data Set

Content
Type:

text/plain

Status: l 200 OK – Update of Data Set properties
successfully requested (response of “true” for

Page 278

http://localhost:9340/rest/serverengine/entity/datasets/{dataSetId}/properties


success)

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 500 Server Error – Internal Server Error or Data Set
ID mismatch in JSON

Page 279



Service Version
Returns the version of the Data Set Entity service.

Type: GET

URI: /rest/serverengine/entity/datasets/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 280

http://localhost:9340/rest/serverengine/entity/datasets/version


Data Mapping Service
The following table is a summary of the resources and methods available in the Data Mapping
service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/datamining GET

Process Data Mapping /workflow/datamining/{configId}/
{dataFileId}

POST

Process Data Mapping (JSON) /workflow/datamining/{configId} POST

Process Data Mapping (PDF/VT to
Data Set)

/workflow/datamining/pdfvtds/
{dataFileId}

POST

Process Data Mapping (PDF/VT to
Content Set)

/workflow/datamining/pdfvtcs/
{dataFileId}

POST

Get Progress of Operation /workflow/datamining/getProgress/
{operationId}

GET

Get Result of Operation /workflow/datamining/getResult/
{operationId}

POST

Cancel an Operation /workflow/datamining/cancel/
{operationId}

POST

Service Version /workflow/datamining/version GET

Page 281



Service Handshake
Queries the availability of the Data Mapping service.

Type: GET

URI: /rest/serverengine/workflow/datamining

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Handshake message:

Server Engine REST Service available:
DataMiningRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 282

http://localhost:9340/rest/serverengine/workflow/datamining


Process Data Mapping
Submits a request to initiate a new Data Mapping operation.

Request takes no content, and on success returns a response containing additional headers
that specify the ID of the new operation as well as link URLs that can be used to retrieve further
information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/datamining/{configId}/{dataFileId}

Parameters: Path:

l configId – the Managed File ID (or Name) of the Data Mapping
configuration in File Store

l dataFileId – the Managed File ID (or Name) of the data file in File
Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

l operationId – Operation ID of new Data Mapping
operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Content: -

Page 283

http://localhost:9340/rest/serverengine/workflow/datamining/{configId}/{dataFileId}


Content
Type:

-

Status: l 202 Accepted – Creation of new operation
successful

l 400 Bad Request – Data file or Data Mapping
Configuration not found in File Store

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

Page 284



Process Data Mapping (JSON)
Submits a request to initiate a new Data Mapping operation.

As content the request takes one of either:

l a JSON Identifier of the data file’s Managed File ID, or

l a JSON Identifier (Named) of the data file’s Managed File Name

On success, it returns a response containing additional headers that specify the ID of the new
operation as well as link URLs that can be used to retrieve further information/cancel the
operation.

Type: POST

URI: /rest/serverengine/workflow/datamining/{configId}

Parameters: Path:

l configId – the Managed File ID (or Name) of the Data Mapping
configuration in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Identifier specifying Managed File ID or JSON
Identifier (Named) specifying Managed File Name in File
Store

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Data Mapping
operation

l Link – Contains multiple link URLs that can be

Page 285

http://localhost:9340/rest/serverengine/workflow/datamining/{configId}


used to retrieve further information/cancel the
operation.

Content: -

Content
Type:

-

Status: l 202 Accepted – Creation of new operation
successful

l 400 Bad Request – Data file or Data Mapping
Configuration not found in File Store

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 500 Internal Server Error – JSON Identifier bad or
missing

Page 286



Process Data Mapping (PDF/VT to Data Set)
Submits a request to initiate a new Data Mapping operation using a PDF/VT data file
specifically.

No Data Mapping configuration is specified, and a Data Set will be generated based on the
default properties extracted from the metadata of the PDF/VT data file.

Request takes no content, and on success returns a response containing additional headers
that specify the ID of the new operation as well as link URLs that can be used to retrieve further
information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/datamining/pdfvtds/{dataFileId}

Parameters: Path:

l dataFileId – the Managed File ID (or Name) of the PDF/VT data file in
File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

l operationId – Operation ID of new Data Mapping
operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Page 287

http://localhost:9340/rest/serverengine/workflow/datamining/pdfvtds/{dataFileId}


Content: -

Content
Type:

-

Status: l 202 Accepted – Creation of new operation
successful

l 400 Bad Request – PDF/VT data file not found in
File Store

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

Page 288



Process Data Mapping (PDF/VT to Content Set)
Submits a request to initiate a new Data Mapping operation using a PDF/VT data file
specifically.

No Data Mapping configuration or design template are specified, and a Content Set will be
generated based on the default properties extracted from the metadata of the PDF/VT data file.

Request takes no content, and on success returns a response containing additional headers
that specify the ID of the new operation as well as link URLs that can be used to retrieve further
information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/datamining/pdfvtcs/{dataFileId}

Parameters: Path:

l dataFileId – the Managed File ID (or Name) of the PDF/VT data file in
File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

l operationId – Operation ID of new Data Mapping
operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Page 289

http://localhost:9340/rest/serverengine/workflow/datamining/pdfvtcs/{dataFileId}


Content: -

Content
Type:

-

Status: l 202 Accepted – Creation of new operation
successful

l 400 Bad Request – PDF/VT data file not found in
File Store

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

Page 290



Get Progress of Operation
Retrieves the progress of a running Data Mapping operation of a specific operation ID.

Request takes no content, and on success returns a response containing the current value of
operation progress (values ranging from 0 – 100, followed by the value of 'done' on
completion).

Type: GET

URI: /rest/serverengine/workflow/datamining/getProgress/{operationId}

Parameters: Path:

l operationId – Operation ID of Data Mapping operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Progress value of Data Mapping operation

Content
Type:

text/plain

Status: l 200 OK – Progress of operation successfully
retrieved

l 401 Unauthorized – Server authentication required

Page 291

http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}


l 403 Forbidden – Server authentication has failed
or expired

Page 292



Get Result of Operation
Retrieves the final result of a completed Data Mapping operation of a specific operation ID.

Request takes no content, and on success returns a response containing the ID of the
generated Data Set (or Content Set for a PDF/VT to Content Set specific data mapping
operation).

Type: POST

URI: /rest/serverengine/workflow/datamining/getResult/{operationId}

Parameters: Path:

l operationId – Operation ID of Data Mapping operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Data Set ID (or Content Set ID)

Content
Type:

text/plain

Status: l 200 OK – Result of completed operation
successfully retrieved

l 401 Unauthorized – Server authentication required

Page 293

http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}


l 403 Forbidden – Server authentication has failed
or expired

Page 294



Cancel an Operation
Requests the cancellation of a running Data Mapping operation of a specific operation ID.

Request takes no content, and on success returns a response with no content.

Type: POST

URI: /rest/serverengine/workflow/datamining/cancel/{operationId}

Parameters: Path:

l operationId – Operation ID of Data Mapping operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: -

Content
Type:

-

Status: l 204 No Content – Operation cancellation
requested

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 295

http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}


Service Version
Returns the version of the Data Mapping service.

Type: GET

URI: /rest/serverengine/workflow/datamining/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 296

http://localhost:9340/rest/serverengine/workflow/datamining/version


Content Creation (Email) Service
The following table is a summary of the resources and methods available in the Content
Creation (Email) service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/contentcreation/email GET

Process Content Creation (By
Data Record) (JSON)

/workflow/contentcreation/email/{templateId} POST

Get Progress of Operation /workflow/contentcreation/email/getProgress/
{operationId}

GET

Get Result of Operation /workflow/contentcreation/email/getResult/
{operationId}

POST

Cancel an Operation /workflow/contentcreation/email/cancel/
{operationId}

POST

Service Version /workflow/contentcreation/email/version GET

Page 297



Service Handshake
Queries the availability of the Content Creation (Email) service.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/email

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Handshake message:

/workflow/contentcreation/email is available

Content
Type:

text/plain

Status: l 200 OK – REST Service available

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 298

http://localhost:9340/rest/serverengine/workflow/contentcreation/email


Process Content Creation (By Data Record) (JSON)
Submits a request to initiate a new Content Creation (Email) operation.

Request takes a JSON Identifier List (with Email Parameters) of Data Record IDs as content,
and on success returns a response containing additional headers that specify the ID of the new
operation as well as link URLs that can be used to retrieve further information/cancel the
operation.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/email/{templateId}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design template in
File Store

Query:

l section – the Section of the Email Context to export (No Default
Value)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Identifier List (with Email Parameters) of Data
Record IDs specifying a list of Data Record entity IDs and
parameters to be used for content creation.

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Content
Creation (Email) operation

Page 299

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/{templateId}


l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Content: -

Content
Type:

-

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 404 Not Found – Design template or Data Record
entity not found in File Store/Server

Page 300



Get Progress of Operation
Retrieves the progress of a running Content Creation (Email) operation of a specific operation
ID.

Request takes no content, and on success returns a response containing the current value of
operation progress (values ranging from 0 – 100, followed by the value of 'done' on
completion).

Type: GET

URI: /rest/serverengine/workflow/contentcreation/email/getProgress/
{operationId}

Parameters: Path:

l operationId – Operation ID of Content Creation (Email) operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Progress value of Content Creation (Email) operation

Content
Type:

text/plain

Status: l 200 OK – Progress of operation successfully

Page 301

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getProgress/{operationId}


retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 302



Get Result of Operation
Retrieves the final result of a completed Content Creation (Email) operation of a specific
operation ID.

Request takes no content, and on success returns a response containing a report on the
number of emails that were successfully sent.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/email/getResult/{operationId}

Parameters: Path:

l operationId – Operation ID of Content Creation (Email) operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Result of Content Creation (Email) Operation (with
successful email count) (e.g. "3 of 3 emails sent")

Content
Type:

text/plain

Status: l 200 OK – Result of completed operation
successfully retrieved

Page 303

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getResult/{operationId}


l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

Page 304



Cancel an Operation
Requests the cancellation of a running Content Creation (Email) operation of a specific
operation ID.

Request takes no content, and on success returns a response with no content.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/email/cancel/{operationId}

Parameters: Path:

l operationId – Operation ID of Content Creation (Email) operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: -

Content
Type:

-

Status: l 204 No Content – Operation cancellation
requested

l 401 Unauthorized – Server authentication required

Page 305

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/cancel/{operationId}


l 403 Forbidden – Server authentication has failed
or expired

Page 306



Service Version
Returns the version of the Content Creation (Email) service.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/email/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 307

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/version


File Store Service
The following table is a summary of the resources and methods available in the File Store
service:

Method Name Uniform Resource Identifier
(URI)

Method
Type

Service Handshake /filestore GET

Upload File /filestore/file/{fileId} POST

Upload Directory /filestore/dir/{fileId} POST

Download File or Directory /filestore/file/{fileId} GET

Delete File or Directory /filestore/delete/{fileId} GET

Upload Data Mapping
Configuration

/filestore/DataMiningConfig POST

Upload Job Creation Preset /filestore/JobCreationConfig POST

Upload Data File /filestore/DataFile POST

Upload Design Template /filestore/template POST

Upload Output Creation Preset /filestore/OutputCreationConfig POST

Service Version /filestore/version GET

Page 308



Service Handshake
Queries the availability of the File Store service.

Type: GET

URI: /rest/serverengine/filestore

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Handshake message:

Server Engine REST Service available:
FilestoreRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 309

http://localhost:9340/rest/serverengine/filestore


Upload File
Submits a file to the File Store using a specific Managed File ID (or Name).

Request takes binary file data as content, and on success returns a response containing the
Managed File ID (or Name) used for the file.

Type: POST

URI: /rest/serverengine/filestore/file/{fileId}

Parameters: Path:

l fileId – the Managed File ID (or Name) for file in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: File

Content
Type:

application/octet-stream

Response:
Add.
Headers:

-

Content: Managed File ID (or Name)

Content
Type:

text/plain

Status: l 200 OK – File successfully uploaded to File Store

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed

Page 310

http://localhost:9340/rest/serverengine/filestore/file/{fileId}


or expired

l 405 Not Allowed – File already exists in File Store

Page 311



Upload Directory
Submits a zipped directory to the File Store using a specific Managed File ID (or Name).

Request takes zipped file data as content, and on success returns a response containing the
Managed File ID (or Name) used for the directory.

Type: POST

URI: /rest/serverengine/filestore/dir/{fileId}

Parameters: Path:

l fileId – the Managed File ID (or Name) for directory in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: Directory (as zipped file)

Content
Type:

application/octet-stream

Response:
Add.
Headers:

-

Content: Managed File ID (or Name)

Content
Type:

text/plain

Status: l 200 OK – Directory successfully uploaded to File
Store

l 401 Unauthorized – Server authentication required

Page 312

http://localhost:9340/rest/serverengine/filestore/dir/{fileId}


l 403 Forbidden – Server authentication has failed
or expired

l 405 Not Allowed – Directory already exists in File
Store

Page 313



Download File or Directory
Obtains a file or directory of a specific Managed File ID (or Name) from the File Store.

Request takes no content, and on success returns a response containing the file or directory
data (as zipped file).

Type: GET

URI: /rest/serverengine/filestore/file/{fileId}

Parameters: Path:

l fileId – the Managed File ID (or Name) of the file or directory in File
Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

Content-Disposition

l File - "attachment; filename={OrigFileName}"

l Directory - "attachment; filename=
{OrigDirName}.zip"

Content: File or Directory (zipped as file)

Content
Type:

l File - application/octet-stream

l Directory - application/zip

Page 314

http://localhost:9340/rest/serverengine/filestore/file/{fileId}


Status: l 200 OK – File or directory successfully
downloaded from file store

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 315



Delete File or Directory
Removes a file or directory of a specific Managed File ID (or Name) from the File Store.

Request takes no content, and on success returns a response containing the result of the
request for removal (“true” or “false”).

Type: GET

URI: /rest/serverengine/filestore/delete/{fileId}

Parameters: Path:

l fileId – the Managed File ID (or Name) of the file or directory in File
Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Result of request for removal

Content
Type:

text/plain

Status: l 200 OK – Removal of file or directory successfully
requested from File Store (response of “true” for
success or “false” for failure)

Page 316

http://localhost:9340/rest/serverengine/filestore/delete/{fileId}


l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

Page 317



Upload Data Mapping Configuration
Submits a Data Mapping configuration to the File Store.

Request takes binary file data as content, and on success returns a response containing the
new Managed File ID for the configuration.

Type: POST

URI: /rest/serverengine/filestore/DataMiningConfig

Parameters: Query:

l filename – the file name of the configuration to be uploaded (No
Default Value)

l persistent – whether the configuration to be uploaded will be
persistent in File Store (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: Data Mapping Configuration (File)

Content
Type:

application/octet-stream

Response:
Add.
Headers:

-

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Configuration successfully uploaded to

Page 318

http://localhost:9340/rest/serverengine/filestore/DataMiningConfig


File Store

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 319



Upload Job Creation Preset
Submits a Job Creation preset to the File Store.

Request takes XML file data as content, and on success returns a response containing the new
Managed File ID for the preset.

Type: POST

URI: /rest/serverengine/filestore/JobCreationConfig

Parameters: Query:

l filename – the file name of the preset to be uploaded (No Default
Value)

l persistent – whether the preset to be uploaded will be persistent in
File Store (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: Job Creation Preset (File)

Content
Type:

application/xml

Response:
Add.
Headers:

-

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Preset successfully uploaded to File

Page 320

http://localhost:9340/rest/serverengine/filestore/JobCreationConfig


Store

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 321



Upload Data File
Submits a data file to the File Store.

Request takes binary file data as content, and on success returns a response containing the
new Managed File ID for the data file.

Type: POST

URI: /rest/serverengine/filestore/DataFile

Parameters: Query:

l filename – the file name of the data file to be uploaded (No Default
Value)

l persistent – whether the data file to be uploaded will be persistent in
File Store (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: Data File (File)

Content
Type:

application/octet-stream

Response:
Add.
Headers:

-

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Data file successfully uploaded to File

Page 322

http://localhost:9340/rest/serverengine/filestore/DataFile


Store

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 323



Upload Design Template
Submits a design template to the File Store.

Request takes zipped file data as content, and on success returns a response containing the
new Managed File ID for the design template.

Type: POST

URI: /rest/serverengine/filestore/template

Parameters: Query:

l filename – the file name of the design template to be uploaded (No
Default Value)

l persistent – whether the design template to be uploaded will be
persistent in File Store (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: Design Template (File)

Content
Type:

application/zip

Response:
Add.
Headers:

-

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Template successfully uploaded to File

Page 324

http://localhost:9340/rest/serverengine/filestore/template


Store

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 325



Upload Output Creation Preset
Submits an Output Creation preset to the File Store.

Request takes XML file data as content, and on success returns a response containing the new
Managed File ID for the preset.

Type: POST

URI: /rest/serverengine/filestore/OutputCreationConfig

Parameters: Query:

l filename – the file name of the preset to be uploaded (No Default
Value)

l persistent – whether the preset to be uploaded will be persistent in
File Store (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: Output Creation Preset (File)

Content
Type:

application/xml

Response:
Add.
Headers:

-

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Preset successfully uploaded to File

Page 326

http://localhost:9340/rest/serverengine/filestore/OutputCreationConfig


Store

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 327



Service Version
Returns the version of the File Store service.

Type: GET

URI: /rest/serverengine/filestore/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 328

http://localhost:9340/rest/serverengine/filestore/version


Content Creation (HTML) Service
The following table is a summary of the resources and methods available in the Content
Creation (HTML) service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/contentcreation/html GET

Process Content Creation (By
Data Record)

/workflow/contentcreation/html/
{templateId}/{dataRecordId: [0-9]+}

GET

Process Content Creation (By
Data Record) (JSON)

/workflow/contentcreation/html/
{templateId}/{dataRecordId: [0-9]+}

POST

Get Template Resource /workflow/contentcreation/html/
{templateId}/{relPath: .+}

GET

Service Version /workflow/contentcreation/html/version GET

Page 329



Service Handshake
Queries the availability of the Content Creation (HTML) service.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/html

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Handshake message:

Merge engine available

Content
Type:

text/plain

Status: l 200 OK – REST Service available

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 330

http://localhost:9340/rest/serverengine/workflow/contentcreation/html


Process Content Creation (By Data Record)
Submits a request to create new HTML content for the Web Context.

Request takes no content, and on success returns a response containing the generated HTML
specific to the Data Record ID and section specified.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/html/{templateId}/
{dataRecordId: [0-9]+}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design template in
File Store

l dataRecordId – the ID of the Data Record entity in Server

Query:

l section – the section within the Web Context to create (No Default
Value)

l inline – the inline mode to be used in the creation of content (Possible
values: NONE, CSS or ALL. No Default Value)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Page 331

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}
http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}


Content: The generated HTML output for the Data Record ID

Content
Type:

text/html

Status: l 200 OK – Output generated successfully

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 404 Not Found – Design template or Data Record
entity not found in File Store/Server

l 500 Server Error – Content Creation Error: Data
Record Not Found / Web Context in Template Not
found

Page 332



Process Content Creation (By Data Record) (JSON)
Submits a request to create new HTML content for the Web Context.

Request takes a JSON HTML Parameters List as content, and on success returns a response
containing the generated HTML output specific to the Data Record ID specified.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/html/{templateId}/
{dataRecordId: [0-9]+}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design template in
File Store

l dataRecordId – the ID of the Data Record entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON HTML Parameters List listing section and inline
mode.

Content
Type:

application/json

Response:
Add.
Headers:

-

Content: The generated HTML output for the Data Record ID

Content
Type:

text/html

Page 333

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}
http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}


Status: l 200 OK – Output generated successfully

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 404 Not Found – Design template or Data Record
entity not found in File Store/Server

l 500 Server Error – Content Creation Error: Data
Record Not Found / Web Context in Template Not
found

Page 334



Get Template Resource
Submits a request to retrieve a resource from a design template stored in the File Store.

Request takes no content, and on success returns a response containing the resource from the
design template.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/html/{templateId}/{relPath: .+}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design template in
File Store

l relPath – the relative path to the resource within template

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: The resource located at the relative path within the
template

Content
Type:

(Depends on Resource requested)

Status: l 200 OK – Resource successfully retrieved

Page 335

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{relPath: .+}


l 400 Bad Request - Unable to open resource within
template or resource doesn’t exist

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 404 Not Found – Design template or Data Record
entity not found in File Store/Server

l 500 Server Error - Unable to open template or
template doesn’t exist

Page 336



Service Version
Returns the version of the Content Creation (HTML) service.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/html/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 337

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/version


Job Creation Service
The following table is a summary of the resources and methods available in the Job Creation
service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/jobcreation GET

Process Job Creation /workflow/jobcreation/{configId} POST

Process Job Creation (JSON) /workflow/jobcreation/{configId} POST

Process Job Creation (JSON Job Set
Structure)

/workflow/jobcreation POST

Get Progress of Operation /workflow/jobcreation/getProgress/
{operationId}

GET

Get Result of Operation /workflow/jobcreation/getResult/
{operationId}

POST

Cancel an Operation /workflow/jobcreation/cancel/
{operationId}

POST

Service Version /workflow/jobcreation/version GET

Page 338



Service Handshake
Queries the availability of the Job Creation service.

Type: GET

URI: /rest/serverengine/workflow/jobcreation

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Handshake message:

Server Engine REST Service available:
JobCreationRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 339

http://localhost:9340/rest/serverengine/workflow/jobcreation


Process Job Creation
Submits a request to initiate a new Job Creation operation.

Request takes no content, and on success returns a response containing additional headers
that specify the ID of the new operation as well as link URLs that can be used to retrieve further
information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/jobcreation/{configId}

Parameters: Path:

l configId – the Managed File ID (or Name) of the Job Creation Preset
in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

l operationId – Operation ID of new Job Creation
operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Content: -

Content
Type:

-

Page 340

http://localhost:9340/rest/serverengine/workflow/jobcreation/{configId}


Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 404 Not Found – Job Creation Preset not found in
File Store

Page 341



Process Job Creation (JSON)
Submits a request to initiate a new Job Creation operation.

Request takes a JSON Identifier List of Content Set IDs as content, and on success returns a
response containing additional headers that specify the ID of the new operation as well as link
URLs that can be used to retrieve further information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/jobcreation/{configId}

Parameters: Path:

l configId – the Managed File ID (or Name) of the Job Creation Preset
in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Identifier List specifying a list of Content Set entity
IDs

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Job Creation
operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Content: -

Content -

Page 342

http://localhost:9340/rest/serverengine/workflow/jobcreation/{configId}


Type:

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 404 Not Found – Job Creation Preset or Content
Set entity not found in File Store/Server

Page 343



Process Job Creation (JSON Job Set Structure)
Submits a request to initiate a new Job Creation operation.

Request takes a JSON Job Set Structure containing a list of Content Items as content, and on
success returns a response containing additional headers that specify the ID of the new
operation as well as link URLs that can be used to retrieve further information/cancel the
operation.

Type: POST

URI: /rest/serverengine/workflow/jobcreation

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Job Set Structure describing Job Set (and Content
Items)

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Job Creation
operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Content: -

Content
Type:

-

Page 344

http://localhost:9340/rest/serverengine/workflow/jobcreation


Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

Page 345



Get Progress of Operation
Retrieves the progress of a running Job Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing the current value of
operation progress (values ranging from 0 – 100, followed by the value of 'done' on
completion).

Type: GET

URI: /rest/serverengine/workflow/jobcreation/getProgress/{operationId}

Parameters: Path:

l operationId – Operation ID of Job Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Progress value of Job Creation operation

Content
Type:

text/plain

Status: l 200 OK – Progress of operation successfully
retrieved

l 401 Unauthorized – Server authentication required

Page 346

http://localhost:9340/rest/serverengine/workflow/jobcreation/getProgress/{operationId}


l 403 Forbidden – Server authentication has failed
or expired

Page 347



Get Result of Operation
Retrieves the final result of a completed Job Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing the IDs of the
generated Job Set.

Type: POST

URI: /rest/serverengine/workflow/jobcreation/getResult/{operationId}

Parameters: Path:

l operationId – Operation ID of Job Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Job Set ID

Content
Type:

text/plain

Status: l 200 OK – Result of completed operation
successfully retrieved

l 401 Unauthorized – Server authentication required

Page 348

http://localhost:9340/rest/serverengine/workflow/jobcreation/getResult/{operationId}


l 403 Forbidden – Server authentication has failed
or expired

Page 349



Cancel an Operation
Requests the cancellation of a running Job Creation operation of a specific operation ID.

Request takes no content, and on success returns a response with no content.

Type: POST

URI: /rest/serverengine/workflow/jobcreation/cancel/{operationId}

Parameters: Path:

l operationId – Operation ID of Job Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: -

Content
Type:

-

Status: l 204 No Content – Operation cancellation
requested

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 350

http://localhost:9340/rest/serverengine/workflow/jobcreation/cancel/{operationId}


Service Version
Returns the version of the Job Creation service.

Type: GET

URI: /rest/serverengine/workflow/jobcreation/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 351

http://localhost:9340/rest/serverengine/workflow/jobcreation/version


Job Entity Service
The following table is a summary of the resources and methods available in the Job Entity
service:

Method Name Uniform Resource Identifier (URI) Method Type

Service Handshake /entity/jobs GET

Get Content Items for Job /entity/jobs/{jobId}/contents GET

Get Job Properties /entity/jobs/{jobId}/properties GET

Update Job Properties /entity/jobs/{jobId}/properties PUT

Update Multiple Job Properties /entity/jobs/properties PUT

Service Version /entity/jobs/version GET

Page 352



Service Handshake
Queries the availability of the Job Entity service.

Type: GET

URI: /rest/serverengine/entity/jobs

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Handshake message:

Server Engine REST Service available:
JobEntityRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 353

http://localhost:9340/rest/serverengine/entity/jobs


Get Content Items for Job
Returns a list of all the Content Item entities (and their corresponding Data Record entities)
contained within a specific Job entity.

Request takes no content, and on success returns a response containing a JSON Content Item
Identifier List of all the Content Items for the Job.

Type: GET

URI: /rest/serverengine/entity/jobs/{jobId}/contents

Parameters: Path:

l jobId – the ID of the Job entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Content Item Identifier List of all the Content Items
in Job

Content
Type:

application/json

Status: l 200 OK – Content Item Identifier List returned

l 401 Unauthorized – Server authentication required

Page 354

http://localhost:9340/rest/serverengine/entity/jobs/{jobId}/contents


l 403 Forbidden – Server authentication has failed
or expired

Page 355



Get Job Properties
Returns a list of the properties for a specific Job entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the properties for the Job.

Type: GET

URI: /rest/serverengine/entity/jobs/{jobId}/properties

Parameters: Path:

l jobId – the ID of the Job entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Name/Value List (Properties Only) of properties
for Job

Content
Type:

application/json

Status: l 200 OK – Job entity properties successfully
retrieved

l 401 Unauthorized – Server authentication required

Page 356

http://localhost:9340/rest/serverengine/entity/jobs/{jobId}/properties


l 403 Forbidden – Server authentication has failed
or expired

Page 357



Update Job Properties
Submits a request to update (and replace) the properties for a specific Job entity in the Server.

Request takes a JSON Name/Value List as content (the Job ID and the new properties), and on
success returns a response containing the result of the request for update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/jobs/{jobId}/properties

Parameters: Path:

l jobId – the ID of the Job entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of properties for Job

Content
Type:

application/json

Response:
Add.
Headers:

-

Content: Result of request to update Job

Content
Type:

text/plain

Status: l 200 OK – Update of Job properties successfully
requested (response of “true” for success)

l 401 Unauthorized – Server authentication required

Page 358

http://localhost:9340/rest/serverengine/entity/jobs/{jobId}/properties


l 403 Forbidden – Server authentication has failed or
expired

l 500 Server Error – Internal Server Error or Job ID
mismatch in JSON

Page 359



Update Multiple Job Properties
Submits a request to update one or more properties for one or more Job entities in the Server.

Request takes multiple JSON Name/Value Lists as content (each with the Job ID and the new
properties), and on success returns a response containing no content.

Type: PUT

URI: /rest/serverengine/entity/jobs/properties

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value Lists of the properties of the Jobs

Content
Type:

application/json

Response:
Add.
Headers:

-

Content: -

Content
Type:

-

Status: l 200 OK – Properties of Job entities successfully
updated

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 360

http://localhost:9340/rest/serverengine/entity/jobs/properties


Service Version
Returns the version of the Job Entity service.

Type: GET

URI: /rest/serverengine/entity/jobs/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 361

http://localhost:9340/rest/serverengine/entity/jobs/version


Job Set Entity Service
The following table is a summary of the resources and methods available in the Job Set Entity
service:

Method Name Uniform Resource Identifier (URI) Method Type

Get All Job Set Entities /entity/jobsets GET

Get Jobs for Job Set /entity/jobsets/{jobSetId} GET

Delete Job Set Entity /entity/jobsets/{jobSetId}/delete POST

Get Job Set Properties /entity/jobsets/{jobSetId}/properties GET

Update Job Set Properties /entity/jobsets/{jobSetId}/properties PUT

Service Version /entity/jobsets/version GET

Page 362



Get All Job Set Entities
Returns a list of all the Job Set entities currently contained within the Server.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Job Sets.

Type: GET

URI: /rest/serverengine/entity/jobsets

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Identifier List of all the Job Sets in Server

Content
Type:

application/json

Status: l 200 OK – Identifier List of Job Sets returned

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 363

http://localhost:9340/rest/serverengine/entity/jobsets


Get Jobs for Job Set
Returns a list of all the Job entities contained within a specific Job Set entity.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Jobs in the Job Set.

Type: GET

URI: /rest/serverengine/entity/jobsets/{jobSetId}

Parameters: Path:

l jobSetId – the ID of the Job Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Identifier List of all the Jobs in Job Set

Content
Type:

application/json

Status: l 200 OK – Identifier List of Jobs returned

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 364

http://localhost:9340/rest/serverengine/entity/jobsets/{jobSetId}


Delete Job Set Entity
Submits a request for a specific Job Set entity to be marked for deletion from the Server.

Request takes no content, and on success returns a response containing the result of the
request for deletion (“true” or “false”).

Type: POST

URI: /rest/serverengine/entity/jobsets/{jobSetId}/delete

Parameters: Path:

l jobSetId – the ID of the Job Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Result of request for Job Set removal

Content
Type:

text/plain

Status: l 200 OK – Deletion of Job Set successfully
requested from Server (response of “true” for
success or “false” for failure)

l 401 Unauthorized – Server authentication required

Page 365

http://localhost:9340/rest/serverengine/entity/jobsets/{jobSetId}/delete


l 403 Forbidden – Server authentication has failed or
expired

Page 366



Get Job Set Properties
Returns a list of the properties for a specific Job Set entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the properties for the Job Set.

Type: GET

URI: /rest/serverengine/entity/jobsets/{jobSetId}/properties

Parameters: Path:

l jobSetId – the ID of the Job Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: JSON Name/Value List (Properties Only) of properties
for Job Set

Content
Type:

application/json

Status: l 200 OK – Job Set entity properties successfully
retrieved

l 401 Unauthorized – Server authentication required

Page 367

http://localhost:9340/rest/serverengine/entity/jobsets/{jobSetId}/properties


l 403 Forbidden – Server authentication has failed
or expired

Page 368



Update Job Set Properties
Submits a request to update (and replace) the properties for a specific Job Set entity in the
Server.

Request takes a JSON Name/Value List as content (the Job Set ID and the new properties),
and on success returns a response containing the result of the request for update/replacement
(“true”).

Type: PUT

URI: /rest/serverengine/entity/jobsets/{jobSetId}/properties

Parameters: Path:

l jobSetId – the ID of the Job Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of properties for Job Set

Content
Type:

application/json

Response:
Add.
Headers:

-

Content: Result of request to update Job Set

Content
Type:

text/plain

Status: l 200 OK – Update of Job Set properties successfully
requested (response of “true” for success)

Page 369

http://localhost:9340/rest/serverengine/entity/jobsets/{jobSetId}/properties


l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 500 Server Error – Internal Server Error or Job Set
ID mismatch in JSON

Page 370



Service Version
Returns the version of the Job Set Entity service.

Type: GET

URI: /rest/serverengine/entity/jobsets/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 371

http://localhost:9340/rest/serverengine/entity/jobsets/version


Output Creation Service
The following table is a summary of the resources and methods available in the Output
Creation service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/outputcreation GET

Process Output Creation /workflow/outputcreation/{configId}/
{jobSetId}

POST

Process Output Creation (JSON) /workflow/outputcreation/{configId} POST

Process Output Creation (By
Job) (JSON)

/workflow/outputcreation/{configId}/jobs POST

Get Progress of Operation /workflow/outputcreation/getProgress/
{operationId}

GET

Get Result of Operation /workflow/outputcreation/getResult/
{operationId}

POST

Get Result of Operation (as Text) /workflow/outputcreation/getResultTxt/
{operationId}

POST

Cancel an Operation /workflow/outputcreation/cancel/
{operationId}

POST

Service Version /workflow/outputcreation/version GET

Page 372



Service Handshake
Queries the availability of the Output Creation service.

Type: GET

URI: /rest/serverengine/workflow/outputcreation

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Handshake message:

Server Engine REST Service available:
OutputCreationRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 373

http://localhost:9340/rest/serverengine/workflow/outputcreation


Process Output Creation
Submits a request to initiate a new Output Creation operation.

Request takes no content, and on success returns a response containing additional headers
that specify the ID of the new operation as well as link URLs that can be used to retrieve further
information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/outputcreation/{configId}/{jobSetId}

Parameters: Path:

l configId – the Managed File ID (or Name) of the Output Creation
Preset in File Store

l jobSetId – the ID of the Job Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

l operationId – Operation ID of new Output Creation
operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Content: -

Content -

Page 374

http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}/{jobSetId}


Type:

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 404 Not Found – Output Creation Preset or Job Set
entity not found in File Store/Server

Page 375



Process Output Creation (JSON)
Submits a request to initiate a new Output Creation operation.

Request takes a JSON Identifier of the Job Set ID (with a createOnly flag) as content, and on
success returns a response containing additional headers that specify the ID of the new
operation as well as link URLs that can be used to retrieve further information/cancel the
operation.

Type: POST

URI: /rest/serverengine/workflow/outputcreation/{configId}

Parameters: Path:

l configId – the Managed File ID (or Name) of the Output Creation
Preset in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Identifier (with createOnly flag) specifying the Job
Set entity's ID

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Output Creation
operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Content: -

Page 376

http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}


Content
Type:

-

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 404 Not Found – Output Creation Preset or Job Set
entity not found in File Store/Server

l 500 Internal Server Error – JSON Identifier invalid
or missing required structure

Page 377



Process Output Creation (By Job) (JSON)
Submits a request to initiate a new Output Creation operation.

Request takes a JSON Identifier List of the Job IDs (with a createOnly flag) as content, and on
success returns a response containing additional headers that specify the ID of the new
operation as well as link URLs that can be used to retrieve further information/cancel the
operation.

Type: POST

URI: /rest/serverengine/workflow/outputcreation/{configId}/jobs

Parameters: Path:

l configId – the Managed File ID (or Name) of the Output Creation
Preset in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Identifier List (with createOnly flag) specifying the
Job entity IDs

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Output Creation
operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Content: -

Page 378

http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}/jobs


Content
Type:

-

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 404 Not Found – Output Creation Preset or Job
entity not found in File Store/Server

l 500 Internal Server Error – JSON Identifier List
invalid or missing required structure

Page 379



Get Progress of Operation
Retrieves the progress of a running Output Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing the current value of
operation progress (values ranging from 0 – 100, followed by the value of 'done' on
completion).

Type: GET

URI: /rest/serverengine/workflow/outputcreation/getProgress/{operationId}

Parameters: Path:

l operationId – Operation ID of Output Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Progress value of Output Creation operation

Content
Type:

text/plain

Status: l 200 OK – Progress of operation successfully
retrieved

l 401 Unauthorized – Server authentication required

Page 380

http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}


l 403 Forbidden – Server authentication has failed
or expired

Page 381



Get Result of Operation
Retrieves the final result of a completed Output Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing either the absolute
paths of the final generated output files (multiple spool files) or the content of a final generated
output file (single spool file).

Type: POST

URI: /rest/serverengine/workflow/outputcreation/getResult/{operationId}

Parameters: Path:

l operationId – Operation ID of Output Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Absolute Paths of the Output Files or the Output File
itself

Content
Type:

application/octet-stream

Status: l 200 OK – Result of completed operation
successfully retrieved

Page 382

http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}


l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 383



Get Result of Operation (as Text)
Retrieves the final result of a completed Output Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing the absolute path or
paths of the final generated output file or files (single or multiple spool files respectively).

Type: POST

URI: /rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}

Parameters: Path:

l operationId – Operation ID of Output Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Absolute Path(s) of the Output File(s)

Content
Type:

text/plain

Status: l 200 OK – Result of completed operation
successfully retrieved

l 401 Unauthorized – Server authentication required

Page 384

http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}


l 403 Forbidden – Server authentication has failed
or expired

Page 385



Cancel an Operation
Requests the cancellation of a running Output Creation operation of a specific operation ID.

Request takes no content, and on success returns a response with no content.

Type: POST

URI: /rest/serverengine/workflow/outputcreation/cancel/{operationId}

Parameters: Path:

l operationId – Operation ID of Output Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: -

Content
Type:

-

Status: l 204 No Content – Operation cancellation
requested

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 386

http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}


Service Version
Returns the version of the Output Creation service.

Type: GET

URI: /rest/serverengine/workflow/outputcreation/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 387

http://localhost:9340/rest/serverengine/workflow/outputcreation/version


All-In-One Service
The following table is a summary of the resources and methods available in the All-In-One
service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/print GET

Process All-In-One (JSON) /workflow/print/submit POST

Get Progress of Operation /workflow/print/getProgress/
{operationId}

GET

Get Result of Operation /workflow/print/getResult/{operationId} POST

Get Result of Operation (as
Text)

/workflow/print/getResultTxt/
{operationId}

POST

Cancel an Operation /workflow/print/cancel/{operationId} POST

Service Version /workflow/print/version GET

Page 388



Service Handshake
Queries the availability of the All-In-One service.

Type: GET

URI: /rest/serverengine/workflow/print

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Handshake message:

Server Engine REST Service available:
PrintRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 389

http://localhost:9340/rest/serverengine/workflow/print


Process All-In-One (JSON)
Submits a request to initiate a new All-In-One operation.

Request takes a JSON All-In-One Configuration as content, and on success returns a response
containing additional headers that specify the ID of the new operation as well as link URLs that
can be used to retrieve further information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/print/submit

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON All-In-One Configuration containing workflow
process steps/properties

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new All-In-One
operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation.

Content: -

Content
Type:

-

Status: l 202 Accepted – Creation of new operation

Page 390

http://localhost:9340/rest/serverengine/workflow/print/submit


successful

l 400 Bad Request – Required Input resource/file not
found in File Store

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed or
expired

l 500 Internal Server Error – General error with
running the All-In-One Process or a Specific error
relating to a process step (see error description)

Page 391



Get Progress of Operation
Retrieves the progress of a running All-In-One operation of a specific operation ID.

Request takes no content, and on success returns a response containing the current value of
operation progress (values ranging from 0 – 100, followed by the value of 'done' on
completion).

Type: GET

URI: /rest/serverengine/workflow/print/getProgress/{operationId}

Parameters: Path:

l operationId – Operation ID of All-In-One operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Progress value of All-In-One operation

Content
Type:

text/plain

Status: l 200 OK – Progress of operation successfully
retrieved

l 401 Unauthorized – Server authentication required

Page 392

http://localhost:9340/rest/serverengine/workflow/print/getProgress/{operationId}


l 403 Forbidden – Server authentication has failed
or expired

Page 393



Get Result of Operation
Retrieves the final result of a completed All-In-One operation of a specific operation ID.

Request takes no content, and on success returns a response (depending on the All-In-One
configuration) containing either:

l the ID of the Data Set, Content Set or Job Set entity generated, or

l the absolute paths of the final generated output files (multiple spool files) or the content of
a final generated output file (single spool file).

Type: POST

URI: /rest/serverengine/workflow/print/getResult/{operationId}

Parameters: Path:

l operationId – Operation ID of All-In-One operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Either:

l the ID of the Data Set, Content Set or Job Set, or

l the Absolute Paths of the Output Files or the
Output File itself

Page 394

http://localhost:9340/rest/serverengine/workflow/print/getResult/{operationId}


Content
Type:

application/octet-stream

Status: l 200 OK – Result of completed operation
successfully retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 395



Get Result of Operation (as Text)
Retrieves the final result of a completed All-In-One operation of a specific operation ID.

Request takes no content, and on success returns a response (depending on the All-In-One
configuration) containing either:

l the ID of the Data Set, Content Set or Job Set entity generated, or

l the absolute path or paths of the final generated output file or files (single or multiple
spool files respectively).

Type: POST

URI: /rest/serverengine/workflow/print/getResultTxt/{operationId}

Parameters: Path:

l operationId – Operation ID of All-In-One operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Either:

l the ID of the Data Set, Content Set or Job Set, or

l the Absolute Path(s) of the Output File(s)

Page 396

http://localhost:9340/rest/serverengine/workflow/print/getResultTxt/{operationId}


Content
Type:

text/plain

Status: l 200 OK – Result of completed operation
successfully retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 397



Cancel an Operation
Requests the cancellation of a running All-In-One operation of a specific operation ID.

Request takes no content, and on success returns a response with no content.

Type: POST

URI: /rest/serverengine/workflow/print/cancel/{operationId}

Parameters: Path:

l operationId – Operation ID of All-In-One operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: -

Content
Type:

-

Status: l 204 No Content – Operation cancellation
requested

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 398

http://localhost:9340/rest/serverengine/workflow/print/cancel/{operationId}


Service Version
Returns the version of the All-In-One service.

Type: GET

URI: /rest/serverengine/workflow/print/version

Parameters: -

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: -

Content
Type:

-

Response:
Add.
Headers:

-

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved

l 401 Unauthorized – Server authentication required

l 403 Forbidden – Server authentication has failed
or expired

Page 399

http://localhost:9340/rest/serverengine/workflow/print/version


Copyright Information
Copyright © 1994-2017 Objectif Lune Inc. All Rights Reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any other language or computer language in whole or in part, in any
form or by any means, whether it be electronic, mechanical, magnetic, optical, manual or
otherwise, without prior written consent of Objectif Lune Inc.

Objectif Lune Inc. disclaims all warranties as to this software, whether expressed or implied,
including without limitation any implied warranties of merchantability, fitness for a particular
purpose, functionality, data integrity or protection.

PlanetPress and PReS are registered trademarks of Objectif Lune Inc.

Page 400



Legal Notices and Acknowledgments
PlanetPress Connect, Copyright © 2017, Objectif Lune Inc. All rights reserved.

This guide uses the following third party components:

l jQuery Library Copyright © 2005 - 2014, jQuery Foundation, Inc. and other contributors.
This is distributed under the terms of the Massachusetts Institute of Technology (MIT)
license.

l QUnit Library Copyright © jQuery Foundation, Inc. and other contributors. This is
distributed under the terms of the Massachusetts Institute of Technology (MIT) license.

Page 401




	Table of Contents
	Welcome to the PlanetPress Connect REST API Cookbook
	Technical Overview
	Workflow & Workflow Processes
	Workflow Components
	Workflow Operations
	JSON Structures

	Working Examples
	Getting Started
	Server Security & Authentication
	Working with the File Store
	Working with the Entity Services
	Working with the Workflow Services

	REST API Reference
	Authentication Service
	Content Creation Service
	Content Item Entity Service
	Content Set Entity Service
	Data Record Entity Service
	Data Set Entity Service
	Data Mapping Service
	Content Creation (Email) Service
	File Store Service
	Content Creation (HTML) Service
	Job Creation Service
	Job Entity Service
	Job Set Entity Service
	Output Creation Service
	All-In-One Service

	Copyright Information
	Legal Notices and Acknowledgments

