
REST API Cookbook with
Working Examples
Version: 2019.2

REST API Cookbook with Working Examples
Version 2019.2
Last Revision: 2021-04-14

Objectif Lune, Inc.
2030 Pie-IX, Suite 500
Montréal, QC, Canada, H1V 2C8

+1 (514) 875-5863
www.objectiflune.com

All trademarks displayed are the property of their respective owners.

http://www.objectiflune.com/

© Objectif Lune, Inc. 1994-2021. All rights reserved. No part of this documentation may be
reproduced, transmitted or distributed outside of Objectif Lune Inc. by any means whatsoever
without the express written permission of Objectif Lune Inc. Objectif Lune Inc. disclaims
responsibility for any errors and omissions in this documentation and accepts no responsibility
for damages arising from such inconsistencies or their further consequences of any kind.
Objectif Lune Inc. reserves the right to alter the information contained in this documentation
without notice.

Page 4

Table of Contents
Table of Contents 5
Welcome to the PlanetPress Connect REST API Cookbook 12
Technical Overview 13
Workflow & Workflow Processes 14
Data Mapping 15
Content Creation 16
Job Creation 17
Output Creation 18
All-In-One 19

Input Files 22
Data Entities 23
Data Set & Data Record Entities 23
Content Set & Content Item Entities 24
Job Set & Job Entities 25

Workflow Operations 27
Asynchronous Operations 27
Synchronous Operations 28

JSON Structures 29
Common Structures 31
Specific Structures 37

Working Examples 107
Getting Started 108
Requirements & Installation 109
Structure of the Working Examples 111
HTML Input Placeholders & Multiple Value Fields 113
Display of Working Example Results 114
Using the Working Examples with Server Security 115

Server Security & Authentication 116
Authenticating with the Server 117

Working with the File Store 122
Uploading a Data File to the File Store 123
Uploading a Data Mapping Configuration to the File Store 128
Uploading a Design Template to the File Store 134

Page 5

Uploading a Job Creation Preset to the File Store 140
Uploading an Output Creation Preset to the File Store 146

Working with the Entity Services 152
Finding Specific Data Entities in the Server 153
Finding all the Data Sets in the Server 188
Finding the Data Records in a Data Set 191
Finding all the Content Sets in the Server 195
Finding the Content Items in a Content Set 198
Finding all the Job Sets in the Server 203
Finding the Jobs in a Job Set 206

Working with the Workflow Services 209
Running a Data Mapping Operation 210
Running a Data Mapping Operation (Using JSON) 217
Running a Data Mapping Operation for PDF/VT File (to Data Set) 224
Running a Data Mapping Operation for PDF/VT File (to Content Set) 230
Running a Content Creation Operation for Print 236
Running a Content Creation Operation for Print By Data Record (Using JSON) 242
Running a Content Creation Operation for Email By Data Record (Using JSON) 249
Creating Content for Web By Data Record 261
Creating Content for Web By Data Record (Using JSON) 267
Running a Job Creation Operation (Using JSON) 273
Running an Output Creation Operation 279
Running an Output Creation Operation (Using JSON) 286
Running an Output Creation Operation By Job (Using JSON) 294
Running an All-In-One Operation (Using JSON) 302

REST API Reference 319
Authentication Service 329
Service Handshake 330
Authenticate/Login to Server 331
Service Version 333

Content Creation Service 334
Service Handshake 336
Process Content Creation 337
Process Content Creation (By Data Record) (JSON) 339
Process Content Creation (By Data) (JSON) 341
Create Preview PDF 343
Create Preview PDF (By Data Record) 345

Page 6

Create Preview PDF (By Data) (JSON) 347
Get All Operations 349
Get Progress of Operation 351
Get Result of Operation 353
Cancel an Operation 355
Service Version 357

Content Item Entity Service 358
Service Handshake 359
Get Data Record for Content Item 360
Get Content Item Properties 362
Update Content Item Properties 364
Update Multiple Content Item Properties 366
Service Version 368

Content Set Entity Service 369
Get All Content Sets 370
Get Content Items for Content Set 371
Get Page Details for Content Set 373
Delete Content Set Entity 375
Get Content Set Properties 377
Update Content Set Properties 379
Service Version 381

Data Record Entity Service 382
Service Handshake 383
Add Data Records 384
Get Data Record Values 386
Update Data Record Values 389
Get Data Record Properties 391
Update Data Record Properties 393
Get Multiple Data Record Values 395
Get Multiple Data Record Values (JSON) 397
Update Multiple Data Record Values 399
Update Multiple Data Record Properties 401
Service Version 403

Data Set Entity Service 404
Get All Data Sets 405
Get Data Records for Data Set 406
Delete Data Set Entity 408

Page 7

Get Data Set Properties 410
Update Data Set Properties 412
Service Version 414

Data Mapping Service 415
Service Handshake 416
Process Data Mapping 417
Process Data Mapping (JSON) 420
Process Data Mapping (PDF/VT to Data Set) 423
Process Data Mapping (PDF/VT to Content Set) 425
Get All Operations 427
Get Progress of Operation 429
Get Result of Operation 431
Cancel an Operation 433
Service Version 435

Document Entity Service 436
Service Handshake 437
Get Document Metadata Properties 438
Update Document Metadata Properties 440
Service Version 442

Document Set Entity Service 443
Service Handshake 444
Get Documents for Document Set 445
Get Document Set Metadata Properties 447
Update Document Set Metadata Properties 449
Service Version 451

Content Creation (Email) Service 452
Service Handshake 453
Process Content Creation (By Data Record) (JSON) 454
Process Content Creation (By Data) (JSON) 456
Get All Operations 458
Get Progress of Operation 460
Get Result of Operation 462
Cancel an Operation 464
Service Version 466

Entity Service 467
Service Handshake 468
Find Data Entity 469

Page 8

Service Version 471
File Store Service 472
Service Handshake 473
Download Managed File or Directory 474
Delete Managed File or Directory 476
Upload Data Mapping Configuration 478
Upload Job Creation Preset 480
Upload Data File 482
Upload Design Template 484
Upload Output Creation Preset 486
Service Version 488

Content Creation (HTML) Service 489
Service Handshake 490
Process Content Creation (By Data Record) 491
Process Content Creation (By Data Record) (JSON) 493
Process Content Creation (By Data) (JSON) 495
Process Content Creation (No Data) 497
Get Template Resource 499
Service Version 501

Job Creation Service 502
Service Handshake 503
Process Job Creation 504
Process Job Creation (JSON) 506
Process Job Creation (JSON Job Set Structure) 508
Get All Operations 510
Get Progress of Operation 512
Get Result of Operation 514
Cancel an Operation 516
Service Version 518

Job Entity Service 519
Service Handshake 520
Get Content Items for Job 521
Get Job Segments for Job 523
Get Job Metadata Properties 525
Update Job Metadata Properties 527
Get Job Properties 529
Update Job Properties 531

Page 9

Update Multiple Job Properties 533
Service Version 534

Job Segment Entity Service 535
Service Handshake 536
Get Document Sets for Job Segment 537
Get Job Segment Metadata Properties 539
Update Job Segment Metadata Properties 541
Service Version 543

Job Set Entity Service 544
Get All Job Sets 545
Get Jobs for Job Set 546
Delete Job Set Entity 548
Get Job Set Metadata Properties 550
Update Job Set Metadata Properties 552
Get Job Set Properties 554
Update Job Set Properties 556
Service Version 558

Output Creation Service 559
Service Handshake 560
Process Output Creation 561
Process Output Creation (JSON) 563
Process Output Creation (By Job) (JSON) 565
Run +PReS Enhance Workflow Configuration 567
Get All Operations 569
Get Progress of Operation 571
Get Result of Operation 573
Get Result of Operation (as Text) 575
Cancel an Operation 577
Service Version 579

All-In-One Service 580
Service Handshake 581
Process All-In-One (JSON) 582
Process All-In-One (Adhoc Data) 584
Get All Operations 588
Get Progress of Operation 590
Get Result of Operation 592
Get Result of Operation (as Text) 594

Page 10

Cancel an Operation 596
Service Version 598

Copyright Information 599
Legal Notices and Acknowledgements 600

Page 11

Welcome to the PlanetPress Connect
REST API Cookbook
This guide is aimed at technically experienced users who wish to learn and use the REST API
available in PlanetPress Connect version 2019.2.

The PlanetPress Connect REST API consists of many services that expose access to a
number of areas including workflow, data entity management and file store operations.

These services can be used to perform various interactions with the PlanetPress Connect
server such as:

l Upload and manage data files, data mapping configurations and design templates in the
file store

l Create, manage and find data entities internal to the PlanetPress Connect server
l Create and monitor processing operations within the workflow

The REST API also supports added security to restrict unauthorized access to the services.

This guide is broken down into three sections:

l Technical Overview – Overview of the concepts and structures used in PlanetPress
Connect and the REST API

l Working Examples – Working examples of the PlanetPress Connect REST API in action
(HTML5 & JavaScript/jQuery)

l REST API Reference – A complete reference to the PlanetPress Connect REST API and
services

It is recommended that the technical overview section be read first, followed by the working
examples, using the REST API reference for greater detail on implementing any specific
example.

Page 12

Technical Overview
This section provides an overview of the concepts and structures used within PlanetPress
Connect and the REST API.

l Workflow & Workflow Processes
l Input Files
l Data Entities
l Workflow Operations
l JSON Structures

Page 13

Workflow & Workflow Processes
The primary workflow in PlanetPress Connect consists of four major processes that each
require a number of inputs, and once executed, produce a particular form of output. These
processes are: data mapping, content creation, job creation and output creation.

There is an additional workflow process, named All-In-One, which embodies all four major
workflow processes in a singular process.

The following diagram illustrates the primary workflow in PlanetPress Connect:

Typically an individual workflow process (shown above in blue) will take one or more input files
as input (shown above in green), and will produce either intermediary output in the form of a
data entity (shown above in red), or final output in the form of print, web, or email based content
(depending on the context of the content produced) (shown above in yellow).

Input files to a workflow process include files such as data files, data mapping configurations
and design templates. In most cases an input file needs to be uploaded to the server file store
before it can be used in a workflow process. A file that has been uploaded to the file store is
known as a managed file, and managed files can be referenced via a unique identifier or name.

A data entity is simply a structured data artefact, produced as a result of an instance of a
workflow process known as a workflow operation. Data entities are stored internally to the
server and can also be referenced via a unique identifier.

Where a certain process depends on the output of the process before it, the data entity or
entities produced by the earlier process are used as an input to that process.

Page 14

Data Mapping
The data mapping process involves taking a data file or source, applying a data mapping
configuration to it, and producing a structured set of data or data records (a data set). This
process can also produce a data set or content set from a PDF/VT file using its internal meta
data instead of a data mapping configuration.

The following diagram illustrates the default workflow for the data mapping process:

The following diagram illustrates the alternative workflow for the data mapping process when
using PDF/VT data files specifically:

Page 15

Content Creation
The content creation process involves taking either a data set or one or more data records (from
a data set), combining them with a suitable design template, and producing one or more sets of
content (content sets). If the content is for the Email or Web context then output can be
produced at this stage.

The following diagram illustrates the workflow for the content creation process:

Page 16

Job Creation
The job creation process involves taking one or more content sets and applying a job creation
preset for organizing, sorting and grouping them into a set of logical jobs (a job set). This
includes the application of data filtering and finishing options.

The following diagram illustrates the workflow for the job creation process:

Page 17

Output Creation
The output creation process involves taking either a job set or one or more jobs (from a job set),
applying an output creation preset, and producing the print output (Print context).

The following diagram illustrates the workflow for the output creation process:

Page 18

All-In-One
The All-In-One process embodies all four major workflow processes (data mapping, content
creation, job creation and output creation) in a singular process. It can be configured to run one
or more of the four processes, as long as the processes specified result in a logical sequence
or workflow.

Depending on it's configuration, the All-In-One process can produce either a data set, content
sets, a job set or print output (Print context).

The following diagram illustrates the potential inputs, outputs and workflows for the All-In-One
process:

The following table lists the available processes, input combinations and expected outputs for
the All-In-One process:

Page 19

Processes Input Combination Expected
Output

Data Mapping Only Data File + Data Mapping Configuration Data Set

Data Mapping +
Content Creation

Data File + Data Mapping Configuration +
Design Template

Content Set(s)

Content Creation Only Data Records + Design Template Content Set(s)

Data Mapping +
Content Creation + Job
Creation

Data File + Data Mapping Configuration +
Design Template

Job Set

Data Mapping +
Content Creation + Job
Creation

Data File + Data Mapping Configuration +
Design Template + Job Creation Preset

Job Set

Content Creation + Job
Creation

Data Records + Design Template Job Set

Content Creation + Job
Creation

Data Records + Design Template + Job
Creation Preset

Job Set

Data Mapping +
Content Creation + Job
Creation + Output
Creation

Data File + Data Mapping Configuration +
Design Template + Output Creation Preset

Print Output

Data Mapping +
Content Creation + Job
Creation + Output
Creation

Data File + Data Mapping Configuration +
Design Template + Job Creation Preset +
Output Creation Preset

Print Output

Content Creation + Job Data Records + Design Template + Output
Creation Preset

Print Output

Page 20

Processes Input Combination Expected
Output

Creation + Output
Creation

Content Creation + Job
Creation + Output
Creation

Data Records + Design Template + Job
Creation Preset + Output Creation Preset

Print Output

Output Creation Only Jobs + Output Creation Preset Print Output

Page 21

Input Files
Input files are used as input to a specific workflow process. The following table lists the types of
input files used in the PlanetPress Connect workflow:

Name Relevant Workflow
Process

File Name Examples

Data File Data Mapping l Promo-EN-10.csv
l Promo-EN-10000.csv
l PDFVT-Data.pdf

Data Mapping
Configuration

Data Mapping l Promo-EN.OL-datamapper
l Transact-EN.OL-
datamapper

Design Template Content Creation l letter-ol.OL-template
l invoice-ol-transpromo.OL-
template

Job Creation Preset Job Creation l Promo-EN-JC-Config.OL-
jobpreset

Output Creation Preset Output Creation l FX4112_Hold_Config.OL-
outputpreset

l Promo-EN-OC-Config.OL-
outputpreset

Page 22

Data Entities
There are many data entity types used by PlanetPress Connect, but not all data entities can be
accessed through the REST API. The main data entities to be aware of when working with the
API are:

l Data Sets
l Data Records
l Content Sets
l Content Items
l Job Sets
l Jobs

Data Set & Data Record Entities
The data set is the artefact produced by a data mapping operation. It holds the data that was
mapped out of the input data file. A data mapping operation produces a single data set, which
contains as many data records as there are documents.

Each data record contains a collection of data values. The data records in the data set form the
master record, or document record, which typically contains document recipient information.
The master record can also contain a collection of data tables, which form the detail records
that hold data such as invoice line items.

Each data table contains a collection of data records, where each data record contains a
collection of data values and a collection of data tables, and so on.

Page 23

The following diagram illustrates the basic relationship between these entities in the context of
the data mapping process:

The data set and data record entities (shown above in blue) are accessible via the Data Set
Entity and Data Record Entity services.

Content Set & Content Item Entities
The content set is the artefact produced by a content creation operation. It holds all the pages
that were produced by the operation. A content creation operation produces one or more
content sets, which contain as many content items as there were data records given at the start
of the operation.

Because the data records used may have different data set owners, a content set cannot be
linked to a single data set, but rather content items are linked to data records. A content item is
further divided into content sections and content pages.

The following diagram illustrates the basic relationship between these entities in the context of
the content creation process:

Page 24

The content set and content item entities (shown above in blue) are accessible via the Content
Set Entity and Content Item Entity services.

Job Set & Job Entities
The job set is the artefact produced by a job creation operation. It consists of a hierarchical
structure that divides documents into various structures and it basically decides which
documents are to be printed and in what order.

A job creation operation creates a single job set which contains a series of containers where
every level contains one or more of the next level down: jobs, job segments, document sets,
documents and document pages. The last level in the chain, the document pages, contains a
single content item. Hence, at the job creation level, a document may consist of one or more
content items.

The following diagram illustrates the basic relationship between these entities in the context of
the job creation process:

The job set and job entities (shown above in blue) are accessible via the Job Set Entity and
Job Entity services. The job segment, document set and document entities (also shown above
in blue) are accessible via the Job Segment Entity, Document Set Entity and Document Entity
services.

Page 25

In summary, the following diagram illustrates the basic relationship between all data entities in
the overall context of the primary workflow in PlanetPress Connect:

Page 26

Workflow Operations
Each individual process in the overall workflow can potentially be a long running operation.

Accordingly, there are two types of workflow operations possible in the PlanetPress Connect
REST API:

l Asynchronous – the operation is initiated, monitored, and the result returned using
multiple requests (Default)

l Synchronous – the operation is initiated and the result returned using a single request

Asynchronous Operations
Asynchronous workflow operations require the submission of an initial HTTP request to initiate
the operation. Then additional requests are required to monitor progress and retrieve the final
result. All the required detail is included in the HTTP response headers of the initial request,
including the URIs that should be used for further processing.

A successful request will return a response that will include the headers listed in the following
table:

Header Description

operationId The unique id of the operation being processed

Link Contains multiple link headers which provide details on which URI to use
to retrieve further information on the operation:

l Header with rel="progress" – The URL to use to check the
progress of the operation

l Header with rel="result" – The URL to use to retrieve the result of
the operation

l Header with rel="cancel" – The URL to use to cancel the operation

A request made to the progress URI during processing will return a progress percentage value
of 0 to 100, and finally the value of ‘done’ once the operation has completed.

Page 27

A request made to the cancel URI during processing will immediately cancel the operation.

A request made to the result URI after processing has completed will return the final result of
the operation.

This is the default workflow operation type, and this approach is used across most workflow
based services as demonstrated in the Working with the Workflow Services page of the
Working Examples section.

Synchronous Operations
Synchronous workflow operations initiate the operation and retrieve the final result in a single
request.

There are no additional operation related headers returned, and there is no option to either
monitor progress or cancel a running operation.

This approach is only used by specific methods found in the All-In-One workflow service.

Page 28

JSON Structures
The PlanetPress Connect REST API uses various JSON structures to describe certain inputs
and outputs to resource methods.

These structures can be broken down into the following categories:

l Common Structures – JSON structures that are commonly used throughout the REST API
l Specific Structures – JSON structures that are used by a specific resource method or
service in the REST API

Page 29

Common Structures
Common JSON structures used in the PlanetPress Connect REST API include the following:

l JSON Identifier
l JSON Identifier List
l JSON Name/Value List (Properties Only)
l JSON Name/Value List
l JSON Name/Value Lists

Page 31

JSON Identifier

Describes an identifier for a single data entity in PlanetPress Connect.

Structure

The structure consists of an object with a single name/value pair:

l identifier – the data entity identifier (type of number)

Example

The following is an example of this structure:

{
"identifier": 12345

}

Page 32

JSON Identifier List

Describes a list of identifiers for multiple data entities in PlanetPress Connect.

Structure

The structure consists of an object with a single name/value pair:

l identifiers – an array of data entity identifiers (type of number)

Example

The following is an example of this structure:

{
"identifiers": [12345, 23456, 34567]

}

Page 33

JSON Name/Value List (Properties Only)

Describes a list of properties (each as a name/value pair).

Structure

The structure consists of an array of objects each with the following name/value pairs:

l name – the name of the property (type of string)
l value – the value of the property (type of string)

Example

The following is an example of this structure:

[
{

"name": "start",
"value": "2015-01-01 00:00:00T-0500"

},
{

"name": "end",
"value": "2015-12-31 23:59:59T-0500"

}
]

Page 34

JSON Name/Value List

Describes a list of properties (each as a name/value pair) for a data entity of a specific ID.

Structure

The structure consists of an object with the following name/value pairs:

l id – the data entity identifier (type of number)
l properties – the data entity properties, consisting of an array of objects each with the
following name/value pairs:

l name – the name of the property (type of string)
l value – the value of the property (type of string)

Example

The following is an example of this structure:

{
"id": 12345,
"properties": [

{
"name": "start",
"value": "2015-01-01 00:00:00T-0500"

},
{

"name": "end",
"value": "2015-12-31 23:59:59T-0500"

}
]

}

Page 35

JSON Name/Value Lists

Describes multiple lists of properties (as name/value pairs) for data entities of a specific ID.

Structure

The structure consists of an array of JSON Name/Value List structure objects.

Example

The following is an example of this structure:

[
{

"id": 12345,
"properties": [

{
"name": "start",
"value": "2015-01-01 00:00:00T-0500"

},
{

"name": "end",
"value": "2015-12-31 23:59:59T-0500"

}
]

},
{

"id": 23456,
"properties": [

{
"name": "start",
"value": "2015-01-01 00:00:00T-0500"

},
{

"name": "end",
"value": "2015-12-31 23:59:59T-0500"

}
]

}
]

Page 36

Specific Structures
Specific JSON structures used in the PlanetPress Connect REST API include the following:

l JSON Identifier (Managed File)
l JSON Identifier (with Output Parameters)
l JSON Identifier List (with Output Parameters)
l JSON Record Content List
l JSON Record Content Lists
l JSON Record Content List (Explicit Types)
l JSON Record Content Lists (Explicit Types)
l JSON Record Content List (Fields Only)
l JSON Record Content Lists (Fields Only)
l JSON New Record List
l JSON New Record Lists
l JSON Record Data List
l JSON Content Item Identifier List
l JSON Data Record Identifier
l JSON Data Record Identifier List (with Parameters)
l JSON Identifier List (with Email Parameters)
l JSON Record Data List (with Email Parameters)
l JSON HTML Parameters List
l JSON Job Set Structure
l JSON All-In-One Configuration
l JSON Page Details Summary
l JSON Page Details List
l JSON Data Mapping Validation Result
l JSON Search Parameters
l JSON Identifier Lists (with Sort Key)
l JSON Operations List

Page 37

JSON Identifier (Managed File)

Describes an identifier or named identifier for a single managed file in PlanetPress Connect.

Structure

The structure consists of an object with a single name/value pair:

l identifier – the managed file identifier (type of number) or named identifier (type of
string)

Example

The following are examples of this structure:

{
"identifier": 12345

}

{
"identifier": "Promo-EN-1000.csv"

}

Page 38

JSON Identifier (with Output Parameters)

Describes an identifier for a single job set entity, along with additional parameters used
specifically in an output creation operation.

Structure

The structure consists of an object with the following name/value pairs:

l identifier – the job set entity identifier (type of number)
l createOnly – parameter to specify if output is to be only created in the server and not sent
to it's final destination (type of boolean)

Example

The following is an example of this structure:

{
"identifier": 12345,
"createOnly": true

}

Page 39

JSON Identifier List (with Output Parameters)

Describes a list of identifiers for multiple job entities, along with additional parameters used
specifically in an output creation operation.

Structure

The structure consists of an object with the following name/value pairs:

l identifiers – an array of job entity identifiers (type of number)
l createOnly – parameter to specify if output is to be only created in the server and not sent
to it's final destination (type of boolean)

Example

The following is an example of this structure:

{
"identifiers": [12345, 23456, 34567],
"createOnly": true

}

Page 40

JSON Record Content List

Describes a list of data fields (as name/value pairs), nested data records (if any), along with a
number of additional properties for a data record entity of a specific ID.

Tip

A data record entity (in the root ormaster data table) can contain one or more data tables
that each contain one or more data record entities (nested data record entities).

A nested data record entity can itself contain one or more data tables that each contain
one or more nested data record entities, and so on for potentially multiple levels of nested
data tables and data record entities.

A data record entity that contains a data table of nested data record entities is considered
to be the parent of the data record entities contained in that data table (which are
considered to be the children).

See the Data Entities page of the Technical Overview section for further detail on data set
and data record entities.

Structure

The structure consists of an object with the following name/value pairs:

l id – the data record entity identifier (type of number)
l fields – a list of data fields in the data record entity, consisting of an array of objects
each with the following name/value pairs:

l name – the name of the data field (type of string)
l value – the value of the data field (type of string)

l records – a list of any nested data record entities, consisting of an array of objects each
with the following name/value pairs:

l id – the data record entity identifier (type of number)
l table – the data record entity data table name (type of string)
l parentrecordid – the data record entity identifier of parent entity (type of number)
l fields – a list of data fields in the data record entity, consisting of an array of
objects each with the following name/value pairs:

Page 41

l name – the name of the data field (type of string)
l value – the value of the data field (type of string)

Specific to data record entities that are children of a data set entity (data record entities in the
root ormaster data table), two additional name/value pairs are included:

l table – the data record entity data table name (value of record) (type of string)
l datasetid – the data set entity identifier of parent entity (type of number)

If a data record entity contains boundary information (set from the data source during data
mapping), then an additional name/value pair is also included:

l boundaries – the boundaries for the data record, consisting of an object with the
following name/value pairs:

l start – the starting boundary value for the data record (type of number)
l end – the ending boundary value for the data record (type of number)

Specific to nested data record entities that are children of a data record entity, two additional
name/value pairs are included:

l table – the data record entity data table name (type of string)
l parentrecordid – the data record entity identifier of parent entity (type of number)

Example

The following are examples of this structure:

{
"id": 12345,
"table": "record",
"datasetid": 34567,
"fields": [

{
"name": "ID",
"value": "CU00048376"

},
{

"name": "Gender",
"value": "M."

Page 42

},
{

"name": "FirstName",
"value": "Benjamin"

},
{

"name": "LastName",
"value": "Verret"

}
]

}

{
"id": 45678,
"table": "detail",
"parentrecordid": 23456,
"fields": [

{
"name": "ItemNumber",
"value": "PSM002"

},
{

"name": "ItemDesc",
"value": "PSM Production (unlimited)"

},
{

"name": "ItemUnitPrice",
"value": "495.00"

},
{

"name": "ItemOrdered",
"value": "2"

},
{

"name": "ItemTotal",
"value": "990.00"

}
]

}

{
"id": 23456,
"table": "record",

Page 43

"datasetid": 12345,
"fields": [

{
"name": "ID",
"value": "CU00048376"

},
{

"name": "Date",
"value": "2012-03-29T13:00Z"

},
{

"name": "DueDate",
"value": "2012-04-28T14:00Z"

},
{

"name": "InvNumber",
"value": "INV9441991"

},
{

"name": "Gender",
"value": "M."

},
{

"name": "FirstName",
"value": "Benjamin"

},
{

"name": "LastName",
"value": "Verret"

}
{

"name": "TotalOrdered",
"value": "3"

},
{

"name": "InvSubTotal",
"value": "1485.00"

},
{

"name": "InvTaxTotal",
"value": "111.38"

},
{

Page 44

"name": "InvTotal",
"value": "1596.38"

}
],
"records": [

{
"id": 45678,
"table": "detail",
"parentrecordid": 23456,
"fields": [

{
"name": "ItemNumber",
"value": "PSM002"

},
{

"name": "ItemDesc",
"value": "PSM Production (unlimited)"

},
{

"name": "ItemUnitPrice",
"value": "495.00"

},
{

"name": "ItemOrdered",
"value": "2"

},
{

"name": "ItemTotal",
"value": "990.00"

}
]

},
{

"id": 45679,
"table": "detail",
"parentrecordid": 23456,
"fields": [

{
"name": "ItemNumber",
"value": "PSM005"

},
{

"name": "ItemDesc",

Page 45

"value": "Upgrade (Starter to Web)"
},
{

"name": "ItemUnitPrice",
"value": "495.00"

},
{

"name": "ItemOrdered",
"value": "1"

}
{

"name": "ItemTotal",
"value": "495.00"

}
]

}
]

}

{
"id": 12345,
"table": "record",
"boundaries": {

"start": 0,
"end": 4

},
"datasetid": 34567,
"fields": [

{
"name": "ID",
"value": "CU00048376"

},
{

"name": "Gender",
"value": "M."

},
{

"name": "FirstName",
"value": "Benjamin"

},
{

"name": "LastName",
"value": "Verret"

Page 46

}
]

}

Page 47

JSON Record Content Lists

Describes multiple lists of data field values (as name/value pairs), nested data records (if any),
along with a number of additional properties for data record entities of a specific ID.

Structure

The structure consists of an array of JSON Record Content List structure objects.

Example

The following is an example of this structure:

[
{

"id": 45678,
"table": "detail",
"parentrecordid": 23456,
"fields": [

{
"name": "ItemNumber",
"value": "PSM002"

},
{

"name": "ItemDesc",
"value": "PSM Production (unlimited)"

},
{

"name": "ItemUnitPrice",
"value": "495.00"

},
{

"name": "ItemOrdered",
"value": "2"

},
{

"name": "ItemTotal",
"value": "990.00"

}
]

},
{

"id": 45679,

Page 48

"table": "detail",
"parentrecordid": 23456,
"fields": [

{
"name": "ItemNumber",
"value": "PSM005"

},
{

"name": "ItemDesc",
"value": "Upgrade (Starter to Web)"

},
{

"name": "ItemUnitPrice",
"value": "495.00"

},
{

"name": "ItemOrdered",
"value": "1"

}
{

"name": "ItemTotal",
"value": "495.00"

}
]

}
]

Page 49

JSON Record Content List (Explicit Types)

Describes a list of data fields (as name/value pairs), a data table schema, nested data records
(if any), along with a number of additional properties for a data record entity of a specific ID.

Unlike a JSON Record Content List structure, this structure includes a data table schema (of
data column/field data types) and uses specific JSON types to represent the value of data fields
in the data record.

Tip

A data record entity (in the root ormaster data table) can contain one or more data tables
that each contain one or more data record entities (nested data record entities).

A nested data record entity can itself contain one or more data tables that each contain
one or more nested data record entities, and so on for potentially multiple levels of nested
data tables and data record entities.

A data record entity that contains a data table of nested data record entities is considered
to be the parent of the data record entities contained in that data table (which are
considered to be the children).

See the Data Entities page of the Technical Overview section for further detail on data set
and data record entities.

Structure

The structure consists of an object with the following name/value pairs:

l id – the data record entity identifier (type of number)
l schema – the data table schema for the data record entity, consisting of an object with the
following name/value pairs:

l columns – a list of the data columns/fields in the data table schema and their
corresponding data types, consisting of an object with one or more name/value
pairs:

l <name> – the name (name) and data type of the data field (value of either
BOOLEAN, STRING, HTMLSTRING, INTEGER, FLOAT, DATETIME or CURRENCY) (type of
string)

Page 50

l tables – a list of any nested data tables in the data record entity, consisting of an
object with one or more name/value pairs:

l <name> – the name (name) of the data table and the data table schema for the
data record entities it contains, consisting of an object with the following
name/value pair:

l columns – a list of the data columns/fields in the data table schema and
their corresponding data types, consisting of an object with one or more
name/value pairs:

l <name> – the name (name) and data type of the data field (value of
either BOOLEAN, STRING, HTMLSTRING, INTEGER, FLOAT, DATETIME or
CURRENCY) (type of string)

l fields – a list of the data fields in the data record entity and their corresponding data
values, consisting of an object with one or more name/value pairs:

l <name> – the name (name) and data value of the data field (type of either string,
number, or boolean)

l tables – a list of any nested data tables in the data record entity, consisting of an object

with one or more name/value pairs:

l <name> – the name (name) of the data table and a list the data record entities it
contains, consisting of an array of objects each with the following name/value
pairs:

l id – the data record entity identifier (type of number)
l fields – a list of the data fields in the data record entity and their
corresponding data values, consisting of an object with one or more
name/value pairs:

l <name> – the name (name) and data value of the data field (type of either
string, number, or boolean)

Specific to data record entities that are children of a data set entity (data record entities in the
root ormaster data table), an additional name/value pair is included:

l datasetid – the data set entity identifier of parent entity (type of number)

If a data record entity contains boundary information (set from the data source during data
mapping), then an additional name/value pair is also included:

Page 51

l boundaries – the boundaries for the data record, consisting of an object with the
following name/value pairs:

l start – the starting boundary value for the data record (type of number)
l end – the ending boundary value for the data record (type of number)

Example

The following are examples of this structure:

{
"schema": {

"columns": {
"ID": "STRING",
"Gender": "STRING",
"FirstName": "STRING",
"LastName": "STRING",
"ExtraData": "STRING"

}
},
"id": 12345,
"datasetid": 34567,
"fields": {

"ID": "CU00048376",
"Gender": "M.",
"FirstName": "Benjamin",
"LastName": "Verret",
"ExtraData": ""

}
}

{
"schema": {

"columns": {
"ItemNumber": "STRING",
"ItemDesc": "STRING",
"ItemUnitPrice": "CURRENCY",
"ItemOrdered": "INTEGER",
"ItemTotal": "CURRENCY",
"ExtraData": "STRING"

}
},

Page 52

"id": 45678,
"fields": {

"ItemNumber": "PSM002",
"ItemDesc": "PSM Production (unlimited)",
"ItemUnitPrice": "495.00",
"ItemOrdered": 2,
"ItemTotal": "990.00",
"ExtraData": ""

}
}

{
"schema": {

"columns": {
"ID": "STRING",
"Date": "DATETIME",
"DueDate": "DATETIME",
"InvNumber": "STRING",
"Gender": "STRING",
"FirstName": "STRING",
"LastName": "STRING",
"TotalOrdered": "INTEGER",
"InvSubTotal": "CURRENCY",
"InvTaxTotal": "CURRENCY",
"InvTotal": "CURRENCY",
"ExtraData": "STRING"

},
"tables": {

"detail": {
"columns": {

"ItemNumber": "STRING",
"ItemDesc": "STRING",
"ItemUnitPrice": "CURRENCY",
"ItemOrdered": "INTEGER",
"ItemTotal": "CURRENCY",
"ExtraData": "STRING"

}
}

}
},
"id": 23456,
"datasetid": 12345,
"fields": {

Page 53

"ID": "CU00048376",
"Date": 1332594000000,
"DueDate": 1335189600000,
"InvNumber": "INV9441991",
"Gender": "M.",
"FirstName": "Benjamin",
"LastName": "Verret",
"TotalOrdered": 3,
"InvSubTotal": "1485.00",
"InvTaxTotal": "111.38",
"InvTotal": "1596.38",
"ExtraData": ""

},
"tables": {

"detail": [
{

"id": 45678,
"fields": {

"ItemNumber": "PSM002",
"ItemDesc": "PSM Production (unlimited)",
"ItemUnitPrice": "495.00",
"ItemOrdered": 2,
"ItemTotal": "990.00",
"ExtraData": ""

}
},
{

"id": 45679,
"fields": {

"ItemNumber": "PSM005",
"ItemDesc": "Upgrade (Starter to Web)",
"ItemUnitPrice": "495.00",
"ItemOrdered": 1,
"ItemTotal": "495.00",
"ExtraData": ""

}
}

]
}

}

{
"schema": {

Page 54

"columns": {
"ID": "STRING",
"Gender": "STRING",
"FirstName": "STRING",
"LastName": "STRING",
"ExtraData": "STRING"

}
},
"id": 12345,
"datasetid": 34567,
"boundaries": {

"start": 0,
"end": 4

},
"fields": {

"ID": "CU00048376",
"Gender": "M.",
"FirstName": "Benjamin",
"LastName": "Verret",
"ExtraData": ""

}
}

Page 55

JSON Record Content Lists (Explicit Types)

Describes multiple lists of data field values (as name/value pairs), a data table schema, nested
data records (if any), along with a number of additional properties for data record entities of a
specific ID.

Structure

The structure consists of an array of JSON Record Content List (Explicit Types) structure
objects.

Example

The following is an example of this structure:

[
{

"schema": {
"columns": {

"ItemNumber": "STRING",
"ItemDesc": "STRING",
"ItemUnitPrice": "CURRENCY",
"ItemOrdered": "INTEGER",
"ItemTotal": "CURRENCY",
"ExtraData": "STRING"

}
},
"id": 45678,
"fields": {

"ItemNumber": "PSM002",
"ItemDesc": "PSM Production (unlimited)",
"ItemUnitPrice": "495.00",
"ItemOrdered": 2,
"ItemTotal": "990.00",
"ExtraData": ""

}
},
{

"schema": {
"columns": {

"ItemNumber": "STRING",
"ItemDesc": "STRING",

Page 56

"ItemUnitPrice": "CURRENCY",
"ItemOrdered": "INTEGER",
"ItemTotal": "CURRENCY",
"ExtraData": "STRING"

}
},
"id": 45679,
"fields": {

"ItemNumber": "PSM005",
"ItemDesc": "Upgrade (Starter to Web)",
"ItemUnitPrice": "495.00",
"ItemOrdered": 1,
"ItemTotal": "495.00",
"ExtraData": ""

}
}

]

Page 57

JSON Record Content List (Fields Only)

Describes a list of data field values (as name/value pairs) for a data record, used to update an
existing data record entity of a specific ID.

Structure

The structure consists of an object with the following name/value pairs:

l id – the data record entity identifier (type of number)
l fields – a list of data fields in the data record entity, consisting of an array of objects
each with the following name/value pairs:

l name – the name of the data field (type of string)
l value – the value of the data field (type of string)

Example

The following is an example of this structure:

{
"id": 12345,
"fields": [

{
"name": "FirstName",
"value": "Benjamin"

},
{

"name": "LastName",
"value": "Verret"

}
]

}

Page 58

JSON Record Content Lists (Fields Only)

Describes multiple lists of data field values (as name/value pairs) for a data record, used to
update existing data record entities of a specific ID.

Structure

The structure consists of an array of JSON Record Content List (Fields Only) structure objects.

Example

The following is an example of this structure:

[
{

"id": 12345,
"fields": [

{
"name": "FirstName",
"value": "Benjamin"

},
{

"name": "LastName",
"value": "Verret"

}
]

},
{

"id": 23456,
"fields": [

{
"name": "FirstName",
"value": "Dianne"

},
{

"name": "LastName",
"value": "Straka"

}
]

}
]

Page 59

JSON New Record List

Describes a list of new data records (and their data field values (as name/value pairs)) to be
added as data record entities to either an existing data set or data record entity of a specific ID.

Structure

The structure consists of an object with the following name/value pairs:

l records – a list of the new data records to be added, consisting of an array of objects
each with the following name/value pairs:

l fields – a list of data fields for the data record, consisting of an array of objects
each with the following name/value pairs:

l name – the name of the data field (type of string)
l value – the value of the data field (type of string)

Specific to the adding of data records to the record data table of an existing data set entity, an
additional name/value pair is included:

l datasetid – the data set entity identifier of parent entity (type of number)

Specific to the adding of nested data records to a data table of an existing data record entity,
two additional name/value pairs are included:

l recordid – the data record entity identifier of parent entity (type of number)
l table – the data record entity data table name (type of string)

Example

The following are examples of this structure:

{
"datasetid": 12345,
"records": [

{
"fields": [

{
"name": "ID",
"value": "CU00048376"

},

Page 60

{
"name": "Gender",
"value": "M."

},
{

"name": "FirstName",
"value": "Benjamin"

},
{

"name": "LastName",
"value": "Verret"

}
]

},
{

"fields": [
{

"name": "ID",
"value": "CU01499303"

},
{

"name": "Gender",
"value": "Miss"

},
{

"name": "FirstName",
"value": "Dianne"

},
{

"name": "LastName",
"value": "Straka"

}
]

}
]

}

{
"recordid": 12345,
"table": "detail",
"records": [

{
"fields": [

Page 61

{
"name": "ItemNumber",
"value": "PSM002"

},
{

"name": "ItemDesc",
"value": "PSM Production (unlimited)"

},
{

"name": "ItemUnitPrice",
"value": "495.00"

},
{

"name": "ItemOrdered",
"value": "2"

},
{

"name": "ItemTotal",
"value": "990.00"

}
]

},
{

"fields": [
{

"name": "ItemNumber",
"value": "PSM005"

},
{

"name": "ItemDesc",
"value": "Upgrade (Starter to Web)"

},
{

"name": "ItemUnitPrice",
"value": "495.00"

},
{

"name": "ItemOrdered",
"value": "1"

},
{

"name": "ItemTotal",
"value": "495.00"

Page 62

}
]

}
]

}

Page 63

JSON New Record Lists

Describes multiple lists of new data records (and their data field values (as name/value pairs))
to be added as data record entities to either existing data set or data record entities of a specific
ID.

Structure

The structure consists of an array of JSON New Record List structure objects.

Example

The following is an example of this structure:

[
{

"datasetid": 12345,
"records": [

{
"fields": [

{
"name": "ID",
"value": "CU00048376"

},
{

"name": "Gender",
"value": "M."

},
{

"name": "FirstName",
"value": "Benjamin"

},
{

"name": "LastName",
"value": "Verret"

}
]

},
{

"fields": [
{

"name": "ID",

Page 64

"value": "CU01499303"
},
{

"name": "Gender",
"value": "Miss"

},
{

"name": "FirstName",
"value": "Dianne"

},
{

"name": "LastName",
"value": "Straka"

}
]

}
]

},
{

"recordid": 12345,
"table": "detail",
"records": [

{
"fields": [

{
"name": "ItemNumber",
"value": "PSM002"

},
{

"name": "ItemDesc",
"value": "PSM Production (unlimited)"

},
{

"name": "ItemUnitPrice",
"value": "495.00"

},
{

"name": "ItemOrdered",
"value": "2"

},
{

"name": "ItemTotal",
"value": "990.00"

Page 65

}
]

},
{

"fields": [
{

"name": "ItemNumber",
"value": "PSM005"

},
{

"name": "ItemDesc",
"value": "Upgrade (Starter to Web)"

},
{

"name": "ItemUnitPrice",
"value": "495.00"

},
{

"name": "ItemOrdered",
"value": "1"

},
{

"name": "ItemTotal",
"value": "495.00"

}
]

}
]

}
]

Page 66

JSON Record Data List

Describes a list of data fields (as name/value pairs), a data table schema and nested data
records (if any) for one or more data records.

This structure is used specifically by the Content Creation and Content Creation (HTML)
services when creating content directly without the prerequisite of the data mapping process.

Structure

The structure consists of an object with the following name/value pair:

l data – the data for the data record or data records, consisting of either an object or an
array of one or more objects respectively with the following name/value pairs:

l schema – the data table schema for the data record, consisting of an object with the
following name/value pairs:

l columns – a list of the data columns/fields in the data table schema and their
corresponding data types, consisting of an object with one or more
name/value pairs:

l <name> – the name (name) and data type of the data field (value of either
BOOLEAN, STRING, HTMLSTRING, INTEGER, FLOAT, DATETIME or CURRENCY)
(type of string)

l tables – a list of any nested data tables in the data record, consisting of an
object with one or more name/value pairs:

l <name> – the name (name) of the data table and the data table schema
for the data records it contains, consisting of an object with the following
name/value pair:

l columns – a list of the data columns/fields in the data table schema
and their corresponding data types, consisting of an object with
one or more name/value pairs:

l <name> – the name (name) and data type of the data field
(value of either BOOLEAN, STRING, HTMLSTRING, INTEGER, FLOAT,
DATETIME or CURRENCY) (type of string)

l fields – a list of the data fields in the data record and their corresponding data
values, consisting of an object with one or more name/value pairs:

l <name> – the name (name) and data value of the data field (type of either
string, number, or boolean)

Page 67

l tables – a list of any nested data tables in the data record, consisting of an object

with one or more name/value pairs:

l <name> – the name (name) of the data table and a list the data records it
contains, consisting of an array of objects each with the following
name/value pairs:

l id – a required/default fixed value of 0 for all data records (type of
number)

l fields – a list of the data fields in the data record and their
corresponding data values, consisting of an object with one or more
name/value pairs:

l <name> – the name (name) and data value of the data field (type of
either string, number, or boolean)

Example

The following are examples of this structure:

{
"data": {

"schema": {
"columns": {

"ID": "STRING",
"Gender": "STRING",
"FirstName": "STRING",
"LastName": "STRING"

}
},
"fields": {

"ID": "CU00048376",
"Gender": "M.",
"FirstName": "Benjamin",
"LastName": "Verret"

}
}

}

{
"data": {

"schema": {
"columns": {

Page 68

"ID": "STRING",
"Date": "DATETIME",
"DueDate": "DATETIME",
"InvNumber": "STRING",
"Gender": "STRING",
"FirstName": "STRING",
"LastName": "STRING",
"TotalOrdered": "INTEGER",
"InvSubTotal": "CURRENCY",
"InvTaxTotal": "CURRENCY",
"InvTotal": "CURRENCY"

},
"tables": {

"detail": {
"columns": {

"ItemNumber": "STRING",
"ItemDesc": "STRING",
"ItemUnitPrice": "CURRENCY",
"ItemOrdered": "INTEGER",
"ItemTotal": "CURRENCY"

}
}

}
},
"fields": {

"ID": "CU00048376",
"Date": 1332594000000,
"DueDate": 1335189600000,
"InvNumber": "INV9441991",
"Gender": "M.",
"FirstName": "Benjamin",
"LastName": "Verret",
"TotalOrdered": 3,
"InvSubTotal": "1485.00",
"InvTaxTotal": "111.38",
"InvTotal": "1596.38"

},
"tables": {

"detail": [
{

"id": 0,
"fields": {

"ItemNumber": "PSM002",

Page 69

"ItemDesc": "PSM Production (unlimited)",
"ItemUnitPrice": "495.00",
"ItemOrdered": 2,
"ItemTotal": "990.00"

}
},
{

"id": 0,
"fields": {

"ItemNumber": "PSM005",
"ItemDesc": "Upgrade (Starter to Web)",
"ItemUnitPrice": "495.00",
"ItemOrdered": 1,
"ItemTotal": "495.00"

}
}

]
}

}
}

{
"data": [

{
"schema": {

"columns": {
"ID": "STRING",
"Gender": "STRING",
"FirstName": "STRING",
"LastName": "STRING"

}
},
"fields": {

"ID": "CU00048376",
"Gender": "M.",
"FirstName": "Benjamin",
"LastName": "Verret"

}
},
{

"schema": {
"columns": {

"ID": "STRING",

Page 70

"Gender": "STRING",
"FirstName": "STRING",
"LastName": "STRING"

}
},
"fields": {

"ID": "CU01499303",
"Gender": "Miss",
"FirstName": "Dianne",
"LastName": "Straka"

}
}

]
}

Page 71

JSON Content Item Identifier List

Describes a list of content item/data record entity identifier pairs (as name/value pairs) for a
specific content set or job entity.

Structure

The structure consists of an object with the following name/value pairs:

l identifiers – the data entity identifier pairs, consisting of an array of objects each with
the following name/value pairs:

l item – the content item entity identifier (type of number)
l record – the data record entity identifier (type of number)

Example

The following is an example of this structure:

{
"identifiers": [

{
"item": 12345,
"record": 54321

},
{

"item": 23456,
"record": 65432

},
{

"item": 34567,
"record": 76543

}
]

}

Page 72

JSON Data Record Identifier

Describes a single data record entity identifier for a specific content item entity.

Structure

The structure consists of an object with a single name/value pair:

l record – the data record entity identifier (type of number)

Example

The following is an example of this structure:

{
"record": 12345

}

Page 73

JSON Data Record Identifier List (with Parameters)

Describes a list of identifiers for multiple data entities (specifically data record entities), along
with additional parameters.

It is used specifically with the Data Record Entity service as input to the Get Multiple Data
Record Values (JSON) resource method. The value of the explicitTypes parameter
determines if the result returned is either a JSON Record Content Lists or JSON Record
Content Lists (Explicit Types) structure.

Structure

The structure consists of an object with the following name/value pairs:

l recordids – an array of data record entity identifiers (type of number)
l recursive – parameter to specify if all data tables within each data record should be
recursed and the values of any nested data records retrieved also (type of boolean)

l explicitTypes – parameter to specify if both data record values and data types are to be
retrieved (type of boolean)

Example

The following is an example of this structure:

{
"recordids": [12345, 23456, 34567],
"recursive": true,
"explicitTypes": false

}

Page 74

JSON Identifier List (with Email Parameters)

Describes a list of identifiers for multiple data entities (specifically data record entities), along
with additional parameters used specifically in an content creation operation for email.

Structure

The structure consists of an object with the following name/value pairs:

l identifiers – an array of data record entity identifiers (type of number)
l host – the network address or name of the SMTP mail server through which emails will
be sent. If required, a server port value can also be specified (type of string)

l user – the user name to authenticate with (if using authentication) (type of string)
l password – the password to authenticate with (if using authentication) (type of string)
l sender – the email address to be shown as the sender in the email output (type of string)
l senderName – the name to be shown as the sender in the email output (type of string)
l useAuth – parameter to specify if authentication is to be used with the mail server (type of
boolean)

l useStartTLS – parameter to specify if Transport Layer Security (TLS) is to be used when
sending emails (type of boolean)

l useSender – parameter to specify if the sender address will be used as the receiver
address for all emails in the output (type of boolean)

l attachWebPage – parameter to specify if a single HTML web page (with embedded
resources) of the Web context should also be created and attached to the email output
(type of boolean)

l attachPdfPage – parameter to specify if a PDF of the Print context should also be created
and attached to the email output (type of boolean)

Example

The following is an example of this structure:

{
"identifiers": [

12345,
23456

],
"host": "mail.company.com:587",
"user": "johns",

Page 75

"password": "password5",
"sender": "john.smith@company.com",
"useAuth": true,
"useStartTLS": false,
"useSender": true,
"attachWebPage": true,
"attachPdfPage": true

}

Page 76

JSON Record Data List (with Email Parameters)

Describes a list of data fields (as name/value pairs), a data table schema and nested data
records (if any) for one or more data records, along with additional parameters used specifically
in an content creation operation for email.

This structure is used specifically by the Content Creation (Email) service when creating
content directly without the prerequisite of the data mapping process.

Structure

The structure consists of an object with the following name/value pairs:

l data – the data for the data record or data records, consisting of either an object or an
array of one or more objects respectively with the following name/value pairs:

l schema – the data table schema for the data record, consisting of an object with the
following name/value pairs:

l columns – a list of the data columns/fields in the data table schema and their
corresponding data types, consisting of an object with one or more
name/value pairs:

l <name> – the name (name) and data type of the data field (value of either
BOOLEAN, STRING, HTMLSTRING, INTEGER, FLOAT, DATETIME or CURRENCY)
(type of string)

l tables – a list of any nested data tables in the data record, consisting of an
object with one or more name/value pairs:

l <name> – the name (name) of the data table and the data table schema
for the data records it contains, consisting of an object with the following
name/value pair:

l columns – a list of the data columns/fields in the data table schema
and their corresponding data types, consisting of an object with
one or more name/value pairs:

l <name> – the name (name) and data type of the data field
(value of either BOOLEAN, STRING, HTMLSTRING, INTEGER, FLOAT,
DATETIME or CURRENCY) (type of string)

l fields – a list of the data fields in the data record and their corresponding data
values, consisting of an object with one or more name/value pairs:

Page 77

l <name> – the name (name) and data value of the data field (type of either
string, number, or boolean)

l tables – a list of any nested data tables in the data record, consisting of an object

with one or more name/value pairs:

l <name> – the name (name) of the data table and a list the data records it
contains, consisting of an array of objects each with the following
name/value pairs:

l id – a required/default fixed value of 0 for all data records (type of
number)

l fields – a list of the data fields in the data record and their
corresponding data values, consisting of an object with one or more
name/value pairs:

l <name> – the name (name) and data value of the data field (type of
either string, number, or boolean)

l host – the network address or name of the SMTP mail server through which emails will
be sent. If required, a server port value can also be specified (type of string)

l user – the user name to authenticate with (if using authentication) (type of string)
l password – the password to authenticate with (if using authentication) (type of string)
l sender – the email address to be shown as the sender in the email output (type of string)
l senderName – the name to be shown as the sender in the email output (type of string)
l useAuth – parameter to specify if authentication is to be used with the mail server (type of
boolean)

l useStartTLS – parameter to specify if Transport Layer Security (TLS) is to be used when
sending emails (type of boolean)

l useSender – parameter to specify if the sender address will be used as the receiver
address for all emails in the output (type of boolean)

l attachWebPage – parameter to specify if a single HTML web page (with embedded
resources) of the Web context should also be created and attached to the email output
(type of boolean)

l attachPdfPage – parameter to specify if a PDF of the Print context should also be created
and attached to the email output (type of boolean)

Example

The following is an example of this structure:

Page 78

{
"data": [

{
"schema": {

"columns": {
"ID": "STRING",
"Gender": "STRING",
"FirstName": "STRING",
"LastName": "STRING",
"Email": "STRING"

}
},
"fields": {

"ID": "CU00048376",
"Gender": "M.",
"FirstName": "Benjamin",
"LastName": "Verret",
"Email": "b.verret@drupa.ol.com.com"

}
},
{

"schema": {
"columns": {

"ID": "STRING",
"Gender": "STRING",
"FirstName": "STRING",
"LastName": "STRING",
"Email": "STRING"

}
},
"fields": {

"ID": "CU01499303",
"Gender": "Miss",
"FirstName": "Dianne",
"LastName": "Straka",
"Email": "d.straka@drupa.ol.com.com"

}
}

],
"host": "mail.company.com",
"user": "johns",
"password": "password5",
"sender": "john.smith@company.com",

Page 79

"useAuth": true,
"useStartTLS": false,
"useSender": true,
"attachWebPage": true,
"attachPdfPage": true

}

Page 80

JSON HTML Parameters List

Describes a list of parameters used specifically in the creation of web content.

Structure

The structure consists of an object with the following name/value pairs:

l section – the section within the Web context of the template to use (type of string)
l inline – the inline mode to be used in the creation of content (value of either NONE, CSS or
ALL) (type of string)

Example

The following is an example of this structure:

{
"section": "Section 1",
"inline": "ALL"

}

Page 81

JSON Job Set Structure

Describes a job set entity structure including the arrangement of job, job segment, document
set, document and content item entities (including the specification of content item identifiers).
Used specifically in a job creation operation.

Structure

The structure consists of an object with the following name/value pairs:

l jobs – the job entities within the job set, consisting of an array of objects each with the
following name/value pairs:

l segments – the job segment entities within a job, consisting of an array of objects
each with the following name/value pairs:

l documentsets – the document set entities within a job segment, consisting of
an array of objects each with the following name/value pairs:

l documents – the document entities within a document set, consisting of
an array of objects each with the following name/value pairs:

l documentpages – the document pages within a document,
consisting of an array of objects each with a single name/value
pair:

l contentitem – the identifier of the content item entity within a
document page (type of number)

Example

The following is an example of this structure:

{
"jobs": [

{
"segments": [

{
"documentsets": [

{
"documents": [

{
"documentpages": [

{
"contentitem": 1234

Page 82

},
{

"contentitem": 2345
}

]
},
{

"documentpages": [
{

"contentitem": 3456
}

]
}

]
}

]
}

]
},
{

"segments": [
{

"documentsets": [
{

"documents": [
{

"documentpages": [
{

"contentitem": 4567
}

]
}

]
}

]
}

]
}

]
}

Page 83

JSON All-In-One Configuration

Describes the configuration of an All-In-One operation as a series of name/value pairs
representing the processes (data mapping, content creation, job creation and output creation) to
be completed as part of the overall operation. The value in each pair contains the parameters
for that specific process.

The structure is variable, allowing for configurations containing one or more specific processes
(as name/value pairs), as long as the processes specified result in a logical sequence or
workflow. Used specifically with the All-In-One service.

Structure

The structure consists of an object with the following name/value pairs:

l datamining – data mapping configuration parameters, consisting of an object with the
following name/value pairs:

l identifier – the managed file identifier (type of number) or named identifier (type of
string) of the data file

l config – the managed file identifier (type of number) or named identifier (type of
string) of the data mapping configuration

l contentcreation – content creation configuration parameters, consisting of an object

with the following name/value pairs:

l identifiers – an array of data record entity identifiers (type of number) (optional for
configurations containing data mapping parameters)

l config – the managed file identifier (type of number) or named identifier (type of
string) of the input design template

l jobcreation – job creation configuration parameters, consisting of an object with the
following name/value pairs:

l config – the managed file identifier (type of number) or named identifier (type of
string) of the job creation preset (optional)

l outputcreation – output creation configuration parameters, consisting of an object with
the following name/value pairs:

l identifiers – an array of job entity identifiers (type of number) (optional for
configurations containing content creation parameters)

Page 84

l config – the managed file identifier (type of number) or named identifier (type of
string) of the output creation preset

l createOnly – flag to specify if output is to be only created in the server and not sent
to it's final destination (type of boolean)

Specific to the use of all processes, an additional name/value pair can be added to restrict the
print output to a set of specific records in the input data:

l printRange – print range configuration parameters, consisting of an object with a single
name/value pair:

l printRange – the range of records in the data file to output (type of string)

Specific to any configuration using the data mapping process, but with the omission of the
config job creation configuration parameter (if applicable), an additional data mapping
parameter can be added to the datamining object:

l persistDataset – parameter to specify if data record entities are to be created/persisted in
the server during the data mapping process (type of boolean)

Example

The following are examples of this structure:

{
"datamining":
{

"identifier": "Promo-EN-1000.csv",
"config": "Promo-EN.OL-datamapper"

},
"contentcreation":
{

"config": "letter-ol.OL-template"
},
"jobcreation":
{

"config": "4567"
},
"outputcreation":
{

"config": "5678",

Page 85

"createOnly": true
},
"printRange":
{

"printRange": "1-3, 6, 10"
}

}

{
"contentcreation":
{

"identifiers": [
34567,
34568

],
"config": "letter-ol.OL-template"

},
"jobcreation": {},
"outputcreation":
{

"config": 5678,
"createOnly": false

}
}

{
"datamining":
{

"identifier": 12345,
"config": 23456

}
}

{
"datamining":
{

"identifier": "Promo-EN-1000.csv",
"config": "Promo-EN.OL-datamapper",
"persistDataset": false

},
"contentcreation":
{

"config": "letter-ol.OL-template"
},

Page 86

"jobcreation": {},
"outputcreation":
{

"config": "5678",
"createOnly": false

}
}

Page 87

JSON Page Details Summary

Describes a summary of the page details for a specific content set entity.

Page details include the number of pages per media type, along with media specific properties
including the name, size, width and height. Used specifically with the Content Set Entity
service.

Structure

The structure consists of an object with the following name/value pairs:

l pages – a list of the total pages per media, consisting of an array of objects each with the
following name/value pairs:

l count – the number of pages using the specific media (type of number)
l media – media specific properties, consisting of an object with the following
name/value pairs:

l name – the name of the media (type of string)
l size – the size of the media (type of string)
l width – the width of the media (type of string)
l height – the height of the media (type of string)

Example

The following is an example of this structure:

{
"pages": [

{
"count": 200,
"media": {

"name": "Plain A4 Paper",
"size": "A4",
"width": "210mm",
"height": "297mm"

}
},
{

"count": 108,
"media": {

Page 88

"name": "Plain Letter Paper",
"size": "Letter",
"width": "8.5in",
"height": "11in"

}
}

]
}

Page 89

JSON Page Details List

Describes a list of the page details and identifiers for each content item contained within a
specific content set entity.

Page details include the number of pages per media type, along with media specific properties
including the name, size, width and height. Used specifically with the Content Set Entity
service.

Structure

The structure consists of an array of objects each with the following name/value pairs:

l id – the content item entity identifier (type of number)
l pages – a list of the pages per media, consisting of an array of objects each with the
following name/value pairs:

l count – the number of pages using the specific media (type of number)
l media – media specific properties, consisting of an object with the following
name/value pairs:

l name – the name of the media (type of string)
l size – the size of the media (type of string)
l width – the width of the media (type of string)
l height – the height of the media (type of string)

Example

The following is an example of this structure:

[
{

"id": 12345,
"pages": [

{
"count": 2,
"media": {

"name": "Plain A4 Paper",
"size": "A4",
"width": "210mm",
"height": "297mm"

}

Page 90

},
{

"count": 1,
"media": {

"name": "Plain Letter Paper",
"size": "Letter",
"width": "8.5in",
"height": "11in"

}
}

]
},
{

"id": 23456,
"pages": [

{
"count": 2,
"media": {

"name": "Plain A4 Paper",
"size": "A4",
"width": "210mm",
"height": "297mm"

}
},
{

"count": 2,
"media": {

"name": "Plain Letter Paper",
"size": "Letter",
"width": "8.5in",
"height": "11in"

}
}

]
}

]

Page 91

JSON Data Mapping Validation Result

Describes the result of a request to validate a data mapping operation, including a list of any
errors that occurred (used specifically with the Data Mapping service).

Structure

The structure consists of an object with the following name/value pairs:

l result – the overall result of the data mapping operation (value of either ERROR or OK) (type
of string)

l recordcount – the number of data records in the data file (type of number)
l errors – a list of errors that occurred during the mapping process, consisting of an array

of objects each with the following name/value pairs:

l record – the number of the erroneous record in the data file (type of number)
l reason – the mapping error/reason for this particular record (type of string)

Example

The following is an example of this structure:

{
"result": "ERROR",
"recordcount": 105,
"errors": [

{
"record": 20,
"reason": "Document: 20 Unparseable date: \"\""

},
{

"record": 45,
"reason": "Document: 45 Unparseable date: \"\""

},
{

"record": 97,
"reason": "Document: 97 Unparseable date: \"\""

}
]

}

Page 92

JSON Search Parameters

Describes a set of complex search criteria broken into search, sorting and grouping rules. This
structure is used specifically with the Entity service as input to the Find Data Entity resource
method.

Search rules can be added to a search rules list and can be used to match data entities based
on specific criteria. This rules list also specifies an operator which determines whether all rules
or only one rule in the list is required to be matched.

Search rules can be based on data record values, data entity properties, finishing options,
document length, template names and whether an entity's identifier is contained or not
contained in a list of identifiers.

Rule sets can also be added to the search rules list. Each rule set can contain its own sub list of
search rules and its own rule operator. Rule sets can also be added to the search rule list of an
existing rule set which allows for the construction of complex nested search criteria.

Sorting rules can be also added to a sort rules list and (depending on the data entity type) can
be used to sort data entity entries in the search results by either data record values or data
entity properties.

Every sort rule added will expand the value of the sort key of each entry listed in the resulting
JSON Identifier Lists (with Sort Key) structure.

Grouping rules can be also added to a group rules list and (depending on the data entity type)
can be used to group data entity entries in the search results by either data record values or
data entity properties.

Every group rule added can expand the number of sub lists contained in the resulting JSON
Identifier Lists (with Sort Key) structure.

Note

Certain search, sorting or grouping rules can only be used with specific data entity types.

See the Finding Specific Data Entities in the Server page of the Working Examples
section for further detail on the available rule combinations.

Page 93

Structure

The structure consists of an object with the following name/value pairs:

l entity – the data entity type (value of either DATARECORDS, DATASETS, CONTENTITEMS,
CONTENTSETS, JOBS or JOBSETS)

l search – search criteria, consisting of an object with the following name/value pairs:

l ruleType – the topmost RULESET
l condition – the logic rule for this RULESET (value of ALL, ANY, NOTALL or NOTANY)
l rules – a base list of search rules, consisting of an array of objects each with a
specific rule sub-structure depending on the type of rule. This could include nested
rule sets.

l sort – a list of sorting rules, consisting of an array of objects each with the following
name/value pairs:

l type – the type of sorting rule (value of either value or property)
l name – the name of the data value field or data entity property to sort by (type of
string)

l numeric – whether the data value field is a of a numeric type (type of boolean)
(only available when sorting on value fields)

l order – the order that matches to this rule are sorted by (value of either ASC or
DESC)

l group – a list of grouping rules, consisting of an array of objects each with the following
name/value pairs:

l type – the type of grouping rule (value of either value or property)
l name – the name of the data value field or data entity property to group by (type of
string)

l numeric – whether the data value field is a of a numeric type (type of boolean)
(only available when grouping on value fields)

l order – the order that matches to this rule are grouped by (value of either ASC or
DESC)

The search rule sub-structure consists of an object with rule specific groupings of name/value
pairs.
These include the following:

Page 94

Data Value search – Search for data entities based on the value of a data record field.
Comprises objects containing the following name/value pairs:

l ruleType – VALUE

l fieldName – the name of the data record field (type of string)
l condition – the comparison condition (value of either EQ (=), NE (!=), LT (<), GT (>),
LTE (<=), GTE (>=), CONTAINS, NOT_CONTAINS, STARTS_WITH, ENDS_WITH, LIKE, NOT_LIKE,
IN or NOT IN)

l value1 – the comparison value
Can be one of either of the following, depending upon data field selection:

l For data field name: These comprise objects containing the following
name/value pairs:

l type – FIELD

l value – the comparison value (type of string)

l For data field value: value1 – the comparison value (type of string)

Property Value search – Search for data entities based on the value of a data entity
property
Comprises objects containing the following name/value pairs:

l ruleType – PROPERTY

l property – the name of the data entity property (type of string)
l condition – the comparison condition (value of either EQ (=), NE (!=), LT (<), GT (>),
LTE (<=), GTE (>=), CONTAINS, NOT_CONTAINS, STARTS_WITH, ENDS_WITH, LIKE, NOT_LIKE,
IN or NOT IN)

l value – the comparison value
Can be one of either of the following, depending upon property type selection:

l For property name: These comprise objects containing the following
name/value pairs:

l type – FIELD

l value – the comparison value (type of string)

l For property value: value – the comparison value (type of string)

Value In search – search for the data values contained within a list.
Comprises objects containing the following name/value pairs:

Page 95

l ruleType – VALUEIN

l field – the field name (type of string)
l dataType – the data type to search (value of either FIELD or PROPERTY)
l condition – the comparison condition (value of either IN or NOT_IN)
l values – the list of data entities (type of string, or array of strings

ID In search – search for the ID values contained within a list.
Comprises objects containing the following name/value pairs:

l ruleType – IDIN
l condition – the comparison condition (value of eitherIN or NOT_IN)
l values – the list of IDs (type of number, or array of numbers

Document Media search – search on the media used.
Comprises objects containing the following name/value pairs:

l ruleType – DOCMEDIA

l attribute – the document media attribute being searched for (value of either media
name (NAME), or front/rear (FRONT_COATING/BACK_COATING) sheet coating)

l condition – the comparison condition (value of either CONTAINS or NOT_CONTAINS)

The comparison value. Can be one of either of the following, depending upon the
attribute selection:

l name – the media name (type of string)
(only available for attribute = NAME selections)

l coating – the specified media sheet coating (value of either UNSPECIFIED, NONE,
COATED, GLOSSY, HIGH_GLOSS, INKJET, MATTE, SATIN or SEMI_GLOSS)
(only available for attribute = FRONT_COATING or BACK_COATING selections)

Document Binding search – search on how the finished documents are bound.
Comprises objects containing the following name/value pairs:

l ruleType – DOCBINDING

l attribute – the document binding attribute being searched for (value of STYLE, SIDE,

Page 96

LOCATION,or ANGLE)
l condition – the comparison condition (value of either CONTAINS or NOT_CONTAINS)

The comparison value. Can be one of either of the following, depending upon the
attribute selection:

l bindingStyle – the binding style of the media used (value of either NONE, DEFAULT,
STAPLED, GLUED, STITCHED, ADHESIVE, SPINETAPING, RING, WIREDCOMB, PLASTICCOMB or
COIL)
(only available for attribute = STYLE selections)

l bindingEdge – the binding edge of the media used (value of either DEFAULT, LEFT,
RIGHT, TOP or BOTTOM)
(only available for attribute = SIDE selections)

l bindingType – the binding type of the media used (value of either DEFAULT, SADDLE,
SIDE or CORNER)
(only available for attributeLOCATION selections)

l bindingAngle – the binding angle of the media used (value of either DEFAULT,
VERTICAL, HORIZONTAL or ANGLE)
(only available for attribute = ANGLE selections)

Document Size search – search on document size.
Comprises objects containing the following name/value pairs:

l ruleType – DOCSIZE

l entity – the document size attribute being searched for (value of PAGE, SHEET, or
SECTION)

l condition – the comparison condition (value of either EQ (=), NE (!=), LT (<), GT (>),
LTE (<=) or GTE (>=))

l value – the comparison value (type of number)

Duplex search – search on whether the document contains any duplex sheets.
Comprises objects containing the following name/value pairs:

l ruleType – DUPLEX

l condition – whether the document contains any duplex sheets or not (value of
either "HAS_DUPLEX" or SIMPLEX_ONLY)

Page 97

Template search – searches based on the name of the design template used during
Content Creation.
Comprises objects containing the following name/value pairs:

l ruleType – TEMPLATE

l condition – the comparison condition (value of either EQ (=) or NE (!=))
l name – the comparison value (type of string)

Rule Set searches – construct a set of rules that are evaluated collectively.
Comprises objects containing the following name/value pairs:

l ruleType – RULESET

l condition – the logic rule for this RULESET (value of ALL, ANY, NOTALL or NOTANY)
l rules – a sub-list of search rules, consisting of an array of objects each with a
certain rule sub-structure depending on the type of rule

Example

The following is an example of this structure:

{
"entity": "CONTENTITEMS",
"search": {

"ruleType": "RULESET",
"condition": "ALL",
"rules": [

{
"ruleType": "DUPLEX",
"condition": "HAS_DUPLEX"

},
{

"ruleType": "TEMPLATE",
"condition": "EQ",
"name": "Rural"

},
{

"ruleType": "RULESET",
"condition": "ALL",
"rules": [

{

Page 98

"ruleType": "DOCMEDIA",
"attribute": "NAME",
"condition": "CONTAINS",
"name": "Impact"

},
{

"ruleType": "DOCMEDIA",
"attribute": "FRONT_COATING",
"condition": "CONTAINS",
"coating": "HIGH_GLOSS"

},
{

"ruleType": "DOCMEDIA",
"attribute": "BACK_COATING",
"condition": "CONTAINS",
"coating": "SEMI_GLOSS"

}
]

},
{

"ruleType": "RULESET",
"condition": "ALL",
"rules": [

{
"ruleType": "DOCBINDING",
"attribute": "STYLE",
"condition": "CONTAINS",
"bindingStyle": "STAPLED"

},
{

"ruleType": "DOCBINDING",
"attribute": "SIDE",
"condition": "CONTAINS",
"bindingEdge": "LEFT"

},
{

"ruleType": "DOCBINDING",
"attribute": "LOCATION",
"condition": "CONTAINS",
"bindingType": "SIDE"

},
{

"ruleType": "DOCBINDING",

Page 99

"attribute": "ANGLE",
"condition": "CONTAINS",
"bindingAngle": "ANGLE"

}
]

},
{

"ruleType": "RULESET",
"condition": "ALL",
"rules": [

{
"ruleType": "DOCSIZE",
"entity": "PAGE",
"condition": "GT",
"value": 4

},
{

"ruleType": "DOCSIZE",
"entity": "SHEET",
"condition": "GT",
"value": 2

},
{

"ruleType": "DOCSIZE",
"entity": "SECTION",
"condition": "GT",
"value": 1

}
]

}
]

},
"sort": [

{
"type": "value",
"name": "LastName",
"numeric": false,
"order": "ASC"

}
],
"group": [

{
"type": "value",

Page 100

"name": "Gender",
"numeric": false,
"order": "ASC"

}
]

}

Page 101

JSON Identifier Lists (with Sort Key)

Describes a set of search results as a list of one or more sub lists, each containing a list of data
entity identifiers along with a sorting key value for each entry.

Used specifically with the Entity service as the output from the Find Data Entity resource
method, this structure groups the data entity identifiers returned into sortable sub lists of entries.

The order of the entries (including the sort key produced), and the number of sub lists returned
depends on the sorting and grouping rules specified in the JSON Search Parameters structure
previously submitted as input to the Find Data Entity resource method.

Structure

The structure consists of an array of object arrays, with each object containing the following
name/value pairs:

l identifier – the data entity identifier (type of number)
l sortkey – the data entity sort key (type of string)

Example

The following is an example of this structure:

[
[

{
"identifier": 1604,
"sortkey": "NB|Vilma"

},
{

"identifier": 1282,
"sortkey": "NF|Lenard"

},
{

"identifier": 1443,
"sortkey": "NF|Lenard"

},
{

"identifier": 1000,
"sortkey": "SK|Cathleen"

},

Page 102

{
"identifier": 1121,
"sortkey": "SK|Rachel"

}
]

]

Page 103

JSON Operations List

Describes a list of workflow operations (specifically asynchronous workflow operations)
actively running on the server, each containing various properties including the type of
workflow operation, it's starting time and it's current progress value.

This structure is used specifically with workflow based services including the Data Mapping,
Content Creation, Content Creation (Email), Job Creation, Output Creation and All-In-One
services.

Note

See the Workflow Operations page of the Technical Overview section for further detail on
workflow operations.

Structure

The structure consists of an array of objects each with the following name/value pairs:

l id – the workflow operation identifier (type of string)
l type – the workflow operation type (value of either DataMiningRestService,
ContentCreationRestService, EmailExportRestService, JobCreationRestService,
OutputCreationRestService or PrintRestService) (type of string)

l subTask – the workflow operation sub-task name (type of string)
l startTime – the workflow operation starting time stamp (value of milliseconds since
midnight of January 1, 1970 UTC) (type of number)

l progress – the workflow operation progress percentage (value in range of 0 to 100) (type
of number)

Workflow operation objects with a type value of either ContentCreationRestService or
PrintRestService (usually with a subTask value of Content Creation) can also contain the
following name/value pair:

l template – the name of the design template being used for content creation (type of
string)

Example

The following is an example of this structure:

Page 104

[
{

"id": "1281ef9d-7a74-4448-9adf-175a0166f32e",
"type": "DataMiningRestService",
"subTask": "Extracting data 25%",
"startTime": 1482367446908,
"progress": 100

},
{

"id": "b72e2da5-39ea-48de-85cf-a2be321a71bd",
"type": "ContentCreationRestService",
"subTask": "Content Creation",
"startTime": 1482367988332,
"progress": 12,
"template": "business-card-ol"

},
{

"id": "134f55a5-85f5-41d5-a0d3-e033eda45cb5",
"type": "EmailExportRestService",
"startTime": 1482368638197,
"progress": 5

},
{

"id": "d52cf2b6-9ca7-44e6-b548-5b249dedf40d",
"type": "JobCreationRestService",
"subTask": "Job Creation",
"startTime": 1482367723483,
"progress": 77

},
{

"id": "02fa495b-ed56-47ef-ac49-e63df298b10e",
"type": "OutputCreationRestService",
"subTask": "Output Creation",
"startTime": 1482367851340,
"progress": 34

},
{

"id": "fb414be9-4ec5-463a-8429-93153db73783",
"type": "PrintRestService",
"subTask": "Content Creation",
"startTime": 1482366891203,
"progress": 65,
"template": "letter-ol"

Page 105

}
]

Page 106

Working Examples
This section provides a number of working examples that demonstrate the use of the various
resources and methods available in the PlanetPress Connect REST API.

For help on getting started with the PlanetPress Connect REST API Cookbook and the working
examples, see the Getting Started page.

l Server Security & Authentication
l Working with the File Store
l Working with the Entity Services
l Working with the Workflow Services

Page 107

Getting Started
This guide provides many working examples to help illustrate the correct use of a given
API/method. To achieve this, the guide uses HTML5 & JavaScript/jQuery syntax, and thus,
some basic experience and knowledge of these technologies is assumed.

HTML5: http://www.w3schools.com/html/

jQuery: https://jquery.com/

Help on installing and getting started with the working examples can be found on the
Requirements & Installation and Structure of the Working Examples pages.

Important notes on general use of the working examples can be found in the HTML Input
Placeholders & Multiple Value Fields and Display of Working Example Results pages.

If you have server security settings enabled on your PlanetPress Connect server then the Using
the Working Examples with Server Security page should be read also.

Page 108

http://www.w3schools.com/html/
https://jquery.com/

Requirements & Installation
Requirements

To use the PlanetPress Connect REST API Cookbook with Working Examples source you will
require the following:

1. A working installation of PlanetPress Connect
2. Any modern web browser able to display HTML51

Warning

If using Internet Explorer, you may find issues when using the working examples with
PlanetPress Connect's Server Security Settings set to enabled.

The working examples use HTML5 Local Storage to facilitate authentication and certain
simplicity / ease-of-use (across browser tabs). Depending on how your Internet Explorer
security settings are configured, you may experience issues if the security level of your
zone is set too high.

Essentially, the security zone needs to have the security option Userdata persistence
(underMiscellaneous) set to enabled. Without this option enabled, the working
examples will not function correctly when using them with PlanetPress Connect's Server
Security Settings set to enabled.

After running the Authenticate/Login to Server working example to re-authenticate, you
should only need to refresh existing pages in order for the authentication credentials
(token) to be picked up. In the case of Internet Explorer, you may need to restart the
browser for the changes to be picked up.

If all else fails, disabling of the Sever Security Settings in the PlanetPress Connect
Server Preferences should avoid issues with running the various examples on Internet
Explorer.

It is recommended that you use a modern web-browser other than Internet Explorer
when running the working examples.

1Any recent version of Mozilla Firefox, Google Chrome, or Opera with support for HTML5 should be
suitable for running the working examples contained in this guide. Versions of Internet Explorer 10+ may
also be suitable in some cases.

Page 109

Installation

The working examples source comes pre-installed with PlanetPress Connect and can be
located in a sub-directory of your existing PlanetPress Connect installation directory.

To locate the source on Windows:

1. Open upWindows Explorer and navigate to the PlanetPress Connect installation
directory followed by its plugins sub-directory.

2. Find the com.objectiflune.serverengine.rest.gui directory and navigate to its www sub-
directory

3. You should now be exploring the following or similar location:

C:\Program Files\Objectif Lune\OL
Connect\plugins\com.objectiflune.serverengine.rest.gui_1.X.XXXXX.XXXXXXXX-
XXXX\www

4. The www directory contains a cookbook sub-directory, which contains all of the working
examples source. You should find a directory structure matching that shown on the
Structure of the Working Examples page.

Note

You can access the PlanetPress Connect REST API Cookbook with Working Examples
source locally by entering the following URL in your web browser:

http://localhost:9340/serverengine/html/cookbook/index.html

Page 110

http://localhost:9340/serverengine/html/cookbook/index.html

Structure of theWorking Examples
The working examples are designed to be complete examples, and will generally consists of
one HTML5 file paired with a JavaScript/jQuery module which can be found in the
examples/<service-name>/js/ sub-directory.

Where any frequent or boilerplate functionality is commonly used across the examples, this has
been moved to the common/js/common.js JavaScript/jQuery module.

The examples make use of this module for functionality such as setting up the example, and
displaying output results.

Page 111

The examples also make use of some simple CSS classes as defined in
common/css/styles.css and HTML snippets for the presentation of output results.

Page 112

HTML Input Placeholders & Multiple Value Fields
In the working examples, HTML input elements make use of the placeholder attribute to help
provide some indication of the type and format of the value expected to be entered / specified.

The following table lists examples of placeholders commonly used in the working examples:

HTML Expected Type Example Values

Single ID Value l 2341
l 3

Single ID or Name Value (File Name) l 2341
l Promo-EN-1000.csv

One or More ID Values (comma
separated)

l 2341, 2342
l 3456

Name (Text) Value l ol-admin
l Section 2

Numerical Range l 1, 2, 3
l 1-5
l 1, 2, 3-5, 6

Email Address Value l john.smith@contoso.com

Server Address or Hostname Value
(with optional Port)

l smtp.contoso.com
l smtp.contoso.com:587
l 192.168.88.54

Page 113

Display of Working Example Results
When a working example is run, any results will be displayed in a Results area that will appear
below the working example existing HTML interface.

For example:

Note

In some examples the same result will displayed in both plain and JSON structure based
formats. This is to assist ease-of-use when working with outputs of one example that will
be needed as an input to another example.

A working example can be run multiple times, and each time the results will be appended
below allowing you to compare the output of varying inputs. The Clear button can be selected
at any time to clear all existing results.

Page 114

Using theWorking Examples with Server Security
If you have the Server Security Settings set to enabled in your PlanetPress Connect Server
Preferences, then you may see the following dialog box initially display when working with the
examples:

In the event of this dialog box, just follow the instructions and either refresh the page or re-
authenticate by running the Authenticating with the Server (Authenticate/Login to Server)
working example covered under the Server Security & Authentication section.

Note

Once re-authenticated, you shouldn’t see this dialog box again for as long as your
session remains active.

Page 115

Server Security & Authentication
This section consists of a number of pages covering various useful working examples:

1. Authenticating with the Server

See the Authentication Service page of the REST API Reference section for further detail.

Note

A complete listing including these examples can be found in the index.html file located
at the root of the working example source code which contains links to all working
examples.

Page 116

Authenticating with the Server
Problem

Your PlanetPress Connect Server is configured to use server security, and you want to
authenticate with the server to obtain the correct access to make future requests.

Solution

The solution is to create a request using the following URI and method type to authenticate with
the server via the Authentication REST service:

Authenticate/Login to Server /rest/serverengine/authentication/login POST

Example

HTML5

auth-login-server.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Authenticate/Login to Server Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/auth-login-server.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Authentication Service - Authenticate/Login to Server
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="username">Username:</label>
<input id="username" type="text"

placeholder="Username" required>
</div>

Page 117

http://localhost:9340/rest/serverengine/authentication/login

<div>
<label for="password">Password:</label>
<input id="password" type="password"

placeholder="Password" required>
</div>

</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

auth-login-server.js

/* Authentication Service - Authenticate/Login to Server Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();

var username = $("#username").val(),
password = $("#password").val();

$.ajax({
type: "POST",
url: "/rest/serverengine/authentication/login",
beforeSend: function (xhr) {

var base64 = "Basic " + btoa(username + ":" +
password);

xhr.setRequestHeader("Authorization", base64);
}

Page 118

})
.done(function (response) {

c.displayStatus("User '" + username + "'
Authenticated Successfully");

c.displayResult("Authorization Token",
response);

c.setSessionToken(response);
})
.fail(function (xhr, status, error) {

c.displayStatus("Authentication of User '" +
username + "' failed!");

c.displayResult("Status", xhr.status + " " +
error);

c.displayResult("Error", xhr.responseText);
c.setSessionToken(null);

});
});

});
}(jQuery, Common));

Screenshot & Output

Page 119

Usage

To run the example simply enter your credentials into the Username and Password fields and
select the Submit button.

Once selected, a request containing the credentials will be sent to the server and the result will
be returned and displayed to the Results area.

If authentication was successful then the response will contain an Authorization Token that
can be then used in the submission of future requests to the server.

Discussion

Firstly, we define an event handler that will run in response to the submission of the HTML form
via the selection of the Submit button.

When our event hander function is called, we then obtain the value of the Username and
Password fields. We define two variables, username to hold the value of the Username text
field and password to hold the value of the Password text field.

Next we construct an jQuery AJAX request which will be sent to the Authentication REST
service:

Method type and url arguments are specified as shown earlier.

We specify a beforeSend argument containing a function that will add an additional
Authorization header to the request to facilitate Basic HTTP Authentication. The value of
the Authorization request header is a Base64 digest of the username and password

variables.

When the request is successful or done, a request response is received and the content of that
response is passed as the function parameter response. In the example, we then display the
value of this parameter which should be the new Authorization Token which can then be used
in the submission of future requests to the server.

This is achieved by placing the value of the Authorization Token in the auth_token request
header of a future request. In the example the common function setSessionToken is used to
facilitate this function for all future working example requests.

Page 120

Further Reading

See the Authentication Service page of the REST API Reference section for further detail.

Page 121

Working with the File Store
This section consists of a number of pages covering various useful working examples:

1. Uploading a Data File to the File Store
2. Uploading a Data Mapping Configuration to the File Store
3. Uploading a Design Template to the File Store
4. Uploading a Job Creation Preset to the File Store
5. Uploading an Output Creation Preset to the File Store

See the File Store Service page of the REST API Reference section for further detail.

Note

A complete listing including these examples can be found in the index.html file located
at the root of the working example source code which contains links to all working
examples.

Page 122

Uploading a Data File to the File Store
Problem

You want to upload a data file to the File Store so that it can be used as part of a Data Mapping
operation.

Solution

The solution is to create a request using the following URI and method type to submit the data
file to the server via the File Store REST service:

Upload Data File /rest/serverengine/filestore/DataFile POST

Example

HTML5

fs-datafile-upload.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Upload Data File Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/fs-datafile-upload.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>File Store Service - Upload Data File Example</h2>
<form>

<fieldset>
<legend>Inputs</legend>
<div>

<label for="datafile">Data File:</label>
<input id="datafile" type="file" required>

</div>
</fieldset>
<fieldset>

Page 123

http://localhost:9340/rest/serverengine/filestore/DataFile

<legend>Options</legend>
<div>

<label for="named">Named:</label>
<input id="named" type="checkbox">

</div>
<div>

<label for="persistent">Persistent:</label>
<input id="persistent" type="checkbox">

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

fs-datafile-upload.js

/* File Store Service - Upload Data File Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var file = $("#datafile")[0].files[0],
named = $("#named").prop("checked"),
persistent = $("#persistent").prop("checked");

var settings = {
type: "POST",

Page 124

url:
"/rest/serverengine/filestore/DataFile?persistent=" + persistent,

data: file,
processData: false,
contentType: "application/octet-stream"

};
if (named) settings.url += "&filename=" + file.name;
$.ajax(settings)

.done(function (response) {
c.displayStatus("Request Successful");
c.displayInfo("Data File '" + file.name + "'

Uploaded Successfully");
c.displayResult("Managed File ID", response);

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Screenshot & Output

Page 125

Usage

To run the example simply select the Browse button and then select the data file you wish to
upload using the selection dialog box.

Next you can specify the following options to use with the upload of the data file:

l Named – allow this file to be identified/referenced by its Managed File Name as well as
its Managed File ID

l Persistent – make this file persistent in the file store

Note

Only one Managed File in the file store can be associated with a specific name. If two
files are uploaded to the file store under the same name, then only the most recently
uploaded file will be associated with (or can be referenced using) that name.

Once the file and options are selected, simply select the Submit button to upload the file to the
server's file store and the resulting Managed File ID for the data file will be returned and
displayed to the Results area.

Discussion

Firstly, we define an event handler that will run in response to the submission of the HTML form
via the selection of the Submit button.

When our event handler function is called, we then obtain a reference to the local data file
previously selected. This is achieved by getting the first value of the files attribute of the HTML
element with the ID of datafile (in this case a file type input HTML element) and storing it in a
variable file.

We also obtain boolean values for the Named and Persistent options (both checkbox type
input HTML elements) and store them in the named and persistent variables respectively.

Next we construct a jQuery AJAX request which will be sent to the File Store REST service.
We use an object called settings to hold the arguments for our request:

Page 126

Method type and url arguments are specified as shown earlier, with the addition of a
persistent query parameter which specifies whether the file is to be persistent in the file
store when uploaded.

We specify the variable file as the data or contents of the request, a contentType argument
of "application/octet-stream", and because we are sending file data we also specify a
processData argument set to false.

If the Named option is checked in our form, and the named variable is true, then a filename

query parameter is also added which contains the file name of the file selected (file.name).

Lastly, the settings object is passed as an argument to the jQuery AJAX function ajax and the
request is executed.

When the request is successful or done, a request response is received and the content of that
response is passed as the function parameter response. In the example, we then display the
value of this parameter which should be the new Managed File ID of the data file in the file
store.

Further Reading

See the File Store Service page of the REST API Reference section for further detail.

Page 127

Uploading a Data Mapping Configuration to the File Store
Problem

You want to upload a data mapping configuration to the File Store so that it can be used as part
of a Data Mapping operation.

Solution

The solution is to create a request using the following URI and method type to submit the data
mapping configuration to the server via the File Store REST service:

Upload Data Mapping
Configuration

/rest/serverengine/filestore/DataMiningConfig POST

Example

HTML5

fs-datamapper-upload.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Upload Data Mapping Configuration Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/fs-datamapper-upload.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>File Store Service - Upload Data Mapping Configuration
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datamapper">Data Mapping
Configuration:</label>

<input id="datamapper" type="file" required>

Page 128

http://localhost:9340/rest/serverengine/filestore/DataMiningConfig

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="named">Named:</label>
<input id="named" type="checkbox">

</div>
<div>

<label for="persistent">Persistent:</label>
<input id="persistent" type="checkbox">

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

fs-datamapper-upload.js

/* File Store Service - Upload Data Mapping Configuration Example
*/
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var file = $("#datamapper")[0].files[0],
named = $("#named").prop("checked"),

Page 129

persistent = $("#persistent").prop("checked");

var settings = {
type: "POST",
url:

"/rest/serverengine/filestore/DataMiningConfig?persistent=" +
persistent,

data: file,
processData: false,
contentType: "application/octet-stream"

};
if (named) settings.url += "&filename=" + file.name;
$.ajax(settings)

.done(function (response) {
c.displayStatus("Request Successful");
c.displayInfo("Data Mapping Configuration '" +

file.name + "' Uploaded Successfully");
c.displayResult("Managed File ID", response);

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 130

Screenshot & Output

Usage

To run the example simply select the Browse button and then select the data mapping
configuration you wish to upload using the selection dialog box.

Next you can specify the following options to use with the upload of the data mapping
configuration:

l Named – allow this configuration to be identified/referenced by its Managed File Name
as well as its Managed File ID

l Persistent – make this configuration persistent in the file store

Note

Only one Managed File in the file store can be associated with a specific name. If two
files are uploaded to the file store under the same name, then only the most recently

Page 131

uploaded file will be associated with (or can be referenced using) that name.

Once the configuration and options are selected, simply select the Submit button to upload the
configuration to the server's file store and the resulting Managed File ID for the data mapping
configuration will be returned and displayed to the Results area.

Discussion

Firstly, we define an event handler that will run in response to the submission of the HTML form
via the selection of the Submit button.

When our event handler function is called, we then obtain a reference to the local data mapping
configuration previously selected. This is achieved by getting the first value of the files

attribute of the HTML element with the ID of datamapper (in this case a file type input HTML
element) and storing it in a variable file.

We also obtain boolean values for the Named and Persistent options (both checkbox type
input HTML elements) and store them in the named and persistent variables respectively.

Next we construct a jQuery AJAX request which will be sent to the File Store REST service.
We use an object called settings to hold the arguments for our request:

Method type and url arguments are specified as shown earlier, with the addition of a
persistent query parameter which specifies whether the configuration is to be persistent in
the file store when uploaded.

We specify the variable file as the data or contents of the request, a contentType argument
of "application/octet-stream", and because we are sending file data we also specify a
processData argument set to false.

If the Named option is checked in our form, and the named variable is true, then a filename

query parameter is also added which contains the file name of the configuration selected
(file.name).

Lastly, the settings object is passed as an argument to the jQuery AJAX function ajax and the
request is executed.

Page 132

When the request is successful or done, a request response is received and the content of that
response is passed as the function parameter response. In the example, we then display the
value of this parameter which should be the new Managed File ID of the data mapping
configuration in the file store.

Further Reading

See the File Store Service page of the REST API Reference section for further detail.

Page 133

Uploading a Design Template to the File Store
Problem

You want to upload a design template to the File Store so that it can be used as part of a
Content Creation operation.

Solution

The solution is to create a request using the following URI and method type to submit the
design template to the server via the File Store REST service:

Upload Design Template /rest/serverengine/filestore/template POST

Example

HTML5

fs-designtemplate-upload.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Upload Design Template Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/fs-designtemplate-upload.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>File Store Service - Upload Design Template
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="designtemplate">Design
Template:</label>

<input id="designtemplate" type="file"
required>

Page 134

http://localhost:9340/rest/serverengine/filestore/template

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="named">Named:</label>
<input id="named" type="checkbox" checked>

</div>
<div>

<label for="persistent">Persistent:</label>
<input id="persistent" type="checkbox">

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

fs-designtemplate-upload.js

/* File Store Service - Upload Design Template Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var file = $("#designtemplate")[0].files[0],
named = $("#named").prop("checked"),
persistent = $("#persistent").prop("checked");

Page 135

var settings = {
type: "POST",
url:

"/rest/serverengine/filestore/template?persistent=" + persistent,
data: file,
processData: false,
contentType: "application/zip"

};
if (named) settings.url += "&filename=" + file.name;
$.ajax(settings)

.done(function (response) {
c.displayStatus("Request Successful");
c.displayInfo("Design Template '" + file.name +

"' Uploaded Successfully");
c.displayResult("Managed File ID", response);

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 136

Screenshot & Output

Usage

To run the example simply select the Browse button and then select the design template you
wish to upload using the selection dialog box.

Next you can specify the following options to use with the upload of the design template:

l Named – allow this template to be identified/referenced by its Managed File Name as
well as its Managed File ID

l Persistent – make this template persistent in the file store

Note

Only one Managed File in the file store can be associated with a specific name. If two
files are uploaded to the file store under the same name, then only the most recently
uploaded file will be associated with (or can be referenced using) that name.

Page 137

Once the template and options are selected, simply select the Submit button to upload the
template to the server's file store and the resulting Managed File ID for the design template will
be returned and displayed to the Results area.

Discussion

Firstly, we define an event handler that will run in response to the submission of the HTML form
via the selection of the Submit button.

When our event handler function is called, we then obtain a reference to the local design
template previously selected. This is achieved by getting the first value of the files attribute of
the HTML element with the ID of designtemplate (in this case a file type input HTML element)
and storing it in a variable file.

We also obtain boolean values for the Named and Persistent options (both checkbox type
input HTML elements) and store them in the named and persistent variables respectively.

Next we construct a jQuery AJAX request which will be sent to the File Store REST service.
We use an object called settings to hold the arguments for our request:

Method type and url arguments are specified as shown earlier, with the addition of a
persistent query parameter which specifies whether the template is to be persistent in the
file store when uploaded.

We specify the variable file as the data or contents of the request, a contentType argument
of "application/zip", and because we are sending file data we also specify a processData

argument set to false.

If the Named option is checked in our form, and the named variable is true, then a filename

query parameter is also added which contains the file name of the template selected
(file.name).

Lastly, the settings object is passed as an argument to the jQuery AJAX function ajax and the
request is executed.

When the request is successful or done, a request response is received and the content of that
response is passed as the function parameter response. In the example, we then display the
value of this parameter which should be the new Managed File ID of the design template in the
file store.

Page 138

Further Reading

See the File Store Service page of the REST API Reference section for further detail.

Page 139

Uploading a Job Creation Preset to the File Store
Problem

You want to upload a job creation preset to the File Store so that it can be used as part of a Job
Creation operation.

Solution

The solution is to create a request using the following URI and method type to submit the job
creation preset to the server via the File Store REST service:

Upload Job Creation
Preset

/rest/serverengine/filestore/JobCreationConfig POST

Example

HTML5

fs-jcpreset-upload.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Upload Job Creation Preset Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/fs-jcpreset-upload.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>File Store Service - Upload Job Creation Preset
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="jcpreset">Job Creation
Preset:</label>

<input id="jcpreset" type="file" required>

Page 140

http://localhost:9340/rest/serverengine/filestore/JobCreationConfig

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="named">Named:</label>
<input id="named" type="checkbox">

</div>
<div>

<label for="persistent">Persistent:</label>
<input id="persistent" type="checkbox">

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

fs-jcpreset-upload.js

/* File Store Service - Upload Job Creation Preset Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var file = $("#jcpreset")[0].files[0],
named = $("#named").prop("checked"),
persistent = $("#persistent").prop("checked");

Page 141

var settings = {
type: "POST",
url:

"/rest/serverengine/filestore/JobCreationConfig?persistent=" +
persistent,

data: file,
processData: false,
contentType: "application/xml"

};
if (named) settings.url += "&filename=" + file.name;
$.ajax(settings)

.done(function (response) {
c.displayStatus("Request Successful");
c.displayInfo("Job Creation Preset '" +

file.name + "' Uploaded Successfully");
c.displayResult("Managed File ID", response);

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 142

Screenshot & Output

Usage

To run the example simply select the Browse button and then select the job creation preset you
wish to upload using the selection dialog box.

Next you can specify the following options to use with the upload of the job creation preset:

l Named – allow this preset to be identified/referenced by its Managed File Name as well
as its Managed File ID

l Persistent – make this preset persistent in the file store

Note

Only one Managed File in the file store can be associated with a specific name. If two
files are uploaded to the file store under the same name, then only the most recently
uploaded file will be associated with (or can be referenced using) that name.

Page 143

Once the preset and options are selected, simply select the Submit button to upload the preset
to the server's file store and the resulting Managed File ID for the job creation preset will be
returned and displayed to the Results area.

Discussion

Firstly, we define an event handler that will run in response to the submission of the HTML form
via the selection of the Submit button.

When our event handler function is called, we then obtain a reference to the local job creation
preset previously selected. This is achieved by getting the first value of the files attribute of the
HTML element with the ID of jcpreset (in this case a file type input HTML element) and storing
it in a variable file.

We also obtain boolean values for the Named and Persistent options (both checkbox type
input HTML elements) and store them in the named and persistent variables respectively.

Next we construct a jQuery AJAX request which will be sent to the File Store REST service.
We use an object called settings to hold the arguments for our request:

Method type and url arguments are specified as shown earlier, with the addition of a
persistent query parameter which specifies whether the preset is to be persistent in the file
store when uploaded.

We specify the variable file as the data or contents of the request, a contentType argument
of "application/xml", and because we are sending file data we also specify a processData

argument set to false.

If the Named option is checked in our form, and the named variable is true, then a filename

query parameter is also added which contains the file name of the preset selected
(file.name).

Lastly, the settings object is passed as an argument to the jQuery AJAX function ajax and the
request is executed.

When the request is successful or done, a request response is received and the content of that
response is passed as the function parameter response. In the example, we then display the
value of this parameter which should be the new Managed File ID of the job creation preset in
the file store.

Page 144

Further Reading

See the File Store Service page of the REST API Reference section for further detail.

Page 145

Uploading an Output Creation Preset to the File Store
Problem

You want to upload an output creation preset to the File Store so that it can be used as part of a
Output Creation operation.

Solution

The solution is to create a request using the following URI and method type to submit the output
creation preset to the server via the File Store REST service:

Upload Output Creation
Preset

/rest/serverengine/filestore/OutputCreationConfig POST

Example

HTML5

fs-ocpreset-upload.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Upload Output Creation Preset Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/fs-ocpreset-upload.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>File Store Service - Upload Output Creation Preset
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="ocpreset">Output Creation
Preset:</label>

<input id="ocpreset" type="file" required>

Page 146

http://localhost:9340/rest/serverengine/filestore/OutputCreationConfig

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="named">Named:</label>
<input id="named" type="checkbox">

</div>
<div>

<label for="persistent">Persistent:</label>
<input id="persistent" type="checkbox">

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

fs-ocpreset-upload.js

/* File Store Service - Upload Output Creation Preset Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var file = $("#ocpreset")[0].files[0],
named = $("#named").prop("checked"),
persistent = $("#persistent").prop("checked");

Page 147

var settings = {
type: "POST",
url:

"/rest/serverengine/filestore/OutputCreationConfig?persistent=" +
persistent,

data: file,
processData: false,
contentType: "application/xml"

};
if (named) settings.url += "&filename=" + file.name;
$.ajax(settings)

.done(function (response) {
c.displayStatus("Request Successful");
c.displayInfo("Output Creation Preset '" +

file.name + "' Uploaded Successfully");
c.displayResult("Managed File ID", response);

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 148

Screenshot & Output

Usage

To run the example simply select the Browse button and then select the output creation preset
you wish to upload using the selection dialog box.

Next you can specify the following options to use with the upload of the output creation preset:

l Named – allow this preset to be identified/referenced by its Managed File Name as well
as its Managed File ID

l Persistent – make this preset persistent in the file store

Note

Only one Managed File in the file store can be associated with a specific name. If two
files are uploaded to the file store under the same name, then only the most recently
uploaded file will be associated with (or can be referenced using) that name.

Page 149

Once the preset and options are selected, simply select the Submit button to upload the preset
to the server's file store and the resulting Managed File ID for the output creation preset will be
returned and displayed to the Results area.

Discussion

Firstly, we define an event handler that will run in response to the submission of the HTML form
via the selection of the Submit button.

When our event handler function is called, we then obtain a reference to the local output
creation preset previously selected. This is achieved by getting the first value of the files

attribute of the HTML element with the ID of ocpreset (in this case a file type input HTML
element) and storing it in a variable file.

We also obtain boolean values for the Named and Persistent options (both checkbox type
input HTML elements) and store them in the named and persistent variables respectively.

Next we construct a jQuery AJAX request which will be sent to the File Store REST service.
We use an object called settings to hold the arguments for our request:

Method type and url arguments are specified as shown earlier, with the addition of a
persistent query parameter which specifies whether the preset is to be persistent in the file
store when uploaded.

We specify the variable file as the data or contents of the request, a contentType argument
of "application/xml", and because we are sending file data we also specify a processData

argument set to false.

If the Named option is checked in our form, and the named variable is true, then a filename

query parameter is also added which contains the file name of the preset selected
(file.name).

Lastly, the settings object is passed as an argument to the jQuery AJAX function ajax and the
request is executed.

When the request is successful or done, a request response is received and the content of that
response is passed as the function parameter response. In the example, we then display the
value of this parameter which should be the new Managed File ID of the output creation preset
in the file store.

Page 150

Further Reading

See the File Store Service page of the REST API Reference section for further detail.

Page 151

Working with the Entity Services
This section consists of a number of pages covering various useful working examples:

1. Finding Specific Data Entities in the Server
2. Finding all the Data Sets in the Server
3. Finding the Data Records in a Data Set
4. Finding all the Content Sets in the Server
5. Finding the Content Items in a Content Set
6. Finding all the Job Sets in the Server
7. Finding the Jobs in a Job Set

See the Entity Service, Data Set Entity Service, Content Set Entity Service and Job Set Entity
Service pages of the REST API Reference section for further detail.

Note

A complete listing including these examples can be found in the index.html file located
at the root of the working example source code which contains links to all working
examples.

Page 152

Finding Specific Data Entities in the Server
Problem

You want to find specific Data Entities stored within the PlanetPress Connect Server based on
a set of search criteria.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Entity REST service:

Find Data Entity /rest/serverengine/entity/find PUT

Example

HTML5

e-find-data-entity.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Find Data Entity Example</title>
<script src="../../common/lib/js/jquery-

3.2.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/e-find-data-entity.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">
<link rel="stylesheet" href="css/styles.css">

</head>
<body>

<h2>Entity Service - Find Data Entity Example</h2>
<form>

<fieldset>
<legend>Search Parameters</legend>
<div>

<label for="entity">Entity Type:</label>
<select id="entity">

<option value="DATARECORDS">Data
Records</option>

Page 153

http://localhost:9340/rest/serverengine/entity/find

<option value="DATASETS">Data Sets</option>
<option value="CONTENTITEMS">Content

Items</option>
<option value="CONTENTSETS">Content

Sets</option>
<option value="JOBS">Jobs</option>
<option value="JOBSETS">Job Sets</option>

</select>
</div>

</fieldset>
<fieldset id="search">

<legend>Search Rules</legend>
<div class="form-only">

<label for="rule-type">Rule Type
Selector:</label>

<select id="rule-type">
<option value="NONE">No Rules</option>

</select>
</div>
<div id="RULESET" class="rule">

<label for="rule">Rules:</label>
<div id="rule" class="rule-body">

<div class="sub-rules">
<label>No Rules</label>

</div>
<div>

<label for="condition">Rules
Condition:</label>

<select id="condition">
<option value="ALL">Match All

Rules</option>
<option value="ANY">Match Any

Rule</option>
<option value="NOTALL">Not Match

All Rules</option>
<option value="NOTANY">Not Match

Any Rule</option>
</select>

</div>
<div class="form-only">

<input id="add-rule" type="button"
value="Add Search Rule">

</div>

Page 154

</div>
</div>

</fieldset>
<fieldset id="sorting">

<legend>Sorting Rules</legend>
<div class="form-only">

<label for="rule-type">Rule Type
Selector:</label>

<select id="rule-type">
<option value="NONE">No Rules</option>

</select>
</div>
<div id="RULESET" class="rule">

<label for="rule">Rules:</label>
<div id="rule" class="rule-body">

<div class="sub-rules">
<label>No Rules</label>

</div>
<div class="form-only">

<input id="add-rule" type="button"
value="Add Sorting Rule">

</div>
</div>

</div>
</fieldset>
<fieldset id="grouping">

<legend>Grouping Rules</legend>
<div class="form-only">

<label for="rule-type">Rule Type
Selector:</label>

<select id="rule-type">
<option value="NONE">No Rules</option>

</select>
</div>
<div id="RULESET" class="rule">

<label for="rule">Rules:</label>
<div id="rule" class="rule-body">

<div class="sub-rules">
<label>No Rules</label>

</div>
<div class="form-only">

<input id="add-rule" type="button"
value="Add Grouping Rule">

Page 155

</div>
</div>

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="reset" type="button" value="Reset">
<input id="submit" type="submit"

value="Submit">
</div>

</fieldset>
</form>

</body>
</html>

rules.html

<!-- OL Connect REST API Cookbook - Working Examples [Rules HTML
Snippet] -->
<div id="search-rules" class="search">

<div id="VALUE" class="rule entity-DATARECORDS entity-
CONTENTITEMS">

<label for="rule">Data Value Rule:</label>
<div id="rule" class="rule-body">

<div>
<label for="fieldName">Field Name:</label>
<input id="fieldName" type="text"

placeholder="Field Name" required />
</div>
<div class="form-only">

<label for="fieldType">Field Type:</label>
<select id="fieldType" class="options-selector">

<option value="string">String</option>
<option value="number">Number</option>
<option value="boolean">Boolean</option>
<option value="date">Date</option>

</select>
</div>
<div class="option fieldType-string compareType-

condition-">
<label for="condition">Condition:</label>
<select id="condition" class="options-selector"

Page 156

data-type="enum-condition-string"/>
</div>
<div class="option fieldType-number compareType-

condition-">
<label for="condition">Condition:</label>
<select id="condition" class="options-selector"

data-type="enum-condition-number"/>
</div>
<div class="option fieldType-date compareType-

condition-">
<label for="condition">Condition:</label>
<select id="condition" class="options-selector"

data-type="enum-condition-date"/>
</div>
<div class="option fieldType-boolean compareType-

condition-">
<label for="condition">Condition:</label>
<select id="condition" class="options-selector"

data-type="enum-condition-boolean"/>
</div>
<div class="form-only option fieldType-string

fieldType-number fieldType-date compareType- condition-">
<label for="compareType">Compare Type:</label>
<select id="compareType" class="options-selector">

<option value="name">Field Name</option>
<option value="value" selected="selected">Field

Value</option>
</select>

</div>
<div class="form-only option fieldType-boolean

compareType- condition-EQ condition-NE">
<label for="compareType">Compare Type:</label>
<select id="compareType" class="options-selector">

<option value="name">Field Name</option>
<option value="value" selected="selected">Field

Value</option>
</select>

</div>
<div class="option fieldType-string compareType-value

condition-">
<label for="value1">Value:</label>
<input id="value1" type="text" placeholder="Value"

required />

Page 157

</div>
<div class="option fieldType-number compareType-value

condition-">
<label for="value1">Value:</label>
<input id="value1" type="number" step="0.001"

placeholder="Value" required />
</div>
<div class="option fieldType-boolean compareType-value

condition-EQ condition-NE">
<label for="value1">Value:</label>
<input id="value1" type="checkbox" />

</div>
<div class="option fieldType-date compareType-value

condition-">
<label for="value1">Value:</label>
<input id="value1" type="date" required />

</div>
<div class="option fieldType-date compareType-value

condition-BETWEEN">
<label for="value2">Value 2:</label>
<input id="value2" type="date" required />

</div>
<div class="option fieldType-string fieldType-number

fieldType-date compareType-name condition-">
<label for="value1">Field Name:</label>
<input id="value1" type="text" placeholder="Field

Name" required />
</div>
<div class="option fieldType-boolean compareType-name

condition-EQ condition-NE">
<label for="value1">Field Name:</label>
<input id="value1" type="text" placeholder="Field

Name" required />
</div>
<div class="option fieldType-date compareType-name

condition-BETWEEN">
<label for="value2">Field Name 2:</label>
<input id="value2" type="text" placeholder="Field

Name" required />
</div>

</div>
</div>
<div id="PROPERTY" class="rule entity-">

Page 158

<label for="rule">Property Value Rule:</label>
<div id="rule" class="rule-body">

<div>
<label for="property">Property:</label>
<input id="property" type="text"

placeholder="Property" required />
</div>
<div>

<label for="condition">Condition:</label>
<select id="condition" data-type="enum-condition-

property"/>
</div>
<div class="option compareType- form-only entity-

DATARECORDS entity-CONTENTITEMS">
<label for="compareType">Compare Type:</label>
<select id="compareType" class="options-selector">

<option value="name">Field Name</option>
<option value="value" selected="selected">Field

Value</option>
</select>

</div>
<div class="option compareType- form-only entity-

DATASETS entity-CONTENTSETS entity-JOBS entity-JOBSETS">
<label for="compareType">Compare Type:</label>
<select id="compareType" class="options-selector">

<option value="value" selected="selected">Field
Value</option>

</select>
</div>
<div class="option compareType-value">

<label for="value">Value:</label>
<input id="value" type="text" placeholder="Value"

required />
</div>
<div class="option compareType-name entity-DATARECORDS

entity-CONTENTITEMS">
<label for="value">Field Name:</label>
<input id="value" type="text" placeholder="Field

Name" required />
</div>

</div>
</div>
<div id="VALUEIN" class="rule entity-">

Page 159

<label for="rule">Value In Rule:</label>
<div id="rule" class="rule-body">

<div>
<label for="field">Field:</label>
<input id="field" type="text" placeholder="Field"

required />
</div>
<div class="option dataType- entity-DATASETS entity-

CONTENTSETS entity-JOBS entity-JOBSETS">
<label for="dataType">Data Type:</label>
<select id="dataType" class="options-selector">

<option value="PROPERTY"
selected="selected">Property</option>

</select>
</div>
<div class="option dataType- entity-DATARECORDS entity-

CONTENTITEMS">
<label for="dataType">Data Type:</label>
<select id="dataType" class="options-selector">

<option value="FIELD">Field</option>
<option value="PROPERTY"

selected="selected">Property</option>
</select>

</div>
<div>

<label for="condition">Condition:</label>
<select id="condition" data-type="enum-condition-

in"/>
</div>
<div>

<label for="values">Values:</label>
<input id="values" type="text" placeholder="Value1,

Value2, Value3, ..." required />
</div>

</div>
</div>
<div id="IDIN" class="rule entity-">

<label for="rule">ID In Rule:</label>
<div id="rule" class="rule-body">

<div>
<label for="condition">Condition:</label>
<select id="condition" data-type="enum-condition-

in"/>

Page 160

</div>
<div>

<label for="values-number">Values:</label>
<input id="values-number" type="text"

placeholder="1234, 2345, 3456, ..." required />
</div>

</div>
</div>
<div id="DOCMEDIA" class="rule entity-CONTENTITEMS">

<label for="rule">Document Media Rule:</label>
<div id="rule" class="rule-body">

<div>
<label for="attribute">Attribute:</label>
<select id="attribute" class="options-selector">

<option value="NAME">Name</option>
<option value="FRONT_COATING">Front

Coating</option>
<option value="BACK_COATING">Back

Coating</option>
</select>

</div>
<div>

<label for="condition">Condition:</label>
<select id="condition" data-type="enum-condition-

contains"/>
</div>
<div class="option attribute-NAME">

<label for="name">Name:</label>
<input id="name" type="text" placeholder="Name"

required />
</div>
<div class="option attribute-FRONT_COATING attribute-

BACK_COATING">
<label for="coating">Coating:</label>
<select id="coating" data-type="enum-coating"/>

</div>
</div>

</div>
<div id="DOCBINDING" class="rule entity-CONTENTITEMS">

<label for="rule">Document Binding Rule:</label>
<div id="rule" class="rule-body">

<div>
<label for="attribute">Attribute:</label>

Page 161

<select id="attribute" class="options-selector">
<option value="STYLE">Style</option>
<option value="SIDE">Side</option>
<option value="LOCATION">Location</option>
<option value="ANGLE">Angle</option>

</select>
</div>
<div>

<label for="condition">Condition:</label>
<select id="condition" data-type="enum-condition-

contains"/>
</div>
<div class="option attribute-STYLE">

<label for="bindingStyle">Binding Style:</label>
<select id="bindingStyle" data-type="enum-

bindingstyle"/>
</div>
<div class="option attribute-SIDE">

<label for="bindingEdge">Binding Edge:</label>
<select id="bindingEdge" data-type="enum-

bindingedge"/>
</div>
<div class="option attribute-LOCATION">

<label for="bindingType">Binding Type:</label>
<select id="bindingType" data-type="enum-

bindingtype"/>
</div>
<div class="option attribute-ANGLE">

<label for="bindingAngle">Binding Angle:</label>
<select id="bindingAngle" data-type="enum-

bindingangle"/>
</div>

</div>
</div>
<div id="DOCSIZE" class="rule entity-CONTENTITEMS">

<label for="rule">Document Size Rule:</label>
<div id="rule" class="rule-body">

<div>
<label for="entity">Entity:</label>
<select id="entity">

<option value="PAGE">Pages</option>
<option value="SHEET">Sheets</option>
<option value="SECTION">Sections</option>

Page 162

</select>
</div>
<div>

<label for="condition">Condition:</label>
<select id="condition" data-type="enum-condition-

number"/>
</div>
<div>

<label for="value">Value:</label>
<input id="value" type="number" step="1"

placeholder="1234" required />
</div>

</div>
</div>
<div id="DUPLEX" class="rule entity-CONTENTITEMS">

<label for="rule">Duplex Rule:</label>
<div id="rule" class="rule-body">

<div>
<label for="condition">Condition:</label>
<select id="condition" data-type="enum-condition-

duplex"/>
</div>

</div>
</div>
<div id="TEMPLATE" class="rule entity-CONTENTITEMS entity-

CONTENTSETS">
<label for="rule">Template Rule:</label>
<div id="rule" class="rule-body">

<div>
<label for="condition">Condition:</label>
<select id="condition" data-type="enum-condition-

equal"/>
</div>
<div>

<label for="name">Name:</label>
<input id="name" type="text" placeholder="Name"

required />
</div>

</div>
</div>
<div id="RULESET" class="rule entity-">

<label for="rule">Rule Set:</label>
<div id="rule" class="rule-body">

Page 163

<div class="sub-rules">
<label>No Rules</label>

</div>
<div>

<label for="condition">Rules Condition:</label>
<select id="condition">

<option value="ALL">Match All Rules</option>
<option value="ANY">Match Any Rule</option>
<option value="NOTALL">Not Match All

Rules</option>
<option value="NOTANY">Not Match Any

Rule</option>
</select>

</div>
</div>

</div>
</div>
<div id="sorting-grouping-rules" class="sorting grouping">

<div id="value" class="rule entity-DATARECORDS entity-
CONTENTITEMS">

<label for="rule">Data Value Rule:</label>
<div id="rule" class="rule-body">

<div>
<label for="name">Name:</label>
<input id="name" type="text" placeholder="Name"

required />
</div>
<div>

<label for="numeric">Numeric:</label>
<input id="numeric" type="checkbox" />

</div>
<div>

<label for="order">Order:</label>
<select id="order">

<option value="ASC">Ascending</option>
<option value="DESC">Descending</option>

</select>
</div>

</div>
</div>
<div id="property" class="rule entity-">

<label for="rule">Property Value Rule:</label>
<div id="rule" class="rule-body">

Page 164

<div>
<label for="name">Name:</label>
<input id="name" type="text" placeholder="Name"

required />
</div>
<div>

<label for="order">Order:</label>
<select id="order">

<option value="ASC">Ascending</option>
<option value="DESC">Descending</option>

</select>
</div>

</div>
</div>

</div>
<div id="rule-data-types">

<select id="enum-condition-string-options">
<option value="EQ" selected="selected">=</option>
<option value="NE">!=</option>
<option value="CONTAINS">Contains</option>
<option value="NOT_CONTAINS">Not Contains</option>
<option value="STARTS_WITH">Starts with</option>
<option value="ENDS_WITH">Ends with</option>
<option value="LIKE">Like</option>
<option value="NOT_LIKE">Not Like</option>

</select>
<select id="enum-condition-number-options">

<option value="EQ" selected="selected">=</option>
<option value="NE">!=</option>
<option value="LT"><</option>
<option value="GT">></option>
<option value="LTE"><=</option>
<option value="GTE">>=</option>

</select>
<select id="enum-condition-date-options">

<option value="EQ" selected="selected">=</option>
<option value="NE">!=</option>
<option value="LT"><</option>
<option value="GT">></option>
<option value="LTE"><=</option>
<option value="GTE">>=</option>
<option value="BETWEEN">Between</option>

</select>

Page 165

<select id="enum-condition-boolean-options">
<option value="EQ" selected="selected">=</option>
<option value="NE">!=</option>
<option value="IS_TRUE">Is True</option>
<option value="IS_FALSE">Is False</option>

</select>
<select id="enum-condition-property-options">

<option value="EQ" selected="selected">=</option>
<option value="NE">!=</option>
<option value="LT"><</option>
<option value="GT">></option>
<option value="LTE"><=</option>
<option value="GTE">>=</option>
<option value="CONTAINS">Contains</option>
<option value="NOT_CONTAINS">Not Contains</option>
<option value="STARTS_WITH">Starts with</option>
<option value="ENDS_WITH">Ends with</option>
<option value="LIKE">Like</option>
<option value="NOT_LIKE">Not Like</option>

</select>
<select id="enum-condition-equal-options">

<option value="EQ" selected="selected">=</option>
<option value="NE">!=</option>

</select>
<select id="enum-condition-contains-options">

<option value="CONTAINS"
selected="selected">Contains</option>

<option value="NOT_CONTAINS">Not Contains</option>
</select>
<select id="enum-condition-in-options">

<option value="IN" selected="selected">In</option>
<option value="NOT_IN">Not In</option>

</select>
<select id="enum-condition-duplex-options">

<option value="SIMPLEX_ONLY" selected="selected">Simplex
Only</option>

<option value="HAS_DUPLEX">Has Duplex</option>
</select>
<select id="enum-coating-options">

<option value="UNSPECIFIED" >Unspecified</option>
<option value="NONE" selected="selected">None</option>
<option value="COATED">Coated</option>
<option value="GLOSSY">Glossy</option>

Page 166

<option value="HIGH_GLOSS">High Gloss</option>
<option value="INKJET">Inkjet</option>
<option value="MATTE">Matte</option>
<option value="SATIN">Satin</option>
<option value="SEMI_GLOSS">Semi Gloss</option>

</select>
<select id="enum-bindingstyle-options">

<option value="NONE">None</option>
<option value="DEFAULT"

selected="selected">Default</option>
<option value="STAPLED">Stapled</option>
<option value="GLUED">Glued</option>
<option value="STITCHED">Stitched</option>
<option value="ADHESIVE">Adhesive</option>
<option value="SPINETAPING">Spine Taping</option>
<option value="RING">Ring</option>
<option value="WIREDCOMB">Wired Comb</option>
<option value="PLASTICCOMB">Plastic Comb</option>
<option value="COIL">Coil</option>

</select>
<select id="enum-bindingedge-options">

<option value="DEFAULT"
selected="selected">Default</option>

<option value="LEFT">Left</option>
<option value="RIGHT">Right</option>
<option value="TOP">Top</option>
<option value="BOTTOM">Bottom</option>

</select>
<select id="enum-bindingtype-options">

<option value="DEFAULT"
selected="selected">Default</option>

<option value="SADDLE">Saddle</option>
<option value="SIDE">Side</option>
<option value="CORNER">Corner</option>

</select>
<select id="enum-bindingangle-options">

<option value="DEFAULT"
selected="selected">Default</option>

<option value="VERTICAL">Vertical</option>
<option value="HORIZONTAL">Horizontal</option>
<option value="ANGLE">Angle</option>

</select>
</div>

Page 167

JavaScript/jQuery

e-find-data-entity.js

/* Entity Service - Find Data Entity Example */
(function ($, c) {

"use strict";
$(function () {

const
MSG_LOAD_RULE_FAIL = "Loading of Search Rules

Unsuccessful!\n\n" +
"Unable to load the search rules from the search rules

template. " +
"Searching is currently disabled.",

MSG_INCOMPAT_RULES = "The entity type selected isn't
compatible " +

"with some of the existing rules and these will need to
be " +

"removed.\n\nAre you sure you wish to continue ?",

MSG_MULTIPLE_RULES = "The rule set rule being removed
contains " +

"multiple rules.\n\nAre you sure you wish to continue
?",

MSG_RESET_RULES = "Are you sure you wish to continue
?";

c.setupExample();

var $allRules;

/* Load Rules */
(function () {

var $temp = $("<div>");
$temp.load("snippets/rules.html", function (response,

status) {
var success = (status === "success");
if (!success)

alert(MSG_LOAD_RULE_FAIL);
else {

Page 168

$allRules = $temp;
["search", "sorting", "grouping"].forEach

(function (category) {
var $selector = $("fieldset#" + category)

.find("#rule-type")

.empty();
$allRules

.find("div." + category + " div.rule")

.each(function (index, rule) {
var label = $(rule)

.children("label").text
()

.replace(/
(\sRule)?\:$/, '');

$selector.append($("<option>")
.attr("value",

rule.id)
.attr("class",

$(rule).attr("class"))
.text(label));

});
});
$("#entity").trigger("change");

}
$("input, select").prop("disabled", !success);

});
}());

/* Common Load Rule Function */
function loadRule(category, ruleType) {

var $rule = $allRules
.children("div." + category)
.find("div.rule[id='" + ruleType + "']")
.clone();

/* Populate any Data Type References */
$rule.find("select[data-type]").each(function (index,

element) {
var $element = $(element),

dataType = $element.attr("data-type");
var options = $allRules

.find("#rule-data-types")

.find("#" + dataType + "-options")

Page 169

.children();
$element

.empty()

.append(options.clone());
$element.val($element

.find("option[selected]")

.val());
});

/* Allow Rules to be Draggable by Label */
$rule.children("label")

.prop("draggable", true)

.addClass("draggable");

/* Append Add / Remove Rule Buttons */
var $buttons = $("<div>", { "class": "form-only"

}).append(
$("<input>", { "id": "remove-rule", "type":

"button",
"value": "Remove Rule" }));

if (ruleType === "RULESET") {
$buttons

.append(
$("<input>", { "id": "add-rule", "type":

"button",
"value": "Add Search Rule" }))

.children("#remove-rule")

.attr("value", "Remove Set");
}
$rule.children("div.rule-body").append($buttons);
return $rule;

}

/* Manage the Available Rule Types based on Entity Type */
$("#entity")

.on("click", function (event) {
var $entity = $(event.target);
$entity.data("previous", $entity.val());

})
.on("change", function (event) {

var $entity = $(event.target),
categories = ["search", "sorting", "grouping"],
options = {},

Page 170

incompatible = {},
reconfigure = {};

categories.forEach(function (category) {
options[category] = [];
$("fieldset#" + category)

.find("#rule-type")

.children("option")

.each(function (index, option) {
var $option = $(option),

allClazz = $entity.attr("id") + "-
";

if ($option.hasClass(allClazz) ||
$option.hasClass(allClazz +

$entity.val()))
options[category].push($option.val

());
});

});

/**
* Prompt User & Remove any Existing Rules that are
* incompatible with currently Entity type selected
*/

categories.forEach(function (category) {
$("fieldset#" + category)

.children("div#RULESET")

.find("div.rule")

.each(function (index, rule) {
if ($.inArray(rule.id, options

[category]) < 0) {
if (incompatible[category] ===

undefined)
incompatible[category] = [];

incompatible[category].push(index);
} else

$entity
.children("option")
.toArray()
.map(function (option) {

return $(option).val();
}).forEach(function (entity) {

Page 171

var type = $entity.attr
("id") + "-" + entity;

if ($(rule).find
("div.option").hasClass(type)) {

if (reconfigure
[category] === undefined)

reconfigure
[category] = [];

reconfigure
[category].push(index);

}
});

});
});
if (Object.keys(incompatible).length > 0 &&

!confirm(MSG_INCOMPAT_RULES)) {
$entity.val($entity.data("previous"));
return;

}
categories.forEach(function (category) {

var $rules = $("fieldset#" + category)
.children("div#RULESET")
.find("div.rule");

/* Remove any incompatible rules */
if (incompatible[category] !== undefined)

for (var i = 0; i < incompatible
[category].length; i += 1)

$($rules[incompatible[category]
[i]]).remove();

/* Reconfigure any incompatible options */
if (reconfigure[category] !== undefined)

for (var j = 0; j < reconfigure
[category].length; j += 1)

$($rules[reconfigure[category][j]])
.find("div.option")
.children("select.options-selector")
.trigger("change");

/* Restrict Rule Type Selectors to Entity
Specific Options */

var $selector = $("fieldset#" + category).find

Page 172

("#rule-type"),
selection = $selector.val();

$selector
.children()
.each(function (index, option) {

var $option = $(option),
name = $option.val(),
invalid = ($.inArray(name, options

[category]) < 0);
if (invalid && selection === name)

selection = null;
$option

.prop("disabled", invalid)

.prop("hidden", invalid);
})
.each(function (index, option) {

var $option = $(option);
if (selection === null && !$option.prop

("disabled")) {
$selector.val($option.val());
return false;

}
});

});
});

/* Process Rules Function */
function processRules($rules) {

var rules = [],
typeKey = "ruleType";

if ($rules.closest("fieldset").attr("id") !== "search")
typeKey = "type";

$rules
.children("div.rule")
.each(function (index, element) {

var ruleType = element.id,
fieldType = null,
$body = $(element).children("div.rule-

body"),
rule = {};

if ($body.find("div:visible #compareType").val

Page 173

() === "name")
fieldType = "FIELD";

else if ($body.find("div #fieldType").val() ===
"date")

fieldType = "DATE";

$body
.children("div")
.not(".form-only")
.children(":visible :input")
.each(function (index, input) {

var $input = $(input),
id = $input.attr("id"),
type = $input.attr("type"),
value;

if (id !== undefined &&
!$input.prop("disabled")) {

if (id.match(/^value(s|\d*)\-/)
!== null) {

type = id.split("-")[1];
id = id.split("-")[0];

}

if (id === "values") {
value = $input.val().split

(/\s*,\s*/);
if (type === "number")

for (var i = 0; i <
value.length; i += 1)

value[i] =
c.valueToNumber(value[i]);

}
if (!Array.isArray(value)) {

if (type === "checkbox")
value = $input.prop

("checked");
else if (type === "number")

value = c.valueToNumber
($input.val());

else
value = $input.val();

}

Page 174

if (fieldType !== null &&
id.match(/^value\d*$/))

value = {
"type": fieldType,
"value": value

};

rule[id] = value;
}

});

if (ruleType === "RULESET")
rule.rules = processRules($body.children

("div.sub-rules"));

rules.push($.extend(true, { [typeKey]: ruleType
}, rule));

});
return rules;

}

$("form")

/* Add Rule Handler */
.on("click", "input#add-rule", function (event) {

var $parent = $(event.target).closest("fieldset"),
$rule = loadRule($parent.attr("id"), $parent

.find("#rule-type")

.val());
$(event.target)

.closest(".rule")

.children("div.rule-body")

.children("div.sub-rules")

.append($rule);
$rule

.find("div.rule-body div")

.children("select.options-selector:visible")

.trigger("change");
})

/* Remove Rule Handler */
.on("click", "input#remove-rule", function (event) {

Page 175

var $rule = $(event.target).closest(".rule"),
remove = true;

if ($rule.attr("id") === "RULESET" &&
$rule.find("div.sub-rules div.rule").length

> 1)
if (!confirm(MSG_MULTIPLE_RULES))

remove = false;

if (remove) $rule.remove();
})

/* "Select Rule Options" Change Handler */
.on("change", "select.options-selector", function

(event) {

var $entity = $("#entity"),
types = $entity

.children("option")

.toArray()

.map(function (option) {
return $(option).val();

}),
$rule = $(event.target).closest(".rule"),
$selectors = $rule

.find("div.rule-body div")

.children("select.options-
selector:visible"),

unhidden = [];

$rule
.find("div.rule-body div.option")
.each(function (optionIndex, option) {

var selected = true,
$option = $(option),
before = $option.prop("hidden"),
matched = [];

types.forEach(function (type) {
var clazz = $entity.attr("id") + "-" +

type;
if ($option.hasClass(clazz))

matched.push(clazz);
});

Page 176

if (matched.length)
selected = ($.inArray($entity.attr

("id") + "-" +
$entity.val(), matched) >= 0);

$selectors.each(function (selectorIndex,
selector) {

var allClass = selector.id + "-";
if (!$option.hasClass(allClass) &&

!$option.hasClass(allClass +
$(selector).val())) {

selected = false;
}

});

$option
.prop("hidden", !selected)
.find("input, select")
.prop("disabled", !selected);

if (before && selected)
unhidden.push($option

.children("select.options-
selector"));

});

unhidden.forEach(function (selector) {
$(selector).trigger("change");

});
})

/* Submit Form Rules Handler */
.on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

/* Process & Add Search Rules */
var search = {

"entity": $("#entity").val(),
"search": processRules(($("#search")))[0],

};

Page 177

/* Process & Add Sorting & Grouping Rules */
["sort", "group"].forEach(function (type) {

var rules = (processRules($("#" + type
+"ing")))[0].rules;

if (rules.length)
search[type] = rules;

});

$.ajax({
type: "PUT",
url: "/rest/serverengine/entity/find",
data: JSON.stringify(search),
contentType: "application/json; charset=utf-8"

})
.done(function (response) {

c.displayStatus("Request Successful");
c.displayHeading("Input Parameters");
c.displaySubResult("JSON Search

Parameters", c.jsonPrettyPrint(search));
c.displayHeading("Search Results");
c.displaySubResult("Plain",

c.jsonIDListsWithSortKeyToTable(response));
c.displaySubResult("JSON Identifier Lists

(with Sort Key)", c.jsonPrettyPrint(response));
})
.fail(c.displayDefaultFailure);

})

/* Reset Form Rules Handler */
.on("click", "#reset", function (event) {

if (confirm(MSG_RESET_RULES))
$("div.sub-rules")

.find("div.rule")

.remove();
});

});
}(jQuery, Common));

Page 178

Screenshot & Output

Page 179

Page 180

Usage

To run the example first select the Entity Type that you are searching for. The data entity types
available are:

l Data Sets
l Data Records
l Content Sets
l Content Items
l Job Sets
l Jobs

Once a data entity type is selected, various rules can be added to form the search criteria.
There are three categories of rules available: search, sorting and grouping rules.

Search Rules

There are eight types of search rules that can be specified as part of the overall search criteria:

l Data Value – Search for data entities based on the value of a data record field.
l Property Value – Search for data entities based on the value of a data entity property.
l Value In – Restrict the search to the data entity values contained within a list.
l ID In – Restrict the search to data entity identifiers contained within a list.
l Document Media – The name of the media used as defined in the PlanetPress Connect
design template, as well as the coating used for the front and back of the page sheet.

l Document Binding – The binding used for the document including style, edge, type and
angle properties.

l Document Size – The document size. This supports sheet and section size counts in
addition to page size counts.

l Duplex – Whether the document contains any duplex sheets, or not.
l Template – Search for data entities based on the name of the design template used
during Content Creation.

l Rule Set – Used to group search rules into logical sets (or sub-sets) and specifies a
group rules operator that can be configured to either match all or any of the rules in the
set. This allows quite complex nested rules.

Page 181

The types of search rules available are specific to the data entity type selected. The following
table lists the available combinations:

Rule Type Data
Records

Data
Sets

Content
Items

Content
Sets

Jobs Job
Sets

Data Value ✓ ✓

Property
Value

✓ ✓^ ✓ ✓^ ✓^ ✓^

Value In ✓ ✓^ ✓ ✓^ ✓^ ✓^

ID In ✓ ✓ ✓ ✓ ✓ ✓

Document
Media

✓

Document
Binding

✓

Document
Size

✓

Duplex ✓

Template ✓ ✓

Rule Set ✓ ✓ ✓ ✓ ✓ ✓

^ Note: These rules types are only partially compatible with these entity data types. Only
searches specific to property values are permitted.

Search rules can be added by selecting the appropriate Rule Type Selector option and then
clicking the Add Search Rule button. They can be removed using the Remove Rule button,
and even re-ordered within the form by dragging and dropping a rule by their name label (e.g.
Data Value Rule: or Property Value Rule:).

Page 182

Data Value search rules can be configured by specifying the following options:

l Name – Name of the data record field to search by
l Condition – Operator for the comparison of the data record field (e.g. Equals (=), Not
Equals (<>), Less Than (<),Greater Than (>), etc.)

l Value – Value of the data record field to match

Property Value search rules can be configured by specifying the following options:

l Name – Name of the data entity property to search by
l Condition – Operator for the comparison of the data entity property (e.g. Equals (=), Not
Equals (<>), Less Than (<),Greater Than (>), etc.)

l Value – Value of the data entity property to match

Value In and ID In search rules can be configured by specifying the following options:

l Identifiers – List of data entity identifiers to match or not match against

Document Media search rules forMedia Name can be further configured by specifying the
following options:

l Condition – Operator for the comparison of the media name (e.g. Equals (=) or Not
Equals (<>))

l Value – Value of the media name to match (e.g. Plain Letter Paper)

Document Media search rules for Coating can be further configured by specifying the following
options:

l Condition – Operator for the comparison of the coating (e.g. Equals (=) or Not Equals
(<>))

l Front Coating – The type of front coating to match (e.g. Semi Gloss, Satin,Matte,Glossy,
None, etc.)

l Back Coating – The type of back coating to match (e.g. Semi Gloss, Satin,Matte,Glossy,
None, etc.)

Document Binding search rules can be further configured by specifying the following options:

Page 183

l Binding Style – The style of binding to match (e.g. Stapled,Glued, Stitched, Coil, etc.)
l Binding Edge – The edge (or side on which the binding occurs) to match (e.g. Left, Right,
Top or Bottom)

l Binding Type – The type or location of the binding to match (e.g. Saddle, Side or Corner)
l Binding Angle – The binding angle to match (e.g. Vertical, Horizontal or Angle)

Document Size search rules can be configured by specifying the following options:

l Condition – Operator for the comparison of the document length (e.g. Equals (=), Not
Equals (<>), Less Than (<),Greater Than (>), etc.)

l Value – Value of the document length to match

Template search rules can be configured by specifying the following options:

l Condition – Operator for the comparison of the template name (e.g. Equals (=) or Not
Equals (<>))

l Value – Value of the template name to match (e.g. letter-ol)

Rule Set can be configured by specifying the following conditions:

l Rules Conditions – Conditions for the matching of search rules contained in the rule set.
The options are Match All Rules (ALL);Match Any Rule (ANY); Not Match All Rules
(NOTALL); Not Match Any Rule (NOTANY)

Individual rules can be added to a Rule Set by selecting the appropriate Rule Type Selector
option and then clicking the Add Search Rule button within the Rule Set box.

Individual rules can be removed by clicking the associated Remove Rule button within the
Rule Set box.

Rule Sets can be removed using the Remove Set button, and in situations where removing a
rule set would remove multiple rules, you will be prompted to confirm the removal of the rule
set.

Lastly, select the Rules Operator for the matching of search rules contained in the base rules
list (e.g.Match All Rules (AND) orMatch Any Rules (OR))

Page 184

Sorting Rules

There are also two types of sorting rules that can be used as part of the overall search criteria:

l Data Value – Sort the search results by the value of a data record field
l Property Value – Sort the search results by the value of a data entity property

The types of sorting rules available are also specific to the data entity type selected. The
following table lists the available combinations:

Rule Type Data
Records

Data
Sets

Content
Items

Content
Sets

Jobs Job
Sets

Data Value ✓ ✓

Property
Value

✓ ✓ ✓ ✓ ✓ ✓

Sorting rules can be added using the Add Sorting Rule button, removed using the Remove
Rule button, and even re-ordered within the form.

Rules can be re-ordered by dragging and dropping a rule by it's name label (e.g. Data Value
Rule: or Property Value Rule:).

Data Value sorting rules can be configured by specifying the following options:

l Name – Name of the data record field to sort the search results by
l Numeric – Sort the search results for this data record field numerically
l Order – Sort the search results for this data record field in a specific order (e.g. Ascending
or Descending)

Property Value sorting rules can be configured by specifying the following options:

l Name – Name of the data entity property to sort the search results by
l Order – Sort the search results for this data entity property in a specific order (e.g.
Ascending or Descending)

Page 185

Grouping Rules

There are also two types of grouping rules that can be used as part of the overall search
criteria:

l Data Value – Group the search results by the value of a data record field
l Property Value – Group the search results by the value of a data entity property

The types of grouping rules available are also specific to the data entity type selected. The
following table lists the available combinations:

Rule Type Data
Records

Data
Sets

Content
Items

Content
Sets

Jobs Job
Sets

Data Value ✓ ✓

Property
Value

✓ ✓ ✓ ✓ ✓ ✓

Grouping rules can be added using the Add Grouping Rule button, removed using the
Remove Rule button, and even re-ordered within the form.

Rules can be re-ordered by dragging and dropping a rule by it's name label (e.g. Data Value
Rule: or Property Value Rule:).

Data Value grouping rules can be configured by specifying the following options:

l Name – Name of the data record field to group the search results by
l Numeric – Group the search results for this data record field numerically
l Order – Group the search results for this data record field in a specific order (e.g.
Ascending or Descending)

Property Value grouping rules can be configured by specifying the following options:

l Name – Name of the data entity property to group the search results by
l Order – Group the search results for this data entity property in a specific order (e.g.
Ascending or Descending)

Page 186

Note

By default, comparison conditions in search rules are evaluated alphanumerically,
regardless of the type of value.

Numeric evaluation of comparison conditions is not currently supported in the
PlanetPress Connect REST API.

The only exception to this rule is the ability to numerically sort or group results by
specifying sorting or grouping rules of a Data Value type.

Warning

The Entity Type selected for the search criteria can be changed during or even after
rules have been added. But because certain rules are only available for certain data
entity types, some of the existing rules in the search criteria may become incompatible.

In situations where incompatible rules are found in the existing search criteria, you will be
prompted to confirm the change of entity type. If you then proceed with the change of
entity type, any incompatible rules found in the existing search criteria will be removed.

Once the search criteria is constructed, and the required inputs populated, simply select the
Submit button. This will submit the request to the server and display the search criteria
specified as input to the Results area in JSON Search Parameters format.

The result will then be returned as a list of Data Entity IDs which will be appended to the
Results area in both Plain table and JSON Identifier Lists (with Sort Key) formats.

To construct a new search criteria, the Reset button can be selected. This will reset the form,
removing all existing rules.

Further Reading

See the Entity Service page of the REST API Reference section for further detail.

Page 187

Finding all the Data Sets in the Server
Problem

You want to obtain a list of all the previously created Data Sets contained in the PlanetPress
Connect Server potentially for use in a Content Creation operation.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Data Set Entity REST service:

Get All Data Sets /rest/serverengine/entity/datasets GET

Example

HTML5

dse-get-all-datasets.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Get All Data Sets Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/dse-get-all-datasets.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Data Set Entity Service - Get All Data Sets
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="submit">No Input Required</label>
<input id="submit" type="submit"

value="Submit">
</div>

Page 188

http://localhost:9340/rest/serverengine/entity/datasets

</fieldset>
</form>

</body>
</html>

JavaScript/jQuery

dse-get-all-datasets.js

/* Data Set Entity Service - Get All Data Sets Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

$.ajax({
type: "GET",
url: "/rest/serverengine/entity/datasets"

})
.done(function (response) {

c.displayStatus("Request Successful");
c.displayHeading("Data Set IDs");
c.displaySubResult("Plain", c.jsonIDListToPlain

(response));
c.displaySubResult("JSON Identifier List",

c.jsonPrettyPrint(response));
})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 189

Screenshot & Output

Usage

To run the example simply select the Submit button to request a list of the all the data sets
currently contained within the server.

The resulting list will then be returned and displayed to the Results area in both Plain list and
JSON Identifier List formats.

Further Reading

See the Data Set Entity Service page of the REST API Reference section for further detail.

Page 190

Finding the Data Records in a Data Set
Problem

You want to obtain a list of all the previously created Data Records contained within a specific
Data Set potentially for use in a Content Creation operation.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Data Set Entity REST service:

Get Data Records for Data
Set

/rest/serverengine/entity/datasets/{dataSetId} GET

Example

HTML5

dse-get-datarecords.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Get Data Records for Data Set Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/dse-get-datarecords.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Data Set Entity Service - Get Data Records for Data Set
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="dataset">Data Set ID:</label>
<input id="dataset" type="text"

placeholder="1234" required>

Page 191

http://localhost:9340/rest/serverengine/entity/datasets/{dataSetId}

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

dse-get-datarecords.js

/* Data Set Entity Service - Get Data Records for Data Set Example
*/
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var dataSetId = $("#dataset").val();

$.ajax({
type: "GET",
url: "/rest/serverengine/entity/datasets/" +

dataSetId
})

.done(function (response) {
c.displayStatus("Request Successful");
c.displayHeading("Data Record IDs for Data Set

'" + dataSetId + "'");
c.displaySubResult("Plain", c.jsonIDListToPlain

(response));

Page 192

c.displaySubResult("JSON Identifier List",
c.jsonPrettyPrint(response));

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Screenshot & Output

Usage

To run the example simply enter the Data Set ID and select the Submit button to request a list
of the all the data records contained within the specific data set in the server.

Page 193

The resulting list will then be returned and displayed to the Results area in both Plain list and
JSON Identifier List formats.

Further Reading

See the Data Set Entity Service page of the REST API Reference section for further detail.

Page 194

Finding all the Content Sets in the Server
Problem

You want to obtain a list of all the previously created Content Sets contained in the PlanetPress
Connect Server potentially for use in a Job Creation operation.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Content Set Entity REST service:

Get All Content Sets /rest/serverengine/entity/contentsets GET

Example

HTML5

cse-get-all-contentsets.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Get All Content Sets Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/cse-get-all-contentsets.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Set Entity Service - Get All Content Sets
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="submit">No Input Required</label>
<input id="submit" type="submit"

value="Submit">
</div>

Page 195

http://localhost:9340/rest/serverengine/entity/contentsets

</fieldset>
</form>

</body>
</html>

JavaScript/jQuery

cse-get-all-contentsets.js

/* Content Set Entity Service - Get All Content Sets Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

$.ajax({
type: "GET",
url: "/rest/serverengine/entity/contentsets"

})
.done(function (response) {

c.displayStatus("Request Successful");
c.displayHeading("Content Set IDs");
c.displaySubResult("Plain", c.jsonIDListToPlain

(response));
c.displaySubResult("JSON Identifier List",

c.jsonPrettyPrint(response));
})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 196

Screenshot & Output

Usage

To run the example simply select the Submit button to request a list of the all the content sets
currently contained within the server.

The resulting list will then be returned and displayed to the Results area in both Plain list and
JSON Identifier List formats.

Further Reading

See the Content Set Entity Service page of the REST API Reference section for further detail.

Page 197

Finding the Content Items in a Content Set
Problem

You want to obtain a list of all the previously created Content Items contained within a specific
Content Set potentially for use in a Job Creation operation.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Content Set Entity REST service:

Get Content Items for
Content Set

/rest/serverengine/entity/contentsets/
{contentSetId}

GET

Example

HTML5

cse-get-contentitems.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Get Content Items for Content Set Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/cse-get-contentitems.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Set Entity Service - Get Content Items for
Content Set Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="contentset">Content Set ID:</label>
<input id="contentset" type="text"

placeholder="1234" required>

Page 198

http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}
http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}

</div>
</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

cse-get-contentitems.js

/* Content Set Entity Service - Get Content Items for Content Set
Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var contentSetId = $("#contentset").val();

$.ajax({
type: "GET",
url: "/rest/serverengine/entity/contentsets/" +

contentSetId
})

.done(function (response) {
c.displayStatus("Request Successful");
c.displayHeading("Content Item IDs for Content

Set '" + contentSetId + "'");
c.displaySubResult("Plain",

c.jsonContentItemIDListToTable(response));

Page 199

c.displaySubResult("JSON Content Item
Identifier List", c.jsonPrettyPrint(response));

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 200

Screenshot & Output

Usage

To run the example simply enter the Content Set ID and select the Submit button to request a
list of the all the content items contained within the specific content set in the server.

Page 201

The resulting list will then be returned as a list of Content Item and Data Record ID pairs which
will be displayed to the Results area in both Plain table and JSON Content Item Identifier List
formats.

Further Reading

See the Content Set Entity Service page of the REST API Reference section for further detail.

Page 202

Finding all the Job Sets in the Server
Problem

You want to obtain a list of all the previously created Job Sets contained in the PlanetPress
Connect Server potentially for use in a Output Creation operation.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Job Set Entity REST service:

Get All Job Sets /rest/serverengine/entity/jobsets GET

Example

HTML5

jse-get-all-jobsets.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Get All Job Sets Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/jse-get-all-jobsets.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Job Set Entity Service - Get All Job Sets Example</h2>
<form>

<fieldset>
<legend>Inputs</legend>
<div>

<label for="submit">No Input Required</label>
<input id="submit" type="submit"

value="Submit">
</div>

</fieldset>

Page 203

http://localhost:9340/rest/serverengine/entity/jobsets

</form>
</body>

</html>

JavaScript/jQuery

jse-get-all-jobsets.js

/* Job Set Entity Service - Get All Job Sets Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

$.ajax({
type: "GET",
url: "/rest/serverengine/entity/jobsets"

})
.done(function (response) {

c.displayStatus("Request Successful");
c.displayHeading("Job Set IDs");
c.displaySubResult("Plain", c.jsonIDListToPlain

(response));
c.displaySubResult("JSON Identifier List",

c.jsonPrettyPrint(response));
})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 204

Screenshot & Output

Usage

To run the example simply select the Submit button to request a list of the all the job sets
currently contained within the server.

The resulting list will then be returned and displayed to the Results area in both Plain list and
JSON Identifier List formats.

Further Reading

See the Job Set Entity Service page of the REST API Reference section for further detail.

Page 205

Finding the Jobs in a Job Set
Problem

You want to obtain a list of all the previously created Jobs contained within a specific Job Set
potentially for use in a Output Creation operation.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Job Set Entity REST service:

Get Jobs for Job Set /rest/serverengine/entity/jobsets/{jobSetId} GET

Example

HTML5

jse-get-jobs.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Get Jobs for Job Set Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/jse-get-jobs.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Job Set Entity Service - Get Jobs for Job Set
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="jobset">Job Set ID:</label>
<input id="jobset" type="text"

placeholder="1234" required>
</div>

Page 206

http://localhost:9340/rest/serverengine/entity/jobsets/{jobSetId}

</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

jse-get-jobs.js

/* Job Set Entity Service - Get Jobs for Job Set Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var jobSetId = $("#jobset").val();

$.ajax({
type: "GET",
url: "/rest/serverengine/entity/jobsets/" +

jobSetId
})

.done(function (response) {
c.displayStatus("Request Successful");
c.displayHeading("Job IDs for Job Set '" +

jobSetId + "'");
c.displaySubResult("Plain", c.jsonIDListToPlain

(response));
c.displaySubResult("JSON Identifier List",

c.jsonPrettyPrint(response));

Page 207

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Screenshot & Output

Usage

To run the example simply enter the Job Set ID and select the Submit button to request a list of
the all the jobs contained within the specific job set in the server.

The resulting list will then be returned and displayed to the Results area in both Plain list and
JSON Identifier List formats.

Further Reading

See the Job Set Entity Service page of the REST API Reference section for further detail.

Page 208

Working with the Workflow Services
This section consists of a number of pages covering various useful working examples:

1. Running a Data Mapping Operation
2. Running a Data Mapping Operation (Using JSON)
3. Running a Data Mapping Operation for PDF/VT File (to Data Set)
4. Running a Data Mapping Operation for PDF/VT File (to Content Set)
5. Running a Content Creation Operation for Print
6. Running a Content Creation Operation for Print By Data Record (Using JSON)
7. Running a Content Creation Operation for Email By Data Record (Using JSON)
8. Creating Content for Web By Data Record
9. Creating Content for Web By Data Record (Using JSON)
10. Running a Job Creation Operation (Using JSON)
11. Running an Output Creation Operation
12. Running an Output Creation Operation (Using JSON)
13. Running an Output Creation Operation By Job (Using JSON)
14. Running an All-In-One Operation (Using JSON)

See the Data Mapping Service, Content Creation Service, Content Creation (Email) Service,
Content Creation (HTML) Service, Job Creation Service, Output Creation Service and All-In-
One Service pages of the REST API Reference section for further detail.

Note

A complete listing including these examples can be found in the index.html file located
at the root of the working example source code which contains links to all working
examples.

Page 209

Running a Data Mapping Operation
Problem

You want to run a data mapping operation to produce a Data Set using a data file and a data
mapping configuration as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the data mapping operation. There
is also the option of cancelling an operation during processing if required. These requests can
be submitted via the Data Mapping REST service:

Process Data
Mapping

/rest/serverengine/workflow/datamining/{configId}/
{dataFileId}

POST

Get Progress of
Operation

/rest/serverengine/workflow/datamining/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/datamining/getResult/
{operationId}

POST

Cancel an
Operation

/rest/serverengine/workflow/datamining/cancel/
{operationId}

POST

Example

HTML5

dm-process.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Data Mapping Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/dm-process.js"></script>

Page 210

http://localhost:9340/rest/serverengine/workflow/datamining/{configId}/{dataFileId}
http://localhost:9340/rest/serverengine/workflow/datamining/{configId}/{dataFileId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}

<link rel="stylesheet" href="../../common/css/styles.css">
</head>
<body>

<h2>Data Mapping Service - Process Data Mapping
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datafile">Data File
ID/Name:</label>

<input id="datafile" type="text"
placeholder="1234 or Filename" required>

</div>
<div>

<label for="datamapper">Data Mapping
Configuration ID/Name:</label>

<input id="datamapper" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="validate">Validate Only:</label>
<input id="validate" type="checkbox">

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

Page 211

JavaScript/jQuery

dm-process.js

/* Data Mapping Service - Process Data Mapping Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/cancel/" + operationId
})

.done(function (response) {
c.displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.prop("disabled", false);
$cancelButton.prop("disabled", true);

}, 100);
})
.fail(c.displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

Page 212

var configId = $("#datamapper").val(),
dataFileId = $("#datafile").val(),
validate = $("#validate").prop("checked");

var getFinalResult = function () {

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/getResult/" + operationId
})

.done(function (response, status, request) {
c.displayHeading("Operation Result");
if (validate)

c.displaySubResult("JSON Data Mapping
Validation Result",

c.jsonPrettyPrint(response));
else

c.displaySubResult("Data Set ID",
response);

})
.fail(c.displayDefaultFailure);

};

/* Process Data Mapping */
$.ajax({

type: "POST",
url: "/rest/serverengine/workflow/datamining/" +

configId + "/" + dataFileId +
"?validate=" + validate

})
.done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.prop("disabled", true);
$cancelButton.prop("disabled", false);

c.displayStatus("Data Mapping Operation
Successfully Submitted");

Page 213

c.displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/datamining/getProgress/" + operationId
})

.done(function (response, status,
request) {

if (response !== "done") {
if (response !== progress)

{
progress = response;
$progressBar.attr

("value", progress);
}
setTimeout(getProgress,

1000);
} else {

$progressBar.attr("value",
(progress = 100));

c.displayInfo("Operation
Completed");

getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr
("value", 0);

$submitButton.prop
("disabled", false);

$cancelButton.prop
("disabled", true);

}, 100);
}

})
.fail(c.displayDefaultFailure);

}

Page 214

};
getProgress();

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Screenshot & Output

Usage

To run the example simply enter the Managed File ID or Name for your data file and your data
mapping configuration (previously uploaded to the file store) into the appropriate text fields, and
then check any options that you may require:

Page 215

l Validate Only – Only validate the Data Mapping operation to check for mapping errors
(no Data Set is created).

Lastly, select the Submit button to start the data mapping operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the data mapping
operation has completed, the ID of the Data Set created will be returned and displayed to the
Results area.

If the operation was to only validate the data mapping, then a JSON Data Mapping Validation
Result will be returned and displayed instead.

Further Reading

See the Data Mapping Service page of the REST API Reference section for further detail.

Page 216

Running a Data Mapping Operation (Using JSON)
Problem

You want to run a data mapping operation to produce a Data Set using a data file and a data
mapping configuration as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the data mapping operation. There
is also the option of cancelling an operation during processing if required. These requests can
be submitted via the Data Mapping REST service:

Process Data
Mapping (JSON)

/rest/serverengine/workflow/datamining/{configId} POST

Get Progress of
Operation

/rest/serverengine/workflow/datamining/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/datamining/getResult/
{operationId}

POST

Cancel an
Operation

/rest/serverengine/workflow/datamining/cancel/
{operationId}

POST

Example

HTML5

dm-process-json.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Data Mapping (JSON) Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/dm-process-json.js"></script>

Page 217

http://localhost:9340/rest/serverengine/workflow/datamining/{configId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}

<link rel="stylesheet" href="../../common/css/styles.css">
</head>
<body>

<h2>Data Mapping Service - Process Data Mapping (JSON)
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datafile">Data File
ID/Name:</label>

<input id="datafile" type="text"
placeholder="1234 or Filename" required>

</div>
<div>

<label for="datamapper">Data Mapping
Configuration ID/Name:</label>

<input id="datamapper" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="validate">Validate Only:</label>
<input id="validate" type="checkbox">

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

Page 218

JavaScript/jQuery

dm-process-json.js

/* Data Mapping Service - Process Data Mapping (JSON) Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/cancel/" + operationId
})

.done(function (response) {
c.displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.prop("disabled", false);
$cancelButton.prop("disabled", true);

}, 100);
})
.fail(c.displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

Page 219

var configId = $("#datamapper").val(),
dataFileId = $("#datafile").val(),
validate = $("#validate").prop("checked");

var getFinalResult = function () {

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/getResult/" + operationId
})

.done(function (response, status, request) {
c.displayHeading("Operation Result");
if (validate) {

c.displaySubResult("JSON Data Mapping
Validation Result",

c.jsonPrettyPrint(response));
} else {

c.displaySubResult("Data Set ID",
response);

}
})
.fail(c.displayDefaultFailure);

};

/* Process Data Mapping (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/" + configId + "?validate="
+ validate,

data: JSON.stringify(c.plainIDToJson
(dataFileId)),

contentType: "application/json"
})

.done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.prop("disabled", true);

Page 220

$cancelButton.prop("disabled", false);

c.displayStatus("Data Mapping Operation
Successfully Submitted");

c.displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/datamining/getProgress/" + operationId
})

.done(function (response, status,
request) {

if (response !== "done") {
if (response !== progress)

{
progress = response;
$progressBar.attr

("value", progress);
}
setTimeout(getProgress,

1000);
} else {

$progressBar.attr("value",
(progress = 100));

c.displayInfo("Operation
Completed");

getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr
("value", 0);

$submitButton.prop
("disabled", false);

$cancelButton.prop
("disabled", true);

}, 100);

Page 221

}
})
.fail(c.displayDefaultFailure);

}
};
getProgress();

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Screenshot & Output

Page 222

Usage

To run the example simply enter the Managed File ID or Name for your data file and your data
mapping configuration (previously uploaded to the file store) into the appropriate text fields, and
then check any options that you may require:

l Validate Only – Only validate the Data Mapping operation to check for mapping errors
(no Data Set is created).

Lastly, select the Submit button to start the data mapping operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the data mapping
operation has completed, the ID of the Data Set created will be returned and displayed to the
Results area.

If the operation was to only validate the data mapping, then a JSON Data Mapping Validation
Result will be returned and displayed instead.

Further Reading

See the Data Mapping Service page of the REST API Reference section for further detail.

Page 223

Running a Data Mapping Operation for PDF/VT File (to
Data Set)
Problem

You want to run a data mapping operation to produce a Data Set using only a PDF/VT file as
input.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the data mapping operation. There
is also the option of cancelling an operation during processing if required. These requests can
be submitted via the Data Mapping REST service:

Process Data
Mapping (PDF/VT
to Data Set)

/rest/serverengine/workflow/datamining/pdfvtds/
{dataFileId}

POST

Get Progress of
Operation

/rest/serverengine/workflow/datamining/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/datamining/getResult/
{operationId}

POST

Cancel an
Operation

/rest/serverengine/workflow/datamining/cancel/
{operationId}

POST

Example

HTML5

dm-process-pdfvt-ds.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Data Mapping (PDF/VT to Data Set)

Example</title>

Page 224

http://localhost:9340/rest/serverengine/workflow/datamining/pdfvtds/{dataFileId}
http://localhost:9340/rest/serverengine/workflow/datamining/pdfvtds/{dataFileId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}

<script src="../../common/lib/js/jquery-
3.4.1.min.js"></script>

<script src="../../common/js/common.js"></script>
<script src="js/dm-process-pdfvt-ds.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Data Mapping Service - Process Data Mapping (PDF/VT to
Data Set) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datafile">Data File
ID/Name:</label>

<input id="datafile" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

dm-process-pdfvt-ds.js

/* Data Mapping Service - Process Data Mapping (PDF/VT to Data Set)
Example */
(function ($, c) {

"use strict";

Page 225

$(function () {

c.setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/cancel/" + operationId
})

.done(function (response) {
c.displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.prop("disabled", false);
$cancelButton.prop("disabled", true);

}, 100);
})
.fail(c.displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var dataFileId = $("#datafile").val();

var getFinalResult = function () {

/* Get Result of Operation */
$.ajax({

type: "POST",

Page 226

url:
"/rest/serverengine/workflow/datamining/getResult/" + operationId

})
.done(function (response, status, request) {

c.displayHeading("Operation Result");
c.displaySubResult("Data Set ID",

response);
})
.fail(c.displayDefaultFailure);

};

/* Process Data Mapping (PDF/VT to Data Set) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/pdfvtds/" + dataFileId
})

.done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.prop("disabled", true);
$cancelButton.prop("disabled", false);

c.displayStatus("Data Mapping Operation
Successfully Submitted");

c.displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/datamining/getProgress/" + operationId
})

.done(function (response, status,
request) {

Page 227

if (response !== "done") {
if (response !== progress)

{
progress = response;
$progressBar.attr

("value", progress);
}
setTimeout(getProgress,

1000);
} else {

$progressBar.attr("value",
(progress = 100));

c.displayInfo("Operation
Completed");

getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr
("value", 0);

$submitButton.prop
("disabled", false);

$cancelButton.prop
("disabled", true);

}, 100);
}

})
.fail(c.displayDefaultFailure);

}
};
getProgress();

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 228

Screenshot & Output

Usage

To run the example simply enter the Managed File ID or Name for your PDF/VT file (previously
uploaded to the file store) into the appropriate text field, and then select the Submit button to
start the data mapping operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the data mapping
operation has completed, the ID of the Data Set created will be returned and displayed to the
Results area.

Further Reading

See the Data Mapping Service page of the REST API Reference section for further detail.

Page 229

Running a Data Mapping Operation for PDF/VT File (to
Content Set)
Problem

You want to run a data mapping operation to produce a Content Set using only a PDF/VT file
as input.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the data mapping operation. There
is also the option of cancelling an operation during processing if required. These requests can
be submitted via the Data Mapping REST service:

Process Data
Mapping (PDF/VT
to Content Set)

/rest/serverengine/workflow/datamining/pdfvtcs/
{dataFileId}

POST

Get Progress of
Operation

/rest/serverengine/workflow/datamining/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/datamining/getResult/
{operationId}

POST

Cancel an
Operation

/rest/serverengine/workflow/datamining/cancel/
{operationId}

POST

Example

HTML5

dm-process-pdfvt-cs.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Data Mapping (PDF/VT to Content Set)

Example</title>

Page 230

http://localhost:9340/rest/serverengine/workflow/datamining/pdfvtcs/{dataFileId}
http://localhost:9340/rest/serverengine/workflow/datamining/pdfvtcs/{dataFileId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}

<script src="../../common/lib/js/jquery-
3.4.1.min.js"></script>

<script src="../../common/js/common.js"></script>
<script src="js/dm-process-pdfvt-cs.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Data Mapping Service - Process Data Mapping (PDF/VT to
Content Set) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datafile">Data File
ID/Name:</label>

<input id="datafile" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

dm-process-pdfvt-cs.js

/* Data Mapping Service - Process Data Mapping (PDF/VT to Content
Set) Example */
(function ($, c) {

"use strict";

Page 231

$(function () {

c.setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/cancel/" + operationId
})

.done(function (response) {
c.displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.prop("disabled", false);
$cancelButton.prop("disabled", true);

}, 100);
})
.fail(c.displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var dataFileId = $("#datafile").val();

var getFinalResult = function () {

/* Get Result of Operation */
$.ajax({

type: "POST",

Page 232

url:
"/rest/serverengine/workflow/datamining/getResult/" + operationId

})
.done(function (response, status, request) {

c.displayHeading("Operation Result");
c.displaySubResult("Content Set ID",

response);
})
.fail(c.displayDefaultFailure);

};

/* Process Data Mapping (PDF/VT to Content Set) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/datamining/pdfvtcs/" + dataFileId
})

.done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.prop("disabled", true);
$cancelButton.prop("disabled", false);

c.displayStatus("Data Mapping Operation
Successfully Submitted");

c.displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/datamining/getProgress/" + operationId
})

.done(function (response, status,
request) {

Page 233

if (response !== "done") {
if (response !== progress)

{
progress = response;
$progressBar.attr

("value", progress);
}
setTimeout(getProgress,

1000);
} else {

$progressBar.attr("value",
(progress = 100));

c.displayInfo("Operation
Completed");

getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr
("value", 0);

$submitButton.prop
("disabled", false);

$cancelButton.prop
("disabled", true);

}, 100);
}

})
.fail(c.displayDefaultFailure);

}
};
getProgress();

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 234

Screenshot & Output

Usage

To run the example simply enter the Managed File ID or Name for your PDF/VT file (previously
uploaded to the file store) into the appropriate text field, and then select the Submit button to
start the data mapping operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the data mapping
operation has completed, the ID of the Content Set created will be returned and displayed to
the Results area.

Further Reading

See the Data Mapping Service page of the REST API Reference section for further detail.

Page 235

Running a Content Creation Operation for Print
Problem

You want to run a content creation operation to produce a Content Set using a design template
and an existing set of Data Records as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the content creation operation.
There is also the option of cancelling an operation during processing if required. These
requests can be submitted via the Content Creation REST service:

Process
Content
Creation

/rest/serverengine/workflow/contentcreation/{templateId}/
{dataSetId}

POST

Get Progress of
Operation

/rest/serverengine/workflow/contentcreation/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/contentcreation/getResult/
{operationId}

POST

Cancel an
Operation

/rest/serverengine/workflow/contentcreation/cancel/
{operationId}

POST

Example

HTML5

cc-process.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Content Creation Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>

Page 236

http://localhost:9340/rest/serverengine/workflow/contentcreation/{templateId}/{dataSetId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/{templateId}/{dataSetId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/cancel/{operationId}

<script src="../../common/js/common.js"></script>
<script src="js/cc-process.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Creation Service - Process Content Creation
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="dataset">Data Set ID:</label>
<input id="dataset" type="text"

placeholder="1234" required>
</div>
<div>

<label for="designtemplate">Design Template
ID/Name:</label>

<input id="designtemplate" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

cc-process.js

Page 237

/* Content Creation Service - Process Content Creation Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/cancel/" + operationId
})

.done(function (response) {
c.displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.prop("disabled", false);
$cancelButton.prop("disabled", true);

}, 100);
})
.fail(c.displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var dataSetId = $("#dataset").val(),
templateId = $("#designtemplate").val();

var getFinalResult = function () {

Page 238

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/getResult/" +
operationId

})
.done(function (response, status, request) {

c.displayHeading("Operation Result");
c.displaySubResult("Content Set IDs",

response);
})
.fail(c.displayDefaultFailure);

};

/* Process Content Creation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/" + templateId + "/" +
dataSetId

})
.done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.prop("disabled", true);
$cancelButton.prop("disabled", false);

c.displayStatus("Content Creation Operation
Successfully Submitted");

c.displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,

Page 239

url:
"/rest/serverengine/workflow/contentcreation/getProgress/" +
operationId

})
.done(function (response, status,

request) {

if (response !== "done") {
if (response !== progress)

{
progress = response;
$progressBar.attr

("value", progress);
}
setTimeout(getProgress,

1000);
} else {

$progressBar.attr("value",
(progress = 100));

c.displayInfo("Operation
Completed");

getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr
("value", 0);

$submitButton.prop
("disabled", false);

$cancelButton.prop
("disabled", true);

}, 100);
}

})
.fail(c.displayDefaultFailure);

}
};
getProgress();

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 240

Screenshot & Output

Usage

To run the example simply enter the Data Set ID and the Managed File ID or Name of your
design template (previously uploaded to the file store) into the appropriate text fields, and then
select the Submit button to start the content creation operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the content
creation operation has completed, the IDs of the Content Sets created will be returned and
displayed to the Results area.

Further Reading

See the Content Creation Service page of the REST API Reference section for further detail.

Page 241

Running a Content Creation Operation for Print By Data
Record (Using JSON)
Problem

You want to run a content creation operation to produce a Content Set using a design template
and an existing set of Data Records as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the content creation operation.
There is also the option of cancelling an operation during processing if required. These
requests can be submitted via the Content Creation REST service:

Process
Content
Creation (By
Data Record)
(JSON)

/rest/serverengine/workflow/contentcreation/{templateId} POST

Get Progress of
Operation

/rest/serverengine/workflow/contentcreation/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/contentcreation/getResult/
{operationId}

POST

Cancel an
Operation

/rest/serverengine/workflow/contentcreation/cancel/
{operationId}

POST

Example

HTML5

cc-process-by-dre-json.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">

Page 242

http://localhost:9340/rest/serverengine/workflow/contentcreation/{templateId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/cancel/{operationId}

<title>Process Content Creation (By Data Record) (JSON)
Example</title>

<script src="../../common/lib/js/jquery-
3.4.1.min.js"></script>

<script src="../../common/js/common.js"></script>
<script src="js/cc-process-by-dre-json.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Creation Service - Process Content Creation (By
Data Record) (JSON) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datarecords">Data Record ID
(s):</label>

<input id="datarecords" type="text"
placeholder="1234, 2345, 3456, ..." required>

</div>
<div>

<label for="designtemplate">Design Template
ID/Name:</label>

<input id="designtemplate" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

Page 243

JavaScript/jQuery

cc-process-by-dre-json.js

/* Content Creation Service - Process Content Creation (By Data
Record) (JSON) Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/cancel/" + operationId
})

.done(function (response) {
c.displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.prop("disabled", false);
$cancelButton.prop("disabled", true);

}, 100);
})
.fail(c.displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

Page 244

var dataRecordIds = $("#datarecords").val(),
templateId = $("#designtemplate").val();

var getFinalResult = function () {

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/getResult/" +
operationId

})
.done(function (response, status, request) {

c.displayHeading("Operation Result");
c.displaySubResult("Content Set IDs",

response);
})
.fail(c.displayDefaultFailure);

};

/* Process Content Creation (By Data Record) (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/" + templateId,
data: JSON.stringify(c.plainIDListToJson

(dataRecordIds)),
contentType: "application/json"

})
.done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.prop("disabled", true);
$cancelButton.prop("disabled", false);

c.displayStatus("Content Creation Operation
Successfully Submitted");

c.displayResult("Operation ID", operationId);

Page 245

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/contentcreation/getProgress/" +
operationId

})
.done(function (response, status,

request) {

if (response !== "done") {
if (response !== progress)

{
progress = response;
$progressBar.attr

("value", progress);
}
setTimeout(getProgress,

1000);
} else {

$progressBar.attr("value",
(progress = 100));

c.displayInfo("Operation
Completed");

getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr
("value", 0);

$submitButton.prop
("disabled", false);

$cancelButton.prop
("disabled", true);

}, 100);
}

})
.fail(c.displayDefaultFailure);

}
};

Page 246

getProgress();
})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Screenshot & Output

Usage

To run the example simply enter a comma delimited list of your Data Record IDs and the
Managed File ID or Name of your design template (previously uploaded to the file store) into
the appropriate text fields, and then select the Submit button to start the content creation
operation.

Page 247

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the content
creation operation has completed, the IDs of the Content Sets created will be returned and
displayed to the Results area.

Further Reading

See the Content Creation Service page of the REST API Reference section for further detail.

Page 248

Running a Content Creation Operation for Email By Data
Record (Using JSON)
Problem

You want to run a content creation operation to create and send email content using a design
template and an existing set of Data Records as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the content creation operation.
There is also the option of cancelling an operation during processing if required. These
requests can be submitted via the Content Creation (Email) REST service:

Process
Content
Creation
(By Data
Record)
(JSON)

/rest/serverengine/workflow/contentcreation/email/{templateId} POST

Get
Progress of
Operation

/rest/serverengine/workflow/contentcreation/email/getProgress/
{operationId}

GET

Get Result
of Operation

/rest/serverengine/workflow/contentcreation/email/getResult/
{operationId}

POST

Cancel an
Operation

/rest/serverengine/workflow/contentcreation/email/cancel/
{operationId}

POST

Example

HTML5

cce-process-by-dre-json.html

Page 249

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/{templateId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/cancel/{operationId}

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Content Creation (By Data Record) (JSON)

Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/cce-process-by-dre-json.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Creation (Email) Service - Process Content
Creation (By Data Record) (JSON) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datarecords">Data Record ID
(s):</label>

<input id="datarecords" type="text"
placeholder="1234, 2345, 3456, ..." required>

</div>
<div>

<label for="designtemplate">Design Template
ID/Name:</label>

<input id="designtemplate" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Email Parameters</legend>
<div>

<label for="section">Section:</label>
<input id="section" type="text"

placeholder="Section Name">
</div>
<div>

<label for="sender">From:</label>
<input id="sender" type="text"

placeholder="mailbox@domain.com" required>
</div>

Page 250

<div>
<label for="sendername">From Name:</label>
<input id="sendername" type="text"

placeholder="From Name">
</div>
<div>

<label for="host">Host:</label>
<input id="host" type="text"

placeholder="mail.domain.com:port" required>
</div>
<div>

<label for="usesender">Use From as To Email
Address:</label>

<input id="usesender" type="checkbox" checked>
</div>
<div>

<label for="attachpdf">Attach PDF Page to
Email:</label>

<input id="attachpdf" type="checkbox">
</div>
<div>

<label for="attachweb">Attach Web Page to
Email:</label>

<input id="attachweb" type="checkbox">
</div>

</fieldset>
<fieldset>

<legend>Email Security</legend>
<div>

<label for="useauth">Use
Authentication:</label>

<input id="useauth" type="checkbox" checked>
</div>
<div>

<label for="starttls">Start TLS:</label>
<input id="starttls" type="checkbox">

</div>
<div>

<label for="username">Username:</label>
<input id="username" type="text"

placeholder="Username">
</div>
<div>

Page 251

<label for="password">Password:</label>
<input id="password" type="password"

placeholder="Password">
</div>

</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

cce-process-by-dre-json.js

/* Content Creation (Email) Service - Process Content Creation (By
Data Record) (JSON) Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

var $useAuth = $("#useauth"),
$startTLS = $("#starttls"),
$username = $("#username"),
$password = $("#password"),
$submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {

Page 252

if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/email/cancel/" +
operationId

})
.done(function (response) {

c.displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.prop("disabled", false);
$cancelButton.prop("disabled", true);

}, 100);
})
.fail(c.displayDefaultFailure);

}
});

$useAuth.on("click", function (event) {
var disabled = !($(event.target).prop("checked"));
$.each([$startTLS, $username, $password], function

(index, $element) {
$element.prop("disabled", disabled);

});
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var dataRecordIds = $("#datarecords").val(),
templateId = $("#designtemplate").val(),
section = $("#section").val().trim();

var getFinalResult = function () {

/* Get Result of Operation */
$.ajax({

Page 253

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/email/getResult/" +
operationId

})
.done(function (response, status, request) {

c.displayHeading("Operation Result");
c.displaySubResult("Email Report",

response);
})
.fail(c.displayDefaultFailure);

};

/* Construct JSON Identifier List (with Email
Parameters) */

var config = {
"sender": $("#sender").val(),
"host": $("#host").val(),
"useAuth" : $useAuth.prop("checked"),
"useSender": $("#usesender").prop

("checked"),
"attachWebPage": $("#attachweb").prop

("checked"),
"attachPdfPage": $("#attachpdf").prop

("checked")
},
senderName = $("#sendername").val().trim(),
drids = c.plainIDListToJson(dataRecordIds);

if (senderName.length) config.senderName = senderName;

if (config.useAuth) {
config.useStartTLS = $startTLS.prop("checked");
config.user = $username.val();
config.password = $password.val();

} else {
config.user = "";

}
config.identifiers = drids.identifiers;

/* Process Content Creation (By Data Record) (JSON) */
var settings = {

type: "POST",

Page 254

url:
"/rest/serverengine/workflow/contentcreation/email/" + templateId,

data: JSON.stringify(config),
contentType: "application/json; charset=utf-8"

};
if (section.length) settings.url += "?section=" +

section;
$.ajax(settings)

.done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.prop("disabled", true);
$cancelButton.prop("disabled", false);

c.displayStatus("Content Creation Operation
Successfully Submitted");

c.displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/contentcreation/email/getProgress/" +
operationId

})
.done(function (response, status,

request) {

if (response !== "done") {
if (response !== progress)

{
progress = response;
$progressBar.attr

("value", progress);
}
setTimeout(getProgress,

Page 255

1000);
} else {

$progressBar.attr("value",
(progress = 100));

c.displayInfo("Operation
Completed");

getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr
("value", 0);

$submitButton.prop
("disabled", false);

$cancelButton.prop
("disabled", true);

}, 100);
}

})
.fail(c.displayDefaultFailure);

}
};
getProgress();

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 256

Screenshot & Output

Page 257

Page 258

Usage

To run the example you first need to enter a comma delimited list of your Data Record IDs and
the Managed File ID or Name of your design template (previously uploaded to the file store)
into the appropriate text fields as your inputs.

Next you need to specify the email parameters to use with the content creation operation:

l Section – the section within the Email context of the template to use
l From – the email address to be shown as the sender in the email output
l From Name – the name to be shown as the sender in the email output
l Host – the network address or name of your SMTP mail server through which the emails
will be sent. If required, a server port value can also be specified

l Use From as To Address – use the sender address as the receiver address for all
emails in the output

l Attach PDF Page to Email – if a Print context exists in the template, create it's output as
a PDF and attach it to the email output

l Attach Web Page to Email – if a Web context exists in the template, create it's output as
a single HTML web page (with embedded resources) and attach it to email output

Then you need to specify how email security is to be used with the content creation operation:

l Use Authentication – if authentication is to be used with the mail server
l Start TLS – if Transport Layer Security (TLS) is to be used when sending emails
l Username – the username to authenticate/login with
l Password – the password to authenticate/login with

Lastly, select the Submit button to start the content creation operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the content
creation operation has completed, a report of the emails successfully sent will be returned and
displayed to the Results area.

Page 259

Further Reading

See the Content Creation (Email) Service page of the REST API Reference section for further
detail.

Page 260

Creating Content for Web By Data Record
Problem

You want to create and retrieve web content using a design template and an existing Data
Record as inputs.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Content Creation (HTML) REST service:

Process Content
Creation (By Data
Record)

/rest/serverengine/workflow/contentcreation/html/
{templateId}/{dataRecordId: [0-9]+}

GET

Example

HTML5

cch-process-by-dre.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Content Creation (By Data Record)

Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/cch-process-by-dre.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Creation (HTML) Service - Process Content
Creation (By Data Record) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datarecord">Data Record ID:</label>

Page 261

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}
http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}

<input id="datarecord" type="text"
placeholder="1234" required>

</div>
<div>

<label for="designtemplate">Design Template
ID/Name:</label>

<input id="designtemplate" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>HTML Parameters</legend>
<div>

<label for="section">Section:</label>
<input id="section" type="text"

placeholder="Section Name">
</div>
<div>

<label for="inline">Inline Mode:</label>
<select id="inline">

<option value="NONE">None</option>
<option value="CSS">CSS</option>
<option value="ALL">All</option>

</select>
</div>

</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

cch-process-by-dre.js

/* Content Creation (HTML) Service - Process Content Creation (By
Data Record) Example */

Page 262

(function ($, c) {
"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var dataRecordId = $("#datarecord").val(),
templateId = $("#designtemplate").val(),
section = $("#section").val().trim(),
params = {

inline: $("#inline").val()
};

if (section.length) params.section = section;

/* Process Content Creation (By Data Record) */
$.ajax({

type: "GET",
url:

"/rest/serverengine/workflow/contentcreation/html/" +
templateId + "/" + dataRecordId,

data: params
})

.done(function (response, status, request) {
c.displayHeading("Result");
c.displaySubResult("Response",

c.htmlToLinkWindow(response, "Result
Link"), false);

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 263

Screenshot & Output

Page 264

Usage

To run the example you first need to enter your Data Record ID and the Managed File ID or
Name of your design template (previously uploaded to the file store) into the appropriate text

Page 265

fields as your inputs.

Next you need to specify the HTML parameters to use when creating the web content:

l Section – the section within the Web context of the template to use
l Inline Mode – the inline mode to be used in the creation of content

Lastly, select the Submit button to create and retrieve the web content. When the response
returns a Result Link will be displayed in the Results area. This link can be selected to view
the resulting web content that was created.

Further Reading

See the Content Creation (HTML) Service page of the REST API Reference section for further
detail.

Page 266

Creating Content for Web By Data Record (Using JSON)
Problem

You want to create and retrieve web content using a design template and an existing Data
Record as inputs.

Solution

The solution is to create a request using the following URI and method type and submit it to the
server via the Content Creation (HTML) REST service:

Process Content
Creation (By Data
Record) (JSON)

/rest/serverengine/workflow/contentcreation/html/
{templateId}/{dataRecordId: [0-9]+}

POST

Example

HTML5

cch-process-by-dre-json.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Content Creation (By Data Record) (JSON)

Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/cch-process-by-dre-json.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Content Creation (HTML) Service - Process Content
Creation (By Data Record) (JSON) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="datarecord">Data Record ID:</label>

Page 267

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}
http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}

<input id="datarecord" type="text"
placeholder="1234" required>

</div>
<div>

<label for="designtemplate">Design Template
ID/Name:</label>

<input id="designtemplate" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>HTML Parameters</legend>
<div>

<label for="section">Section:</label>
<input id="section" type="text"

placeholder="Section Name">
</div>
<div>

<label for="inline">Inline Mode:</label>
<select id="inline">

<option value="NONE">None</option>
<option value="CSS">CSS</option>
<option value="ALL">All</option>

</select>
</div>

</fieldset>
<fieldset>

<legend>Actions</legend>
<div>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

cch-process-by-dre-json.js

/* Content Creation (HTML) Service - Process Content Creation (By
Data Record) (JSON) Example */

Page 268

(function ($, c) {
"use strict";
$(function () {

c.setupExample();

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var dataRecordId = $("#datarecord").val(),
templateId = $("#designtemplate").val(),
section = $("#section").val().trim(),
params = {

inline: $("#inline").val()
};

if (section.length) params.section = section;

/* Process Content Creation (By Data Record) (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/contentcreation/html/" +
templateId + "/" +

dataRecordId,
data: JSON.stringify(params),
contentType: "application/json; charset=utf-8"

})
.done(function (response, status, request) {

c.displayHeading("Result");
c.displaySubResult("Response",

c.htmlToLinkWindow(response, "Result
Link"), false);

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 269

Screenshot & Output

Page 270

Usage

To run the example you first need to enter your Data Record ID and the Managed File ID or
Name of your design template (previously uploaded to the file store) into the appropriate text

Page 271

fields as your inputs.

Next you need to specify the HTML parameters to use when creating the web content:

l Section – the section within the Web context of the template to use
l Inline Mode – the inline mode to be used in the creation of content

Lastly, select the Submit button to create and retrieve the web content. When the response
returns a Result Link will be displayed in the Results area. This link can be selected to view
the resulting web content that was created.

Further Reading

See the Content Creation (HTML) Service page of the REST API Reference section for further
detail.

Page 272

Running a Job Creation Operation (Using JSON)
Problem

You want to run a job creation operation to produce a Job Set using a job creation preset and
an existing set of Content Sets as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the job creation operation. There is
also the option of cancelling an operation during processing if required. These requests can be
submitted via the Job Creation REST service:

Process Job
Creation (JSON)

/rest/serverengine/workflow/jobcreation/{configId} POST

Get Progress of
Operation

/rest/serverengine/workflow/jobcreation/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/jobcreation/getResult/
{operationId}

POST

Cancel an
Operation

/rest/serverengine/workflow/jobcreation/cancel/
{operationId}

POST

Example

HTML5

jc-process-json.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Job Creation (JSON) Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/jc-process-json.js"></script>

Page 273

http://localhost:9340/rest/serverengine/workflow/jobcreation/{configId}
http://localhost:9340/rest/serverengine/workflow/jobcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/jobcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/jobcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/jobcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/jobcreation/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/jobcreation/cancel/{operationId}

<link rel="stylesheet" href="../../common/css/styles.css">
</head>
<body>

<h2>Job Creation Service - Process Job Creation (JSON)
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="contentsets">Content Set ID
(s):</label>

<input id="contentsets" type="text"
placeholder="1234, 2345, 3456, ..." required>

</div>
<div>

<label for="jcpreset">Job Creation Preset
ID/Name:</label>

<input id="jcpreset" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

jc-process-json.js

/* Job Creation Service - Process Job Creation (JSON) Example */
(function ($, c) {

Page 274

"use strict";
$(function () {

c.setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/jobcreation/cancel/" + operationId
})

.done(function (response) {
c.displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.prop("disabled", false);
$cancelButton.prop("disabled", true);

}, 100);
})
.fail(c.displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var contentSetIds = $("#contentsets").val(),
configId = $("#jcpreset").val();

var getFinalResult = function () {

/* Get Result of Operation */

Page 275

$.ajax({
type: "POST",
url:

"/rest/serverengine/workflow/jobcreation/getResult/" + operationId
})

.done(function (response, status, request) {
c.displayHeading("Operation Result");
c.displaySubResult("Job Set ID", response);

})
.fail(c.displayDefaultFailure);

};

/* Process Job Creation (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/jobcreation/" + configId,
data: JSON.stringify(c.plainIDListToJson

(contentSetIds)),
contentType: "application/json"

})
.done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.prop("disabled", true);
$cancelButton.prop("disabled", false);

c.displayStatus("Job Creation Operation
Successfully Submitted");

c.displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/jobcreation/getProgress/" +

Page 276

operationId
})

.done(function (response, status,
request) {

if (response !== "done") {
if (response !== progress)

{
progress = response;
$progressBar.attr

("value", progress);
}
setTimeout(getProgress,

1000);
} else {

$progressBar.attr("value",
(progress = 100));

c.displayInfo("Operation
Completed");

getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr
("value", 0);

$submitButton.prop
("disabled", false);

$cancelButton.prop
("disabled", true);

}, 100);
}

})
.fail(c.displayDefaultFailure);

}
};
getProgress();

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 277

Screenshot & Output

Usage

To run the example simply enter a comma delimited list of your Content Set IDs and the
Managed File ID or Name of your job creation preset (previously uploaded to the file store) into
the appropriate text fields, and then select the Submit button to start the job creation operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the job creation
operation has completed, the ID of the Job Set created will be returned and displayed to the
Results area.

Further Reading

See the Job Creation Service page of the REST API Reference section for further detail.

Page 278

Running an Output Creation Operation
Problem

You want to run an output creation operation to produce print output using an output creation
preset and an existing Job Set as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the output creation operation.
There is also the option of cancelling an operation during processing if required. These
requests can be submitted via the Output Creation REST service:

Process Output
Creation

/rest/serverengine/workflow/outputcreation/{configId}/
{jobSetId}

POST

Get Progress of
Operation

/rest/serverengine/workflow/outputcreation/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/outputcreation/getResult/
{operationId}

POST

Get Result of
Operation (as
Text)

/rest/serverengine/workflow/outputcreation/getResultTxt/
{operationId}

POST

Cancel an
Operation

/rest/serverengine/workflow/outputcreation/cancel/
{operationId}

POST

Example

HTML5

oc-process.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">

Page 279

http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}/{jobSetId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}/{jobSetId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}

<title>Process Output Creation Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/oc-process.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Output Creation Service - Process Output Creation
Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="jobset">Job Set ID:</label>
<input id="jobset" type="text"

placeholder="1234" required>
</div>
<div>

<label for="ocpreset">Output Creation Preset
ID/Name:</label>

<input id="ocpreset" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="resultastxt">Get Result as
Text:</label>

<input id="resultastxt" type="checkbox">
</div>

</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

Page 280

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

oc-process.js

/* Output Creation Service - Process Output Creation Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/cancel/" + operationId
})

.done(function (response) {
c.displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.prop("disabled", false);
$cancelButton.prop("disabled", true);

}, 100);
})
.fail(c.displayDefaultFailure);

}
});

Page 281

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var jobSetId = $("#jobset").val(),
configId = $("#ocpreset").val();

var getFinalResult = function () {

var result = ($("#resultastxt").prop("checked")) ?
"getResultTxt" : "getResult";

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/" + result + "/" +
operationId

})
.done(function (response, status, request) {

if (request.getResponseHeader("Content-
Type") === "application/octet-stream")

response = "<<OCTET-STREAM FILE
DATA>>";

c.displayHeading("Operation Result");
c.displaySubResult("Output", response);

})
.fail(c.displayDefaultFailure);

};

/* Process Output Creation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/" + configId + "/" +
jobSetId

})
.done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

Page 282

("operationId");

$submitButton.prop("disabled", true);
$cancelButton.prop("disabled", false);

c.displayStatus("Output Creation Operation
Successfully Submitted");

c.displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/outputcreation/getProgress/" +
operationId

})
.done(function (response, status,

request) {

if (response !== "done") {
if (response !== progress)

{
progress = response;
$progressBar.attr

("value", progress);
}
setTimeout(getProgress,

1000);
} else {

$progressBar.attr("value",
(progress = 100));

c.displayInfo("Operation
Completed");

getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr
("value", 0);

$submitButton.prop

Page 283

("disabled", false);
$cancelButton.prop

("disabled", true);
}, 100);

}
})
.fail(c.displayDefaultFailure);

}
};
getProgress();

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Screenshot & Output

Page 284

Usage

To run the example simply enter the Job Set ID and the Managed File ID or Name of your
output creation preset (previously uploaded to the file store) into the appropriate text fields, and
then check any options that you may require:

l Get Result as Text – Return the result as text specifically. In this example this would
return the absolute path to the output file(s).

Lastly, select the Submit button to start the Output creation operation.

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the output
creation operation has completed, the output result will be returned and displayed to the
Results area.

Note

If the result returned is expected to be file data, then the value <<OCTET-STREAM FILE
DATA>> will be displayed.

Further Reading

See the Output Creation Service page of the REST API Reference section for further detail.

Page 285

Running an Output Creation Operation (Using JSON)
Problem

You want to run an output creation operation to produce print output using an output creation
preset and an existing Job Set as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the output creation operation.
There is also the option of cancelling an operation during processing if required. These
requests can be submitted via the Output Creation REST service:

Process Output
Creation
(JSON)

/rest/serverengine/workflow/outputcreation/{configId} POST

Get Progress of
Operation

/rest/serverengine/workflow/outputcreation/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/outputcreation/getResult/
{operationId}

POST

Get Result of
Operation (as
Text)

/rest/serverengine/workflow/outputcreation/getResultTxt/
{operationId}

POST

Cancel an
Operation

/rest/serverengine/workflow/outputcreation/cancel/
{operationId}

POST

Example

HTML5

oc-process-json.html

<!DOCTYPE html>
<html>

<head>

Page 286

http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}

<meta charset="utf-8">
<title>Process Output Creation (JSON) Example</title>
<script src="../../common/lib/js/jquery-

3.2.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/oc-process-json.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Output Creation Service - Process Output Creation
(JSON) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="jobset">Job Set ID:</label>
<input id="jobset" type="text"

placeholder="1234" required>
</div>
<div>

<label for="ocpreset">Output Creation Preset
ID/Name:</label>

<input id="ocpreset" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="createonly">Create Only:</label>
<input id="createonly" type="checkbox">

</div>
<div>

<label for="resultastxt">Get Result as
Text:</label>

<input id="resultastxt" type="checkbox">
</div>

</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>

Page 287

<div>
<input id="cancel" type="button" value="Cancel"

disabled>
<input id="submit" type="submit"

value="Submit">
</div>

</fieldset>
</form>

</body>
</html>

JavaScript/jQuery

oc-process-json.js

/* Output Creation Service - Process Output Creation (JSON) Example
*/
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/cancel/" + operationId
})

.done(function (response) {
c.displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.prop("disabled", false);

Page 288

$cancelButton.prop("disabled", true);
}, 100);

})
.fail(c.displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var jobSetId = $("#jobset").val(),
configId = $("#ocpreset").val(),
createOnly = $("#createonly").prop("checked");

var getFinalResult = function () {

var result = ($("#resultastxt").prop("checked")) ?
"getResultTxt" : "getResult";

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/" + result + "/" +
operationId

})
.done(function (response, status, request) {

if (request.getResponseHeader("Content-
Type") === "application/octet-stream")

response = "<<OCTET-STREAM FILE
DATA>>";

c.displayHeading("Operation Result");
c.displaySubResult("Output", response);

})
.fail(c.displayDefaultFailure);

};

/* Process Output Creation (JSON) */
$.ajax({

type: "POST",
url:

Page 289

"/rest/serverengine/workflow/outputcreation/" + configId,
data: JSON.stringify(c.plainIDToJson

(jobSetId, createOnly)),
contentType: "application/json"

})
.done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.prop("disabled", true);
$cancelButton.prop("disabled", false);

c.displayStatus("Output Creation Operation
Successfully Submitted");

c.displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/outputcreation/getProgress/" +
operationId

})
.done(function (response, status,

request) {

if (response !== "done") {
if (response !== progress)

{
progress = response;
$progressBar.attr

("value", progress);
}
setTimeout(getProgress,

1000);
} else {

$progressBar.attr("value",

Page 290

(progress = 100));
c.displayInfo("Operation

Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr
("value", 0);

$submitButton.prop
("disabled", false);

$cancelButton.prop
("disabled", true);

}, 100);
}

})
.fail(c.displayDefaultFailure);

}
};
getProgress();

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 291

Screenshot & Output

Usage

To run the example simply enter the Job Set ID and the Managed File ID or Name of your
output creation preset (previously uploaded to the file store) into the appropriate text fields, and
then check any options that you may require:

l Create Only – Create the output in server but do not send spool file to its final destination.
In this example this would mean that the output files(s) would not be sent to the output
directory specified in the output creation preset.

l Get Result as Text – Return the result as text specifically. In this example this would
return the absolute path to the output file(s).

Lastly, select the Submit button to start the Output creation operation.

Page 292

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the output
creation operation has completed, the output result will be returned and displayed to the
Results area.

Note

If the result returned is expected to be file data, then the value <<OCTET-STREAM FILE
DATA>> will be displayed.

Further Reading

See the Output Creation Service page of the REST API Reference section for further detail.

Page 293

Running an Output Creation Operation By Job (Using
JSON)
Problem

You want to run an output creation operation to produce print output using an output creation
preset and a list of existing Jobs as inputs.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the output creation operation.
There is also the option of cancelling an operation during processing if required. These
requests can be submitted via the Output Creation REST service:

Process Output
Creation (By
Job) (JSON)

/rest/serverengine/workflow/outputcreation/{configId}/jobs POST

Get Progress of
Operation

/rest/serverengine/workflow/outputcreation/getProgress/
{operationId}

GET

Get Result of
Operation

/rest/serverengine/workflow/outputcreation/getResult/
{operationId}

POST

Get Result of
Operation (as
Text)

/rest/serverengine/workflow/outputcreation/getResultTxt/
{operationId}

POST

Cancel an
Operation

/rest/serverengine/workflow/outputcreation/cancel/
{operationId}

POST

Example

HTML5

oc-process-by-je-json.html

Page 294

http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}/jobs
http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process Output Creation (By Job) (JSON)

Example</title>
<script src="../../common/lib/js/jquery-

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/oc-process-by-je-json.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>Output Creation Service - Process Output Creation (By
Job) (JSON) Example</h2>

<form>
<fieldset>

<legend>Inputs</legend>
<div>

<label for="jobs">Job ID(s):</label>
<input id="jobs" type="text" placeholder="1234,

2345, 3456, ..." required>
</div>
<div>

<label for="ocpreset">Output Creation Preset
ID/Name:</label>

<input id="ocpreset" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="createonly">Create Only:</label>
<input id="createonly" type="checkbox">

</div>
<div>

<label for="resultastxt">Get Result as
Text:</label>

<input id="resultastxt" type="checkbox">
</div>

</fieldset>
<fieldset>

Page 295

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

oc-process-by-je-json.js

/* Output Creation Service - Process Output Creation (By Job)
(JSON) Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

var $submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress"),
operationId = null;

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/cancel/" + operationId
})

.done(function (response) {
c.displayInfo("Operation Cancelled!");

Page 296

operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.prop("disabled", false);
$cancelButton.prop("disabled", true);

}, 100);
})
.fail(c.displayDefaultFailure);

}
});

$("form").on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

var jobIds = $("#jobs").val(),
configId = $("#ocpreset").val(),
createOnly = $("#createonly").prop("checked");

var getFinalResult = function () {

var result = ($("#resultastxt").prop("checked")) ?
"getResultTxt" : "getResult";

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/" + result + "/" +
operationId

})
.done(function (response, status, request) {

if (request.getResponseHeader("Content-
Type") === "application/octet-stream")

response = "<<OCTET-STREAM FILE
DATA>>";

c.displayHeading("Operation Result");
c.displaySubResult("Output", response);

})
.fail(c.displayDefaultFailure);

};

Page 297

/* Process Output Creation (By Job) (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/outputcreation/" + configId + "/jobs",
data: JSON.stringify(c.plainIDListToJson

(jobIds, createOnly)),
contentType: "application/json"

})
.done(function (response, status, request) {

var progress = null;
operationId = request.getResponseHeader

("operationId");

$submitButton.prop("disabled", true);
$cancelButton.prop("disabled", false);

c.displayStatus("Output Creation Operation
Successfully Submitted");

c.displayResult("Operation ID", operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/outputcreation/getProgress/" +
operationId

})
.done(function (response, status,

request) {

if (response !== "done") {
if (response !== progress)

{
progress = response;
$progressBar.attr

("value", progress);
}

Page 298

setTimeout(getProgress,
1000);

} else {
$progressBar.attr("value",

(progress = 100));
c.displayInfo("Operation

Completed");
getFinalResult();
operationId = null;
setTimeout(function () {

$progressBar.attr
("value", 0);

$submitButton.prop
("disabled", false);

$cancelButton.prop
("disabled", true);

}, 100);
}

})
.fail(c.displayDefaultFailure);

}
};
getProgress();

})
.fail(c.displayDefaultFailure);

});
});

}(jQuery, Common));

Page 299

Screenshot & Output

Usage

To run the example simply enter a comma delimited list of your Job IDs and the Managed File
ID or Name of your output creation preset (previously uploaded to the file store) into the
appropriate text fields, and then check any options that you may require:

l Create Only – Create the output in server but do not send spool file to its final destination.
In this example this would mean that the output files(s) would not be sent to the output
directory specified in the output creation preset.

l Get Result as Text – Return the result as text specifically. In this example this would
return the absolute path to the output file(s).

Lastly, select the Submit button to start the Output creation operation.

Page 300

Once the operation has started processing, the Operation ID will be displayed in the Results
area and the Cancel button will become enabled, giving you the option to cancel the running
operation.

The progress of the operation will be displayed in the progress bar, and once the output
creation operation has completed, the output result will be returned and displayed to the
Results area.

Note

If the result returned is expected to be file data, then the value <<OCTET-STREAM FILE
DATA>> will be displayed.

Further Reading

See the Output Creation Service page of the REST API Reference section for further detail.

Page 301

Running an All-In-One Operation (Using JSON)
Problem

You want to run an All-In-One operation to produce either a Data Set, Content Sets, a Job Set
or print output using one of the available process and input combinations.

Solution

The solution is to make a series of requests using the following URIs and method types to
submit, monitor progress and ultimately retrieve the result of the All-In-One operation. There is
also the option of cancelling an operation during processing if required. These requests can be
submitted via the All-In-One REST service:

Process All-In-One
(JSON)

/rest/serverengine/workflow/print/submit POST

Get Progress of
Operation

/rest/serverengine/workflow/print/getProgress/
{operationId}

GET

Get Result of Operation /rest/serverengine/workflow/print/getResult/
{operationId}

POST

Get Result of Operation
(as Text)

/rest/serverengine/workflow/print/getResultTxt/
{operationId}

POST

Cancel an Operation /rest/serverengine/workflow/print/cancel/
{operationId}

POST

Example

HTML5

aio-process-json.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Process All-In-One (JSON) Example</title>
<script src="../../common/lib/js/jquery-

Page 302

http://localhost:9340/rest/serverengine/workflow/print/submit
http://localhost:9340/rest/serverengine/workflow/print/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/getResultTxt/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/cancel/{operationId}
http://localhost:9340/rest/serverengine/workflow/print/cancel/{operationId}

3.4.1.min.js"></script>
<script src="../../common/js/common.js"></script>
<script src="js/aio-process-json.js"></script>
<link rel="stylesheet" href="../../common/css/styles.css">

</head>
<body>

<h2>All-In-One Service - Process All-In-One (JSON)
Example</h2>

<form>
<fieldset id="inputs">

<legend>Inputs</legend>
<div>

<label for="datamining">Data Mapping:</label>
<input id="datamining" type="checkbox">

</div>
<div>

<label for="contentcreation">Content
Creation:</label>

<input id="contentcreation" type="checkbox">
</div>
<div>

<label for="jobcreation">Job Creation:</label>
<input id="jobcreation" type="checkbox">

</div>
<div>

<label for="outputcreation">Output
Creation:</label>

<input id="outputcreation" type="checkbox">
</div>

</fieldset>
<fieldset id="datamining-inputs" disabled>

<legend>Data Mapping</legend>
<div>

<label for="datafile">Data File
ID/Name:</label>

<input id="datafile" type="text"
placeholder="1234 or Filename" required>

</div>
<div>

<label for="datamapper">Data Mapping
Configuration ID/Name:</label>

<input id="datamapper" type="text"
placeholder="1234 or Filename" required>

Page 303

</div>
</fieldset>
<fieldset id="contentcreation-inputs" disabled>

<legend>Content Creation</legend>
<div>

<label for="datarecords">Data Record ID
(s):</label>

<input id="datarecords" type="text"
placeholder="1234, 2345, 3456, ..." required>

</div>
<div>

<label for="template">Template ID/Name:</label>
<input id="template" type="text"

placeholder="1234 or Filename" required>
</div>

</fieldset>
<fieldset id="jobcreation-inputs" disabled>

<legend>Job Creation</legend>
<div>

<label for="jcpreset">Job Creation Preset
ID/Name:</label>

<input id="jcpreset" type="text"
placeholder="1234 or Filename" disabled>

</div>
<div>

<label for="parameters">Runtime
Parameters:</label>

<table id="parameters" class="name-value
parameters">

<tbody>
<tr>

<th></th>
<th>Name</th>
<th>Type</th>
<th>Value</th>

</tr>
<tr class="placeholder" hidden>

<td></td>
<td>

<input type="text" disabled>
</td>
<td>

<select disabled>

Page 304

<option
value="string">String</option>

</select>
</td>
<td>

<input type="text" disabled>
</td>

</tr>
</tbody>

</table>
</div>
<div>

<input class="remove-parameter" type="button"
value="Remove Selected" disabled>

<input class="add-parameter" type="button"
value="Add Parameter">

</div>
</fieldset>
<fieldset id="outputcreation-inputs" disabled>

<legend>Output Creation</legend>
<div>

<label for="jobs">Job ID(s):</label>
<input id="jobs" type="text" placeholder="1234,

2345, 3456, ..." required>
</div>
<div>

<label for="ocpreset">Output Creation Preset
ID/Name:</label>

<input id="ocpreset" type="text"
placeholder="1234 or Filename" required>

</div>
</fieldset>
<fieldset>

<legend>Options</legend>
<div>

<label for="persistdres">Persist Data
Records:</label>

<input id="persistdres" type="checkbox"
disabled checked>

</div>
<div>

<label for="createonly">Create Only:</label>
<input id="createonly" type="checkbox"

Page 305

disabled>
</div>
<div>

<label for="resultastxt">Get Result as
Text:</label>

<input id="resultastxt" type="checkbox"
disabled>

</div>
<div>

<label for="printrange">Print Range:</label>
<input id="printrange" type="text"

placeholder="1, 2, 3-5, 6" disabled>
</div>

</fieldset>
<fieldset>

<legend>Progress & Actions</legend>
<div>

<progress value="0" max="100"></progress>
</div>
<div>

<input id="cancel" type="button" value="Cancel"
disabled>

<input id="submit" type="submit"
value="Submit">

</div>
</fieldset>

</form>
</body>

</html>

JavaScript/jQuery

aio-process-json.js

/* All-In-One Service - Process All-In-One (JSON) Example */
(function ($, c) {

"use strict";
$(function () {

c.setupExample();

var $form = $("form"),
$inputs = $("#inputs input"),

Page 306

$datafile = $("#datafile"),
$datamapper = $("#datamapper"),
$datarecords = $("#datarecords"),
$template = $("#designtemplate"),
$jcpreset = $("#jcpreset"),
$jobs = $("#jobs"),
$ocpreset = $("#ocpreset"),
$persistdres = $("#persistdres"),
$createonly = $("#createonly"),
$resultastxt = $("#resultastxt"),
$printrange = $("#printrange"),

AIOConfig = null,
outputDesc = null,
operationId = null,

$submitButton = $("#submit"),
$cancelButton = $("#cancel"),
$progressBar = $("progress");

$cancelButton.on("click", function () {
if (operationId !== null) {

/* Cancel an Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/print/cancel/" + operationId
})

.done(function (response) {
c.displayInfo("Operation Cancelled!");
operationId = null;
setTimeout(function () {

$progressBar.attr("value", 0);
$submitButton.prop("disabled", false);
$cancelButton.prop("disabled", true);

}, 100);
})
.fail(c.displayDefaultFailure);

}
});

Page 307

/**
* @function generateAIOConfig
* @description Validates the workflow selected by the user
* and constructs and an All-In-One Configuration using the

relevant
* input fields in the HTML Form.
* Any invalid inputs or workflow selections will be red-

flagged in
* the HTML Form. Null can also be returned if no workflow

selections
* are made or if the workflow selections made are of an

invalid sequence.
* @private
* @returns {Object} The All-In-One Configuration Object or

Null
*/

function generateAIOConfig() {

var config = {},
required = [],
i = null,

/* Parse Input Value to JSON Identifier List
(Helper Function) */

jsonIDListValue = function ($input) {
return (c.plainIDListToJson($input.val

())).identifiers;
},

/* Parse Input Value to Boolean (Helper Function)
*/

booleanValue = function ($input) {
return $input.prop("checked");

};

/* Get Input Value and add it to the Configuration
(Helper Function) */

function getInputValue($input, process, field, parser)
{

var value = $input.val().trim();
if (value) {

if (parser)
value = parser($input);

Page 308

if (config[process] === undefined)
config[process] = {};

config[process][field] = value;
}

}

/* Get Required & Actual Workflow Selections */
$inputs.each(function () {

if ($(this).prop("checked"))
config[this.id] = {};

$(this).prop("required", false);
required.push(this.id);

});
var selections = (Object.keys(config)).length;

/* Verify the Workflow Selections and note any
omissions */

var matches = 0,
missing = [];

for (i = 0; i < required.length; i += 1) {
var step = required[i];
if (config[step]) {

if (!matches && step === "jobcreation")
missing.push("contentcreation");

matches += 1;
} else {

if (matches !== 0) missing.push(step);
}
if (matches === selections) break;

}

/* Add the inputs to the Workflow Selections to Create
the All-In-One Configuration */

if (config.datamining) {
getInputValue($datafile, "datamining",

"identifier");
getInputValue($datamapper, "datamining", "config");
outputDesc = "Data Set ID";

}
if (config.contentcreation) {

getInputValue($template, "contentcreation",
"config");

if (!config.datamining) {

Page 309

getInputValue($datarecords, "contentcreation",
"identifiers", jsonIDListValue);

$datarecords.prop("disabled", false);
} else {

$datarecords.prop("disabled", true);
}
outputDesc = "Content Set ID(s)";

}
if (config.jobcreation) {

getInputValue($jcpreset, "jobcreation", "config");
$jcpreset.prop("disabled", false);
outputDesc = "Job Set ID";

} else {
$jcpreset.prop("disabled", true);

}
if (config.outputcreation) {

getInputValue($ocpreset, "outputcreation",
"config");

getInputValue($createonly, "outputcreation",
"createOnly", booleanValue);

if (!config.contentcreation) {
getInputValue($jobs, "outputcreation",

"identifiers", jsonIDListValue);
$jobs.prop("disabled", false);

} else {
$jobs.prop("disabled", true);

}
$createonly.prop("disabled", false);
$resultastxt.prop("disabled", false);
outputDesc = "Output";

} else {
$createonly.prop("disabled", true);
$resultastxt.prop({ "disabled": true, "checked":

true });
}

if (config.datamining) {
if (config.jobcreation &&

config.jobcreation.config) {
$persistdres.prop({ "disabled": true,

"checked": true });
} else {

getInputValue($persistdres, "datamining",

Page 310

"persistDataset", booleanValue);
$persistdres.prop("disabled", false);

}
} else {

$persistdres.prop({ "disabled": true });
}

if (config.datamining && config.contentcreation &&
config.jobcreation && config.outputcreation) {

getInputValue($printrange, "printRange",
"printRange");

$printrange.prop("disabled", false);
} else {

$printrange.prop("disabled", true);
}

/* Red-flag any omissions in Workflow Selections */
if (!selections || missing.length) {

for (i = 0; i < missing.length; i += 1)
$("#" + missing[i]).prop("required", true);

return null;
}
return config;

}

$inputs
.on("change", function (event) {

var input = event.target;
var process = $("#" + input.id + "-inputs");
process.prop("disabled", !($(input).prop

("checked")));
})
.trigger("change");

$form
.on("change", function (event) {

AIOConfig = generateAIOConfig();
})
.on("submit", function (event) {

event.preventDefault();
if (!c.checkSessionValid()) return;

Page 311

if (!AIOConfig) {
alert("Invalid All-In-One

Configuration!\n\nPlease enter a valid " +
"combination of input fields, and try

again.");
return;

}

var getFinalResult = function () {

var result = ($resultastxt.prop("checked")) ?
"getResultTxt" : "getResult";

/* Get Result of Operation */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/print/" + result + "/" + operationId
})

.done(function (response, status, request)
{

if (request.getResponseHeader("Content-
Type") === "application/octet-stream")

response = "<<OCTET-STREAM FILE
DATA>>";

c.displayHeading("Operation Result");
c.displaySubResult(outputDesc,

response);
})
.fail(c.displayDefaultFailure);

};

/* Process All-In-One (JSON) */
$.ajax({

type: "POST",
url:

"/rest/serverengine/workflow/print/submit",
data: JSON.stringify(AIOConfig),
contentType: "application/json"

})
.done(function (response, status, request) {

var progress = null;

Page 312

operationId = request.getResponseHeader
("operationId");

$submitButton.prop("disabled", true);
$cancelButton.prop("disabled", false);

c.displayStatus("All-In-One Operation
Successfully Submitted");

c.displayHeading("Input Configuration");
c.displaySubResult("JSON All-In-One

Configuration", c.jsonPrettyPrint(AIOConfig));
c.displayResult("Operation ID",

operationId);

var getProgress = function () {
if (operationId !== null) {

/* Get Progress of Operation */
$.ajax({

type: "GET",
cache: false,
url:

"/rest/serverengine/workflow/print/getProgress/" + operationId
})

.done(function (response,
status, request) {

if (response !== "done") {
if (response !==

progress) {
progress =

response;
$progressBar.attr

("value", progress);
}
setTimeout(getProgress,

1000);
} else {

$progressBar.attr
("value", (progress = 100));

c.displayInfo
("Operation Completed");

getFinalResult();

Page 313

operationId = null;
setTimeout(function ()

{
$progressBar.attr

("value", 0);
$submitButton.prop

("disabled", false);
$cancelButton.prop

("disabled", true);
}, 100);

}
})
.fail(c.displayDefaultFailure);

}
};
getProgress();

})
.fail(c.displayDefaultFailure);

})
.trigger("change");

});
}(jQuery, Common));

Page 314

Screenshot & Output

Page 315

Page 316

Usage

To run the example simply select the input combination of your choosing, populate the
appropriate input fields and then check any options that you may require.

The following file based input fields can be referenced by Managed File ID or Name:

l Data file
l Data Mapping configuration
l Design template
l Job Creation preset
l Output Creation preset

The following options are only available if the input combination includes output creation:

l Create Only – Create the output in server but do not send spool file to its final destination.
In this example this would mean that the output files(s) would not be sent to the output
directory specified in the output creation preset.

l Get Result as Text – Return the result as text specifically. If our All-In-One Configuration
includes output creation, then in this example this would return the absolute path to the
output file(s).

The following option is only available if the input combination includes all four processes:

l Print Range – Restrict the print output to a specific range of records in the input data, not
a specific range of pages.

The following option is only available if the input combination specifically includes the data
mapping processes but with no job creation preset specified:

l Persist Data Records – Create/persist data records entities in the server during the data
mapping process (intended for use with once-off jobs where the storage of data records in
the server is not required).

Lastly, select the Submit button to start the All-In-One operation.

Once the operation has started processing, the JSON All-In-One Configuration along with the
Operation ID will be displayed in the Results area and the Cancel button will become enabled,
giving you the option to cancel the running operation.

Page 317

The progress of the operation will be displayed in the progress bar, and once the All-in-One
operation has completed, the result will be returned and displayed to the Results area.

If the All-In-One configuration includes output creation, then the result returned will be the
output files (either their absolute path(s) or the output file itself). If the configuration does not
include output creation, then the result returned will be either a Data Set ID, Content Set IDs or
Job Set ID.

Note

If the result returned is expected to be file data, then the value <<OCTET-STREAM FILE
DATA>> will be displayed.

Further Reading

See the All-In-One Service page of the REST API Reference section for further detail.

Page 318

REST API Reference
The PlanetPress Connect REST API defines a number of RESTful services that facilitate
various functionality within the server during workflow processing.

The following table is a summary of the services available in the PlanetPress Connect REST
API:

Service Name Internal Name Description

Authentication
Service

AuthenticationRestService This service exposes methods
concerned with server security
and authentication with the
PlanetPress Connect REST
API.

It includes methods to facilitate
the following functions:

l Authentication with the
server (username &
password / token based
authorization)

Content Creation
Service

ContentCreationRestService This service exposes methods
specific to the management of
the content creation process for
the Print context within the
workflow.

It includes methods to facilitate
the following functions:

l Creation, monitoring and
cancellation of content
creation operations for
print using either a data

Page 319

Service Name Internal Name Description

set, data records or JSON
as input

l Getting a list of all the
active operations on the
server

l Getting the result of a
content creation operation
for print

l Creation of single record
preview PDFs using either
a data file, data record or
JSON as input

Content Item
Entity Service

ContentItemEntityRestService This service exposes methods
specific to the access and
management of content item
entities internal to the server.

It includes methods to facilitate
the following functions:

l Getting the data record ID
associated with a content
item

l Getting and updating of
content item properties

Content Set
Entity Service

ContentSetEntityRestService This service exposes methods
specific to the access and
management of content set
entities internal to the server.

It includes methods to facilitate
the following functions:

l Getting all the content set

Page 320

Service Name Internal Name Description

IDs within the server
l Getting the content item
IDs contained within a
content set

l Getting the page details for
a content set

l Getting and updating of
content set properties

l Deletion of content sets
from the server

Data Record
Entity Service

DataRecordEntityRestService This service exposes methods
specific to the access and
management of data record
entities internal to the server.

It includes methods to facilitate
the following functions:

l Addition of new data
records to a data set

l Addition of new nested
data records to a data
record

l Getting and updating of
data record values

l Getting and updating of
data record properties

Data Set Entity
Service

DataSetEntityRestService This service exposes methods
specific to the access and
management of data set entities
internal to the server.

It includes methods to facilitate

Page 321

Service Name Internal Name Description

the following functions:

l Getting all the data set IDs
within the server

l Getting the data record IDs
contained within a data set

l Getting and updating of
data set properties

l Deletion of data sets from
the server

Data Mapping
Service

DataminingRestService This service exposes methods
specific to the management of
the data mapping process within
the workflow.

It includes methods to facilitate
the following functions:

l Creation, monitoring,
cancellation and validation
of data mapping
operations using a data file
as input

l Creation, monitoring and
cancellation of data
mapping operations using
a PDF/VT file as input

l Getting a list of all the
active operations on the
server

l Getting the result of a data
mapping operation

Document Entity DocumentEntityRestService This service exposes methods

Page 322

Service Name Internal Name Description

Service specific to the access and
management of document
entities internal to the server.

It includes methods to facilitate
the following functions:

l Getting and updating of
document metadata
properties

Document Set
Entity Service

DocumentSetEntityRestService This service exposes methods
specific to the access and
management of document set
entities internal to the server.

It includes methods to facilitate
the following functions:

l Getting the document IDs
contained within a
document set

l Getting and updating of
document set metadata
properties

Content Creation
(Email) Service

EmailExportRestService This service exposes methods
specific to the management of
the content creation process for
the Email context within the
workflow.

It includes methods to facilitate
the following functions:

l Creation, monitoring and

Page 323

Service Name Internal Name Description

cancellation of content
creation operations for
email using data records or
JSON as input

l Getting a list of all the
active operations on the
server

l Getting the result of a
content creation operation
for email

Entity Service EntityRestService This service exposes methods
specific to the querying and
selection of data entities internal
to the server.

It includes methods to facilitate
the following functions:

l Finding of data entities in
the server using specific
search criteria

File Store
Service

FilestoreRestService This service exposes methods
specific to the management of
input and output files via the file
store on the PlanetPress
Connect server.

It includes methods to facilitate
the following functions:

l Uploading of data files and
data mapping
configurations to the file
store

Page 324

Service Name Internal Name Description

l Uploading of design
templates to the file store

l Uploading of job creation
and output creation presets
to the file store

l Download of managed
files from the file store

l Deletion of managed files
from the file store

Content Creation
(HTML) Service

HTMLMergeRestService This service exposes methods
specific to the management of
the content creation process for
theWeb context within the
workflow.

It includes methods to facilitate
the following functions:

l Creation of HTML output
for a specific data record or
JSON input

l Creation of HTML output
from a design template
only (no input data)

l Getting specific resources
contained within a design
template

Job Creation
Service

JobCreationRestService This service exposes methods
specific to the management of
the job creation process within
the workflow.

It includes methods to facilitate
the following functions:

Page 325

Service Name Internal Name Description

l Creation, monitoring and
cancellation of job creation
operations using either
content sets or content
items as input

l Getting a list of all the
active operations on the
server

l Getting the result of a job
creation operation

Job Entity
Service

JobEntityRestService This service exposes methods
specific to the access and
management of job entities
internal to the server.

It includes methods to facilitate
the following functions:

l Getting the data record and
content item IDs
associated with a job

l Getting the job segment
IDs contained within a job

l Getting and updating of job
properties

l Getting and updating of job
metadata properties

Job Segment
Entity Service

JobSegmentEntityRestService This service exposes methods
specific to the access and
management of job segment
entities internal to the server.

It includes methods to facilitate
the following functions:

Page 326

Service Name Internal Name Description

l Getting the document set
IDs contained within a job
segment

l Getting and updating of job
segment metadata
properties

Job Set Entity
Service

JobSetEntityRestService This service exposes methods
specific to the access and
management of job set entities
internal to the server.

It includes methods to facilitate
the following functions:

l Getting all the job set IDs
within the server

l Getting the job IDs
contained within a job set

l Getting and updating of job
set properties

l Getting and updating of job
set metadata properties

l Deletion of job sets from
the server

Output Creation
Service

OutputCreationRestService This service exposes methods
specific to the management of
the output creation process
within the workflow.

It includes methods to facilitate
the following functions:

l Creation, monitoring and

Page 327

Service Name Internal Name Description

cancellation of output
creation operations using
either a job set or jobs as
input

l Getting a list of all the
active operations on the
server

l Getting the result of an
output creation operation

l Running of +PReS
Enhance workflow
configurations via the
Weaver engine

All-In-One
Service

PrintRestService This service exposes methods
specific to the management of
the All-In-One process within the
workflow.

It includes methods to facilitate
the following functions:

l Creation, monitoring and
cancellation of All-In-One
operations using a variety
of managed file and data
entity input combinations

l Creation of synchronous
All-In-One operations
using a data file as input

l Getting a list of all the
active operations on the
server

l Getting the result of an All-
In-One operation

Page 328

Authentication Service
The following table is a summary of the resources and methods available in the Authentication
service:

Method Name Uniform Resource Identifier (URI) Method Type

Service Handshake /authentication GET

Authenticate/Login to Server /authentication/login POST

Service Version /authentication/version GET

Page 329

Service Handshake
Queries the availability of the Authentication service.

Type: GET

URI: /rest/serverengine/authentication

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
AuthenticationRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 330

http://localhost:9340/rest/serverengine/authentication

Authenticate/Login to Server
Submits an authentication request (using credentials) to the PlanetPress Connect server and if
successful provides access to the various other REST API services available.

Request takes no content, but requires an additional Authorization header which contains a
base64 encoded set of credentials (basic user name & password). On success, the response
with return an authorization token which can then be used as an additional auth_token header
in any future requests made to the REST API services.

Warning

If server security settings are enabled and a request is made to any resource of any
service in the REST API, if that request contains no authorization token and no
Authorization header, then the response will come back as Unauthorized and will contain
an additionalWWW-Authenticate response header.

Type: POST

URI: /rest/serverengine/authentication/login

Parameters: –

Request:
Add.
Headers:

Authorization – Basic User name & Password
credentials (Base64 encoded)

Content: –

Content
Type:

–

Response:
Add.
Headers:

WWW-Authenticate – BASIC (Prompt for Basic
Authorization Credentials when no Authorization
header specified)

Page 331

http://localhost:9340/rest/serverengine/authentication/login

Content: Authorization Token

Content
Type:

text/plain

Status: l 200 OK – Server authentication successful,
new token generated

l 401 Unauthorized – Server authentication has
failed or no credentials have been
provided/specified in request header

Page 332

Service Version
Returns the version of the Authentication service.

Type: GET

URI: /rest/serverengine/authentication/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 333

http://localhost:9340/rest/serverengine/authentication/version

Content Creation Service
The following table is a summary of the resources and methods available in the Content
Creation service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/contentcreation GET

Process Content Creation /workflow/contentcreation/{templateId}/
{dataSetId}

POST

Process Content Creation
(By Data Record) (JSON)

/workflow/contentcreation/{templateId} POST

Process Content Creation
(By Data) (JSON)

/workflow/contentcreation/{templateId} POST

Create Preview PDF /workflow/contentcreation/pdfpreview/
{templateId}/{dmConfigId}

POST

Create Preview PDF (By
Data Record)

/workflow/contentcreation/pdfpreviewdirect GET

Create Preview PDF (By
Data) (JSON)

/workflow/contentcreation/pdfpreview/
{templateId}

POST

Get All Operations /workflow/contentcreation/getOperations GET

Get Progress of Operation /workflow/contentcreation/getProgress/
{operationId}

GET

Get Result of Operation /workflow/contentcreation/getResult/
{operationId}

POST

Cancel an Operation /workflow/contentcreation/cancel/
{operationId}

POST

Page 334

Method Name Uniform Resource Identifier (URI) Method
Type

Service Version /workflow/contentcreation/version GET

Page 335

Service Handshake
Queries the availability of the Content Creation service.

Type: GET

URI: /rest/serverengine/workflow/contentcreation

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
ContentCreationRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 336

http://localhost:9340/rest/serverengine/workflow/contentcreation

Process Content Creation
Submits a request to initiate a new Content Creation operation.

Request takes no content, and on success returns a response containing additional headers
that specify the ID of the new operation as well as link URLs that can be used to retrieve further
information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/{templateId}/{dataSetId}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design
template in File Store

l dataSetId – the ID of the Data Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

l operationId – Operation ID of new Content
Creation operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Content –

Page 337

http://localhost:9340/rest/serverengine/workflow/contentcreation/{templateId}/{dataSetId}

Type:

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template or Data Set
entity not found in File Store/Server

Page 338

Process Content Creation (By Data Record) (JSON)
Submits a request to initiate a new Content Creation operation.

Request takes a JSON Identifier List of Data Record IDs as content, and on success returns a
response containing additional headers that specify the ID of the new operation as well as link
URLs that can be used to retrieve further information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/{templateId}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design
template in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Identifier List specifying a list of Data Record
entity IDs

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Content
Creation operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Content –

Page 339

http://localhost:9340/rest/serverengine/workflow/contentcreation/{templateId}

Type:

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template not found in
File Store

Page 340

Process Content Creation (By Data) (JSON)
Submits a request to initiate a new Content Creation operation.

Request takes a JSON Record Data List of the data values for one or more Data Records as
content, and on success returns a response containing additional headers that specify the ID of
the new operation as well as link URLs that can be used to retrieve further information/cancel
the operation.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/{templateId}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design
template in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Record Data List specifying a list of data
values for the Data Record(s)

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Content
Creation operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Page 341

http://localhost:9340/rest/serverengine/workflow/contentcreation/{templateId}

Content
Type:

–

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template not found in
File Store

Page 342

Create Preview PDF
Submits a request to create a preview PDF of the print output for a single data record.

Request takes binary file data as content, and on success returns a response containing the
Managed File ID for the newly created preview PDF file.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/pdfpreview/{templateId}/
{dmConfigId}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design
template in File Store

l dmConfigId – the Managed File ID (or Name) of the Data
Mapping configuration in File Store

Query:

l persist – whether the Data Record produced will be persisted in
Server (Default Value: true)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: Data File (File)

Content
Type:

application/octet-stream

Response:
Add.
Headers:

–

Page 343

http://localhost:9340/rest/serverengine/workflow/contentcreation/pdfpreview/{templateId}/{dmConfigId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/pdfpreview/{templateId}/{dmConfigId}

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Creation of preview PDF in File
Store successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template, Data
Mapping configuration or Data Record entity
not found in File Store/Server

Page 344

Create Preview PDF (By Data Record)
Submits a request to create a preview PDF of the print output for a single data record.

Request takes no content, and on success returns a response containing the Managed File ID
for the newly created preview PDF file.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/pdfpreviewdirect

Parameters: Query:

l templateId – the Managed File ID (or Name) of the design
template in File Store

l dataRecordId – the ID of the Data Record entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Creation of preview PDF in File
Store successful

Page 345

http://localhost:9340/rest/serverengine/workflow/contentcreation/pdfpreviewdirect

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template or Data
Record entity not found in File Store/Server

Page 346

Create Preview PDF (By Data) (JSON)
Submits a request to create a preview PDF of the print output for a single data record.

Request takes a JSON Record Data List of the data values for the Data Record as content, and
on success returns a response containing the Managed File ID for the newly created preview
PDF file.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/pdfpreview/{templateId}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design
template in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Record Data List specifying a list of data
values for the Data Record

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Creation of preview PDF in File

Page 347

http://localhost:9340/rest/serverengine/workflow/contentcreation/pdfpreview/{templateId}

Store successful
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template not found in
File Store

Page 348

Get All Operations
Returns a list of all the workflow operations actively running on the Server.

Request takes no content, and on success returns a response containing a JSON Operations
List of all the actively running operations.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/getOperations

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Operations List of all the actively running
operations in Server

Content
Type:

application/json

Status: l 200 OK – List of actively running operations
successfully retrieved

l 401 Unauthorized – Server authentication
required

Page 349

http://localhost:9340/rest/serverengine/workflow/contentcreation/getOperations

l 403 Forbidden – Server authentication has
failed or expired

Page 350

Get Progress of Operation
Retrieves the progress of a running Content Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing the current value of
operation progress (values ranging from 0 – 100, followed by the value of 'done' on
completion).

Type: GET

URI: /rest/serverengine/workflow/contentcreation/getProgress/{operationId}

Parameters: Path:

l operationId – Operation ID of Content Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Progress value of Content Creation operation

Content
Type:

text/plain

Status: l 200 OK – Progress of operation successfully
retrieved

l 401 Unauthorized – Server authentication

Page 351

http://localhost:9340/rest/serverengine/workflow/contentcreation/getProgress/{operationId}

required
l 403 Forbidden – Server authentication has
failed or expired

Page 352

Get Result of Operation
Retrieves the final result of a completed Content Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing the IDs of the Content
Sets produced.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/getResult/{operationId}

Parameters: Path:

l operationId – Operation ID of Content Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Content Set IDs

Content
Type:

text/plain

Status: l 200 OK – Result of completed operation
successfully retrieved

l 401 Unauthorized – Server authentication
required

Page 353

http://localhost:9340/rest/serverengine/workflow/contentcreation/getResult/{operationId}

l 403 Forbidden – Server authentication has
failed or expired

Page 354

Cancel an Operation
Requests the cancellation of a running Content Creation operation of a specific operation ID.

Request takes no content, and on success returns a response with no content.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/cancel/{operationId}

Parameters: Path:

l operationId – Operation ID of Content Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: –

Content
Type:

–

Status: l 204 No Content – Operation cancellation
requested

l 401 Unauthorized – Server authentication
required

Page 355

http://localhost:9340/rest/serverengine/workflow/contentcreation/cancel/{operationId}

l 403 Forbidden – Server authentication has
failed or expired

Page 356

Service Version
Returns the version of the Content Creation service.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 357

http://localhost:9340/rest/serverengine/workflow/contentcreation/version

Content Item Entity Service
The following table is a summary of the resources and methods available in the Content Item
Entity service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /entity/contentitems GET

Get Data Record for Content Item /entity/contentitems/
{contentItemId}/datarecord

GET

Get Content Item Properties /entity/contentitems/
{contentItemId}/properties

GET

Update Content Item Properties /entity/contentitems/
{contentItemId}/properties

PUT

Update Multiple Content Item
Properties

/entity/contentitems/properties PUT

Service Version /entity/contentitems/version GET

Page 358

Service Handshake
Queries the availability of the Content Item Entity service.

Type: GET

URI: /rest/serverengine/entity/contentitems

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
ContentItemEntityRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 359

http://localhost:9340/rest/serverengine/entity/contentitems

Get Data Record for Content Item
Returns the ID of the corresponding Data Record for a specific Content Item entity.

Request takes no content, and on success returns a response containing a JSON Data Record
Identifier for the Data Record of the Content Item.

Type: GET

URI: /rest/serverengine/entity/contentitems/{contentItemId}/datarecord

Parameters: Path:

l contentItemId – the ID of the Content Item entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Data Record Identifier for the Data Record of
Content Item

Content
Type:

application/json

Status: l 200 OK – Data Record Identifier returned
l 401 Unauthorized – Server authentication
required

Page 360

http://localhost:9340/rest/serverengine/entity/contentitems/{contentItemId}/datarecord

l 403 Forbidden – Server authentication has
failed or expired

Page 361

Get Content Item Properties
Returns a list of the properties for a specific Content Item entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the properties for the Content Item.

Type: GET

URI: /rest/serverengine/entity/contentitems/{contentItemId}/properties

Parameters: Path:

l contentItemId – the ID of the Content Item entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Name/Value List (Properties Only) of
properties for Content Item

Content
Type:

application/json

Status: l 200 OK – Content Item entity properties
successfully retrieved

l 401 Unauthorized – Server authentication

Page 362

http://localhost:9340/rest/serverengine/entity/contentitems/{contentItemId}/properties

required
l 403 Forbidden – Server authentication has
failed or expired

Page 363

Update Content Item Properties
Submits a request to update (and replace) the properties for a specific Content Item entity in the
Server.

Request takes a JSON Name/Value List as content (the Content Item ID and the new
properties), and on success returns a response containing the result of the request for
update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/contentitems/{contentItemId}/properties

Parameters: Path:

l contentItemId – the ID of the Content Item entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of properties for Content Item

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: Result of request to update Content Item

Content
Type:

text/plain

Status: l 200 OK – Update of Content Item properties
successfully requested (response of “true” for

Page 364

http://localhost:9340/rest/serverengine/entity/contentitems/{contentItemId}/properties

success)
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or
Content Item ID mismatch in JSON

Page 365

Update Multiple Content Item Properties
Submits a request to update one or more properties for one or more Content Item entities in the
Server.

Request takes JSON Name/Value Lists as content (each with the Content Item ID and the new
properties), and on success returns a response containing no content.

Type: PUT

URI: /rest/serverengine/entity/contentitems/properties

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value Lists of the properties of the
Content Items

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: –

Content
Type:

–

Status: l 200 OK – Properties of Content Item entities
successfully updated

l 401 Unauthorized – Server authentication
required

Page 366

http://localhost:9340/rest/serverengine/entity/contentitems/properties

l 403 Forbidden – Server authentication has
failed or expired

Page 367

Service Version
Returns the version of the Content Item Entity service.

Type: GET

URI: /rest/serverengine/entity/contentitems/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 368

http://localhost:9340/rest/serverengine/entity/contentitems/version

Content Set Entity Service
The following table is a summary of the resources and methods available in the Content Set
Entity service:

Method Name Uniform Resource Identifier (URI) Method
Type

Get All Content Sets /entity/contentsets GET

Get Content Items for Content
Set

/entity/contentsets/{contentSetId} GET

Get Page Details for Content
Set

/entity/contentsets/{contentSetId}/pages GET

Delete Content Set Entity /entity/contentsets/{contentSetId}/delete POST

Get Content Set Properties /entity/contentsets/
{contentSetId}/properties

GET

Update Content Set Properties /entity/contentsets/
{contentSetId}/properties

PUT

Service Version /entity/contentsets/version GET

Page 369

Get All Content Sets
Returns a list of all the Content Set entities currently contained within the Server.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Content Sets.

Type: GET

URI: /rest/serverengine/entity/contentsets

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Identifier List of all the Content Sets in Server

Content
Type:

application/json

Status: l 200 OK – Identifier List of Content Sets
returned

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 370

http://localhost:9340/rest/serverengine/entity/contentsets

Get Content Items for Content Set
Returns a list of all the Content Item entities (and their corresponding Data Record entities)
contained within a specific Content Set entity.

Request takes no content, and on success returns a response containing a JSON Content Item
Identifier List of all the Content Items in the Content Set.

Type: GET

URI: /rest/serverengine/entity/contentsets/{contentSetId}

Parameters: Path:

l contentSetId – the ID of the Content Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Content Item Identifier List of all the Content
Items in Content Set

Content
Type:

application/json

Status: l 200 OK – Content Item Identifier List returned
l 401 Unauthorized – Server authentication

Page 371

http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}

required
l 403 Forbidden – Server authentication has
failed or expired

Page 372

Get Page Details for Content Set
Returns the page details for a specific Content Set entity, as either a summary or a list (broken
down by Content Item entity).

Request takes no content, and on success returns a response containing either:

l a JSON Page Details Summary of the page details for the Content Set, or
l a JSON Page Details List of the page details for each Content Item in the Content Set

Type: GET

URI: /rest/serverengine/entity/contentsets/{contentSetId}/pages

Parameters: Path:

l contentSetId – the ID of the Content Set entity in Server

Query:

l detail – Return a list of details for each Content Item in the Content
Set instead of a summary (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Page Details Summary containing page

Page 373

http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}/pages

details for Content Set

Content
Type:

application/json

Status: l 200 OK – Content Set entity page details
successfully retrieved

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Response
(Detail): Add.

Headers:
–

Content: JSON Page Details List containing page details for
each Content Item in Content Set

Content
Type:

application/json

Status: l 200 OK – Content Set entity page details
successfully retrieved

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 374

Delete Content Set Entity
Submits a request for a specific Content Set entity to be marked for deletion from the Server.

Request takes no content, and on success returns a response containing the result of the
request for deletion (“true” or “false”).

Type: POST

URI: /rest/serverengine/entity/contentsets/{contentSetId}/delete

Parameters: Path:

l contentSetId – the ID of the Content Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Result of request for Content Set removal

Content
Type:

text/plain

Status: l 200 OK – Deletion of Content Set successfully
requested from Server (response of “true” for
success or “false” for failure)

l 401 Unauthorized – Server authentication

Page 375

http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}/delete

required
l 403 Forbidden – Server authentication has
failed or expired

Page 376

Get Content Set Properties
Returns a list of the properties for a specific Content Set entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the properties for the Content Set.

Type: GET

URI: /rest/serverengine/entity/contentsets/{contentSetId}/properties

Parameters: Path:

l contentSetId – the ID of the Content Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Name/Value List (Properties Only) of
properties for Content Set

Content
Type:

application/json

Status: l 200 OK – Content Set entity properties
successfully retrieved

l 401 Unauthorized – Server authentication

Page 377

http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}/properties

required
l 403 Forbidden – Server authentication has
failed or expired

Page 378

Update Content Set Properties
Submits a request to update (and replace) the properties for a specific Content Set entity in the
Server.

Request takes a JSON Name/Value List as content (the Content Set ID and the new
properties), and on success returns a response containing the result of the request for
update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/contentsets/{contentSetId}/properties

Parameters: Path:

l contentSetId – the ID of the Content Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of properties for Content Set

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: Result of request to update Content Set

Content
Type:

text/plain

Status: l 200 OK – Update of Content Set properties
successfully requested (response of “true” for

Page 379

http://localhost:9340/rest/serverengine/entity/contentsets/{contentSetId}/properties

success)
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or
Content Set ID mismatch in JSON

Page 380

Service Version
Returns the version of the Content Set Entity service.

Type: GET

URI: /rest/serverengine/entity/contentsets/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 381

http://localhost:9340/rest/serverengine/entity/contentsets/version

Data Record Entity Service
The following table is a summary of the resources and methods available in the Data Record
Entity service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /entity/datarecords GET

Add Data Records /entity/datarecords POST

Get Data Record Values /entity/datarecords/
{dataRecordId}/values

GET

Update Data Record Values /entity/datarecords/
{dataRecordId}/values

PUT

Get Data Record Properties /entity/datarecords/
{dataRecordId}/properties

GET

Update Data Record Properties /entity/datarecords/
{dataRecordId}/properties

PUT

Get Multiple Data Record Values /entity/datarecords/values GET

Get Multiple Data Record Values
(JSON)

/entity/datarecords/values POST

Update Multiple Data Record
Values

/entity/datarecords PUT

Update Multiple Data Record
Properties

/entity/datarecords/properties PUT

Service Version /entity/datarecords/version GET

Page 382

Service Handshake
Queries the availability of the Data Record Entity service.

Type: GET

URI: /rest/serverengine/entity/datarecords

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
DataRecordEntityRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 383

http://localhost:9340/rest/serverengine/entity/datarecords

Add Data Records
Submits a request to add one or more Data Record entities to one or more entities in the Server
as either:

l a Data Record of an existing Data Set entity in the Server, or
l a nested Data Record in a Data Table of an existing Data Record entity in the Server

Request takes JSON New Record Lists as content (each with the Data Set/Data Record ID,
Data Table and the new records/values), and on success returns a response containing no
content.

Type: POST

URI: /rest/serverengine/entity/datarecords

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON New Record Lists of the new Data Records

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: –

Content
Type:

–

Status: l 200 OK – Data Records for Data Set/Data

Page 384

http://localhost:9340/rest/serverengine/entity/datarecords

Record entities successfully added
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – JSON New Record
Lists invalid or missing required structure

Page 385

Get Data Record Values
Returns a list of the values for a specific Data Record entity, and potentially the values of any
nested Data Records (if recursive).

Request takes no content, and on success returns a response containing either:

l a JSON Record Content List of all the values for the Data Record, or
l a JSON Record Content List (Explicit Types) of all the values and data types for the Data
Record

Type: GET

URI: /rest/serverengine/entity/datarecords/{dataRecordId}/values

Parameters: Path:

l dataRecordId – the ID of the Data Record entity in Server

Query:

l recursive – recurse all Data Tables within the Data Record and
retrieve the values of any nested Data Records also (Default
Value: false)

l explicitTypes – retrieve both values and data types of the Data
Record (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Page 386

http://localhost:9340/rest/serverengine/entity/datarecords/{dataRecordId}/values

Response:
Add.
Headers:

–

Content: JSON Record Content List of the values for Data
Record

Content
Type:

application/json

Status: l 200 OK – Data Record entity values
successfully retrieved

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or
invalid Data Record ID specified

Response
(Explicit
Types):

Add.
Headers:

–

Content: JSON Record Content List (Explicit Types) of the
values and data types for Data Record

Content
Type:

application/json

Status: l 200 OK – Data Record entity values and data
types successfully retrieved

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or

Page 387

invalid Data Record ID specified

Page 388

Update Data Record Values
Submits a request to update one or more values for a specific Data Record entity in the Server.

Request takes a JSON Record Content List (Fields Only) as content (the Data Record ID and
the new values), and on success returns a response containing no content.

Type: PUT

URI: /rest/serverengine/entity/datarecords/{dataRecordId}/values

Parameters: Path:

l dataRecordId – the ID of the Data Record entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Record Content List (Fields Only) of the
values for Data Record

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: –

Content
Type:

–

Status: l 200 OK – Data Record entity values
successfully updated

l 401 Unauthorized – Server authentication

Page 389

http://localhost:9340/rest/serverengine/entity/datarecords/{dataRecordId}/values

required
l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or Data
Record ID mismatch in JSON

Page 390

Get Data Record Properties
Returns a list of the properties for a specific Data Record entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the properties for the Data Record.

Type: GET

URI: /rest/serverengine/entity/datarecords/{dataRecordId}/properties

Parameters: Path:

l dataRecordId – the ID of the Data Record entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Name/Value List (Properties Only) of
properties for Data Record

Content
Type:

application/json

Status: l 200 OK – Data Record entity properties
successfully retrieved

l 401 Unauthorized – Server authentication

Page 391

http://localhost:9340/rest/serverengine/entity/datarecords/{dataRecordId}/properties

required
l 403 Forbidden – Server authentication has
failed or expired

Page 392

Update Data Record Properties
Submits a request to update (and replace) the properties for a specific Data Record entity in the
Server.

Request takes a JSON Name/Value List as content (the Data Record ID and the new
properties), and on success returns a response containing the result of the request for
update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/datarecords/{dataRecordId}/properties

Parameters: Path:

l dataRecordId – the ID of the Data Record entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of properties for Data Record

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: Result of request to update Data Record

Content
Type:

text/plain

Status: l 200 OK – Update of Data Record properties
successfully requested (response of “true” for

Page 393

http://localhost:9340/rest/serverengine/entity/datarecords/{dataRecordId}/properties

success)
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or Data
Record ID mismatch in JSON

Page 394

Get Multiple Data Record Values
Returns a list of the values for one or more Data Record entities, and potentially the values of
any nested Data Records (if recursive).

Request takes no content, and on success returns a response containing JSON Record
Content Lists of all the values for each Data Record.

Type: GET

URI: /rest/serverengine/entity/datarecords/values

Parameters: Query:

l id – the ID of each Data Record entity in Server
l recursive – recurse all Data Tables within each Data Record and
retrieve the values of any nested Data Records also (Default
Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Record Content Lists of the values for each
Data Record

Content
Type:

application/json

Page 395

http://localhost:9340/rest/serverengine/entity/datarecords/values

Status: l 200 OK – Data Record entity values
successfully retrieved

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or
invalid Data Record ID specified

Page 396

Get Multiple Data Record Values (JSON)
Returns a list of the values for one or more Data Record entities, and potentially the values of
any nested Data Records (if recursive).

Request takes a JSON Data Record Identifier List (with Parameters) of the Data Record IDs as
content, and on success returns a response containing either:

l JSON Record Content Lists of all the values for each Data Record, or
l JSON Record Content Lists (Explicit Types) of all the values and data types for each Data
Record

Type: POST

URI: /rest/serverengine/entity/datarecords/values

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if
server security settings enabled)

Content: JSON Data Record Identifier List (with
Parameters) specifying the Data Record
entity IDs

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: JSON Record Content Lists of the
values for each Data Record

Content application/json

Page 397

http://localhost:9340/rest/serverengine/entity/datarecords/values

Type:

Status: l 200 OK – Data Record entity
values successfully retrieved

l 401 Unauthorized – Server
authentication required

l 403 Forbidden – Server
authentication has failed or
expired

l 500 Internal Server Error – Server
error or invalid Data Record ID
specified

Response (Explicit Types):
Add.
Headers:

–

Content: JSON Record Content Lists (Explicit
Types) of the values and data types for
each Data Record

Content
Type:

application/json

Status: l 200 OK – Data Record entity
values and data types
successfully retrieved

l 401 Unauthorized – Server
authentication required

l 403 Forbidden – Server
authentication has failed or
expired

l 500 Internal Server Error – Server
error or invalid Data Record ID
specified

Page 398

Update Multiple Data Record Values
Submits a request to update one or more values for one or more Data Record entities in the
Server.

Request takes JSON Record Content Lists (Fields Only) as content (each with the Data Record
ID and the new values), and on success returns a response containing no content.

Type: PUT

URI: /rest/serverengine/entity/datarecords

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Record Content Lists (Fields Only) of the
values for the Data Records

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: –

Content
Type:

–

Status: l 200 OK – Values of Data Record entities
successfully updated

l 401 Unauthorized – Server authentication
required

Page 399

http://localhost:9340/rest/serverengine/entity/datarecords

l 403 Forbidden – Server authentication has
failed or expired

Page 400

Update Multiple Data Record Properties
Submits a request to update one or more properties for one or more Data Record entities in the
Server.

Request takes JSON Name/Value Lists as content (each with the Data Record ID and the new
properties), and on success returns a response containing no content.

Type: PUT

URI: /rest/serverengine/entity/datarecords/properties

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value Lists of the properties of the Data
Records

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: –

Content
Type:

–

Status: l 200 OK – Properties of Data Record entities
successfully updated

l 401 Unauthorized – Server authentication
required

Page 401

http://localhost:9340/rest/serverengine/entity/datarecords/properties

l 403 Forbidden – Server authentication has
failed or expired

Page 402

Service Version
Returns the version of the Data Record Entity service.

Type: GET

URI: /rest/serverengine/entity/datarecords/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 403

http://localhost:9340/rest/serverengine/entity/datarecords/version

Data Set Entity Service
The following table is a summary of the resources and methods available in the Data Set Entity
service:

Method Name Uniform Resource Identifier (URI) Method Type

Get All Data Sets /entity/datasets GET

Get Data Records for Data Set /entity/datasets/{dataSetId} GET

Delete Data Set Entity /entity/datasets/{dataSetId}/delete POST

Get Data Set Properties /entity/datasets/{dataSetId}/properties GET

Update Data Set Properties /entity/datasets/{dataSetId}/properties PUT

Service Version /entity/datasets/version GET

Page 404

Get All Data Sets
Returns a list of all the Data Set entities currently contained within the Server.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Data Sets.

Type: GET

URI: /rest/serverengine/entity/datasets

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Identifier List of all the Data Sets in Server

Content
Type:

application/json

Status: l 200 OK – Identifier List of Data Sets returned
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 405

http://localhost:9340/rest/serverengine/entity/datasets

Get Data Records for Data Set
Returns a list of all the Data Record entities contained within a specific Data Set entity.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Data Records in the Data Set.

Type: GET

URI: /rest/serverengine/entity/datasets/{dataSetId}

Parameters: Path:

l dataSetId – the ID of the Data Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Identifier List of all the Data Records in Data
Set

Content
Type:

application/json

Status: l 200 OK – Identifier List of Data Records
returned

l 401 Unauthorized – Server authentication

Page 406

http://localhost:9340/rest/serverengine/entity/datasets/{dataSetId}

required
l 403 Forbidden – Server authentication has
failed or expired

Page 407

Delete Data Set Entity
Submits a request for a specific Data Set entity to be marked for deletion from the Server.

Request takes no content, and on success returns a response containing the result of the
request for deletion (“true” or “false”).

Type: POST

URI: /rest/serverengine/entity/datasets/{dataSetId}/delete

Parameters: Path:

l dataSetId – the ID of the Data Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Result of request for Data Set removal

Content
Type:

text/plain

Status: l 200 OK – Deletion of Data Set successfully
requested from Server (response of “true” for
success or “false” for failure)

l 401 Unauthorized – Server authentication

Page 408

http://localhost:9340/rest/serverengine/entity/datasets/{dataSetId}/delete

required
l 403 Forbidden – Server authentication has
failed or expired

Page 409

Get Data Set Properties
Returns a list of the properties for a specific Data Set entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the properties for the Data Set.

Type: GET

URI: /rest/serverengine/entity/datasets/{dataSetId}/properties

Parameters: Path:

l dataSetId – the ID of the Data Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Name/Value List (Properties Only) of
properties for Data Set

Content
Type:

application/json

Status: l 200 OK – Data Set entity properties
successfully retrieved

l 401 Unauthorized – Server authentication

Page 410

http://localhost:9340/rest/serverengine/entity/datasets/{dataSetId}/properties

required
l 403 Forbidden – Server authentication has
failed or expired

Page 411

Update Data Set Properties
Submits a request to update (and replace) the properties for a specific Data Set entity in the
Server.

Request takes a JSON Name/Value List as content (the Data Set ID and the new properties),
and on success returns a response containing the result of the request for update/replacement
(“true”).

Type: PUT

URI: /rest/serverengine/entity/datasets/{dataSetId}/properties

Parameters: Path:

l dataSetId – the ID of the Data Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of properties for Data Set

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: Result of request to update Data Set

Content
Type:

text/plain

Status: l 200 OK – Update of Data Set properties
successfully requested (response of “true” for

Page 412

http://localhost:9340/rest/serverengine/entity/datasets/{dataSetId}/properties

success)
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or Data
Set ID mismatch in JSON

Page 413

Service Version
Returns the version of the Data Set Entity service.

Type: GET

URI: /rest/serverengine/entity/datasets/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 414

http://localhost:9340/rest/serverengine/entity/datasets/version

Data Mapping Service
The following table is a summary of the resources and methods available in the Data Mapping
service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/datamining GET

Process Data Mapping /workflow/datamining/{configId}/
{dataFileId}

POST

Process Data Mapping (JSON) /workflow/datamining/{configId} POST

Process Data Mapping (PDF/VT to
Data Set)

/workflow/datamining/pdfvtds/
{dataFileId}

POST

Process Data Mapping (PDF/VT to
Content Set)

/workflow/datamining/pdfvtcs/
{dataFileId}

POST

Get All Operations /workflow/datamining/getOperations GET

Get Progress of Operation /workflow/datamining/getProgress/
{operationId}

GET

Get Result of Operation /workflow/datamining/getResult/
{operationId}

POST

Cancel an Operation /workflow/datamining/cancel/
{operationId}

POST

Service Version /workflow/datamining/version GET

Page 415

Service Handshake
Queries the availability of the Data Mapping service.

Type: GET

URI: /rest/serverengine/workflow/datamining

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
DataMiningRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 416

http://localhost:9340/rest/serverengine/workflow/datamining

Process Data Mapping
Submits a request to initiate a new Data Mapping operation.

Request takes no content, and on success returns a response containing additional headers
that specify the ID of the new operation as well as link URLs that can be used to retrieve further
information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/datamining/{configId}/{dataFileId}

Parameters: Path:

l configId – the Managed File ID (or Name) of the Data Mapping
configuration in File Store

l dataFileId – the Managed File ID (or Name) of the data file in File
Store

Query:

l validate – Only validate the Data Mapping operation to check for
mapping errors (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

l operationId – Operation ID of new Data
Mapping operation

l Link – Contains multiple link URLs that can be

Page 417

http://localhost:9340/rest/serverengine/workflow/datamining/{configId}/{dataFileId}

used to retrieve further information/cancel the
operation

Content: –

Content
Type:

–

Status: l 202 Accepted – Creation of new operation
successful

l 400 Bad Request – Data file or Data Mapping
Configuration not found in File Store

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Response
(Validate): Add.

Headers:
l operationId – Operation ID of new Data
Mapping operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Content
Type:

–

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 418

l 500 Internal Server Error – Data file or Data
Mapping Configuration not found in File Store

Page 419

Process Data Mapping (JSON)
Submits a request to initiate a new Data Mapping operation.

Request takes a JSON Identifier (Managed File) of the data file's Managed File ID or Name as
content, and on success returns a response containing additional headers that specify the ID of
the new operation as well as link URLs that can be used to retrieve further information/cancel
the operation.

Type: POST

URI: /rest/serverengine/workflow/datamining/{configId}

Parameters: Path:

l configId – the Managed File ID (or Name) of the Data Mapping
configuration in File Store

Query:

l validate – Only validate the Data Mapping operation to check for
mapping errors (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Identifier (Managed File) specifying Managed
File ID or Name of Data file in File Store

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Data
Mapping operation

l Link – Contains multiple link URLs that can be

Page 420

http://localhost:9340/rest/serverengine/workflow/datamining/{configId}

used to retrieve further information/cancel the
operation

Content: –

Content
Type:

–

Status: l 202 Accepted – Creation of new operation
successful

l 400 Bad Request – Data file or Data Mapping
Configuration not found in File Store

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – JSON Identifier bad
or missing

Response
(Validate): Add.

Headers:
l operationId – Operation ID of new Data
Mapping operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Content
Type:

–

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

Page 421

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – JSON Identifier bad
or missing, or Data file or Data Mapping
Configuration not found in File Store

Page 422

Process Data Mapping (PDF/VT to Data Set)
Submits a request to initiate a new Data Mapping operation using a PDF/VT data file
specifically.

No Data Mapping configuration is specified, and a Data Set will be created based on the
default properties extracted from the metadata of the PDF/VT data file.

Request takes no content, and on success returns a response containing additional headers
that specify the ID of the new operation as well as link URLs that can be used to retrieve further
information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/datamining/pdfvtds/{dataFileId}

Parameters: Path:

l dataFileId – the Managed File ID (or Name) of the PDF/VT data
file in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

l operationId – Operation ID of new Data
Mapping operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Page 423

http://localhost:9340/rest/serverengine/workflow/datamining/pdfvtds/{dataFileId}

Content: –

Content
Type:

–

Status: l 202 Accepted – Creation of new operation
successful

l 400 Bad Request – PDF/VT data file not found
in File Store

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 424

Process Data Mapping (PDF/VT to Content Set)
Submits a request to initiate a new Data Mapping operation using a PDF/VT data file
specifically.

No Data Mapping configuration or design template are specified, and a Content Set will be
created based on the default properties extracted from the metadata of the PDF/VT data file.

Request takes no content, and on success returns a response containing additional headers
that specify the ID of the new operation as well as link URLs that can be used to retrieve further
information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/datamining/pdfvtcs/{dataFileId}

Parameters: Path:

l dataFileId – the Managed File ID (or Name) of the PDF/VT data
file in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

l operationId – Operation ID of new Data
Mapping operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Page 425

http://localhost:9340/rest/serverengine/workflow/datamining/pdfvtcs/{dataFileId}

Content: –

Content
Type:

–

Status: l 202 Accepted – Creation of new operation
successful

l 400 Bad Request – PDF/VT data file not found
in File Store

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 426

Get All Operations
Returns a list of all the workflow operations actively running on the Server.

Request takes no content, and on success returns a response containing a JSON Operations
List of all the actively running operations.

Type: GET

URI: /rest/serverengine/workflow/datamining/getOperations

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Operations List of all the actively running
operations in Server

Content
Type:

application/json

Status: l 200 OK – List of actively running operations
successfully retrieved

l 401 Unauthorized – Server authentication
required

Page 427

http://localhost:9340/rest/serverengine/workflow/datamining/getOperations

l 403 Forbidden – Server authentication has
failed or expired

Page 428

Get Progress of Operation
Retrieves the progress of a running Data Mapping operation of a specific operation ID.

Request takes no content, and on success returns a response containing the current value of
operation progress (values ranging from 0 – 100, followed by the value of 'done' on
completion).

Type: GET

URI: /rest/serverengine/workflow/datamining/getProgress/{operationId}

Parameters: Path:

l operationId – Operation ID of Data Mapping operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Progress value of Data Mapping operation

Content
Type:

text/plain

Status: l 200 OK – Progress of operation successfully
retrieved

l 401 Unauthorized – Server authentication

Page 429

http://localhost:9340/rest/serverengine/workflow/datamining/getProgress/{operationId}

required
l 403 Forbidden – Server authentication has
failed or expired

Page 430

Get Result of Operation
Retrieves the final result of a completed Data Mapping operation of a specific operation ID.

Request takes no content, and on success returns a response containing the ID of the Data Set
produced (or Content Set for a PDF/VT to Content Set specific data mapping operation).

Alternatively, if the operation was to only validate the data mapping, then a response
containing a JSON Data Mapping Validation Result will be returned instead.

Type: POST

URI: /rest/serverengine/workflow/datamining/getResult/{operationId}

Parameters: Path:

l operationId – Operation ID of Data Mapping operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Data Set ID (or Content Set ID)

Content
Type:

text/plain

Status: l 200 OK – Result of completed operation

Page 431

http://localhost:9340/rest/serverengine/workflow/datamining/getResult/{operationId}

successfully retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Response
(Validate): Add.

Headers:
–

Content: JSON Data Mapping Validation Result

Content
Type:

text/plain

Status: l 200 OK – Result of completed operation
successfully retrieved

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 432

Cancel an Operation
Requests the cancellation of a running Data Mapping operation of a specific operation ID.

Request takes no content, and on success returns a response with no content.

Type: POST

URI: /rest/serverengine/workflow/datamining/cancel/{operationId}

Parameters: Path:

l operationId – Operation ID of Data Mapping operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: –

Content
Type:

–

Status: l 204 No Content – Operation cancellation
requested

l 401 Unauthorized – Server authentication
required

Page 433

http://localhost:9340/rest/serverengine/workflow/datamining/cancel/{operationId}

l 403 Forbidden – Server authentication has
failed or expired

Page 434

Service Version
Returns the version of the Data Mapping service.

Type: GET

URI: /rest/serverengine/workflow/datamining/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 435

http://localhost:9340/rest/serverengine/workflow/datamining/version

Document Entity Service
The following table is a summary of the resources and methods available in the Document
Entity service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /entity/documents GET

Get Document Metadata Properties /entity/documents/
{documentId}/metadata

GET

Update Document Metadata
Properties

/entity/documents/
{documentId}/metadata

PUT

Service Version /entity/documents/version GET

Page 436

Service Handshake
Queries the availability of the Document Entity service.

Type: GET

URI: /rest/serverengine/entity/documents

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
DocumentEntityRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 437

http://localhost:9340/rest/serverengine/entity/documents

Get Document Metadata Properties
Returns a list of the metadata properties for a specific Document entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the metadata properties for the Document.

Type: GET

URI: /rest/serverengine/entity/documents/{documentId}/metadata

Parameters: Path:

l documentId – the ID of the Document entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Name/Value List (Properties Only) of
metadata properties for Document

Content
Type:

application/json

Status: l 200 OK – Document entity metadata properties
successfully retrieved

l 401 Unauthorized – Server authentication

Page 438

http://localhost:9340/rest/serverengine/entity/documents/{documentId}/metadata

required
l 403 Forbidden – Server authentication has
failed or expired

Page 439

Update Document Metadata Properties
Submits a request to update (and replace) the metadata properties for a specific Document
entity in the Server.

Request takes a JSON Name/Value List as content (the Document ID and the new metadata
properties), and on success returns a response containing the result of the request for
update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/documents/{documentId}/metadata

Parameters: Path:

l documentId – the ID of the Document entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of metadata properties for
Document

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: Result of request to update Document

Content
Type:

text/plain

Status: l 200 OK – Update of Document metadata

Page 440

http://localhost:9340/rest/serverengine/entity/documents/{documentId}/metadata

properties successfully requested (response of
“true” for success)

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or
Document ID mismatch in JSON

Page 441

Service Version
Returns the version of the Document Entity service.

Type: GET

URI: /rest/serverengine/entity/documents/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 442

http://localhost:9340/rest/serverengine/entity/documents/version

Document Set Entity Service
The following table is a summary of the resources and methods available in the Document Set
Entity service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /entity/documentsets GET

Get Documents for Document Set /entity/documentsets/{documentSetId} GET

Get Document Set Metadata
Properties

/entity/documentsets/
{documentSetId}/metadata

GET

Update Document Set Metadata
Properties

/entity/documentsets/
{documentSetId}/metadata

PUT

Service Version /entity/documentsets/version GET

Page 443

Service Handshake
Queries the availability of the Document Set Entity service.

Type: GET

URI: /rest/serverengine/entity/documentsets

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
DocumentSetEntityRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 444

http://localhost:9340/rest/serverengine/entity/documentsets

Get Documents for Document Set
Returns a list of all the Document entities contained within a specific Document Set entity.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Documents in the Document Set.

Type: GET

URI: /rest/serverengine/entity/documentsets/{documentSetId}

Parameters: Path:

l documentSetId – the ID of the Document Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Identifier List of all the Documents in
Document Set

Content
Type:

application/json

Status: l 200 OK – Identifier List of Documents returned
l 401 Unauthorized – Server authentication
required

Page 445

http://localhost:9340/rest/serverengine/entity/documentsets/{documentSetId}

l 403 Forbidden – Server authentication has
failed or expired

Page 446

Get Document Set Metadata Properties
Returns a list of the metadata properties for a specific Document Set entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the metadata properties for the Document Set.

Type: GET

URI: /rest/serverengine/entity/documentsets/{documentSetId}/metadata

Parameters: Path:

l documentSetId – the ID of the Document Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Name/Value List (Properties Only) of
metadata properties for Document Set

Content
Type:

application/json

Status: l 200 OK – Document Set entity metadata
properties successfully retrieved

l 401 Unauthorized – Server authentication

Page 447

http://localhost:9340/rest/serverengine/entity/documentsets/{documentSetId}/metadata

required
l 403 Forbidden – Server authentication has
failed or expired

Page 448

Update Document Set Metadata Properties
Submits a request to update (and replace) the metadata properties for a specific Document Set
entity in the Server.

Request takes a JSON Name/Value List as content (the Document Set ID and the new
metadata properties), and on success returns a response containing the result of the request for
update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/documentsets/{documentSetId}/metadata

Parameters: Path:

l documentSetId – the ID of the Document Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of metadata properties for
Document Set

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: Result of request to update Document Set

Content
Type:

text/plain

Status: l 200 OK – Update of Document Set metadata

Page 449

http://localhost:9340/rest/serverengine/entity/documentsets/{documentSetId}/metadata

properties successfully requested (response of
“true” for success)

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or
Document Set ID mismatch in JSON

Page 450

Service Version
Returns the version of the Document Set Entity service.

Type: GET

URI: /rest/serverengine/entity/documentsets/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 451

http://localhost:9340/rest/serverengine/entity/documentsets/version

Content Creation (Email) Service
The following table is a summary of the resources and methods available in the Content
Creation (Email) service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/contentcreation/email GET

Process Content
Creation (By Data
Record) (JSON)

/workflow/contentcreation/email/{templateId} POST

Process Content
Creation (By Data)
(JSON)

/workflow/contentcreation/email/{templateId} POST

Get All Operations /workflow/contentcreation/email/getOperations GET

Get Progress of
Operation

/workflow/contentcreation/email/getProgress/
{operationId}

GET

Get Result of Operation /workflow/contentcreation/email/getResult/
{operationId}

POST

Cancel an Operation /workflow/contentcreation/email/cancel/
{operationId}

POST

Service Version /workflow/contentcreation/email/version GET

Page 452

Service Handshake
Queries the availability of the Content Creation (Email) service.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/email

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
EmailExportRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 453

http://localhost:9340/rest/serverengine/workflow/contentcreation/email

Process Content Creation (By Data Record) (JSON)
Submits a request to initiate a new Content Creation (Email) operation.

Request takes a JSON Identifier List (with Email Parameters) of Data Record IDs as content,
and on success returns a response containing additional headers that specify the ID of the new
operation as well as link URLs that can be used to retrieve further information/cancel the
operation.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/email/{templateId}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design
template in File Store

Query:

l section – the Section of the Email context to export (Defaults to
default section in design template)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Identifier List (with Email Parameters)
specifying a list of Data Record entity IDs and
parameters to be used for content creation

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Content
Creation (Email) operation

Page 454

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/{templateId}

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Content
Type:

–

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template or Data
Record entity not found in File Store/Server

Page 455

Process Content Creation (By Data) (JSON)
Submits a request to initiate a new Content Creation (Email) operation.

Request takes a JSON Record Data List (with Email Parameters) of the data values for one or
more Data Records as content, and on success returns a response containing additional
headers that specify the ID of the new operation as well as link URLs that can be used to
retrieve further information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/email/{templateId}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design
template in File Store

Query:

l section – the Section of the Email context to export (Defaults to
default section in design template)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Record Data List (with Email Parameters)
specifying a list of data values for the Data Record(s)
and parameters to be used for content creation

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Content
Creation (Email) operation

Page 456

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/{templateId}

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Content
Type:

–

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template not found in
File Store

Page 457

Get All Operations
Returns a list of all the workflow operations actively running on the Server.

Request takes no content, and on success returns a response containing a JSON Operations
List of all the actively running operations.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/email/getOperations

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Operations List of all the actively running
operations in Server

Content
Type:

application/json

Status: l 200 OK – List of actively running operations
successfully retrieved

l 401 Unauthorized – Server authentication
required

Page 458

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getOperations

l 403 Forbidden – Server authentication has
failed or expired

Page 459

Get Progress of Operation
Retrieves the progress of a running Content Creation (Email) operation of a specific operation
ID.

Request takes no content, and on success returns a response containing the current value of
operation progress (values ranging from 0 – 100, followed by the value of 'done' on
completion).

Type: GET

URI: /rest/serverengine/workflow/contentcreation/email/getProgress/
{operationId}

Parameters: Path:

l operationId – Operation ID of Content Creation (Email) operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Progress value of Content Creation (Email)
operation

Content
Type:

text/plain

Page 460

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getProgress/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getProgress/{operationId}

Status: l 200 OK – Progress of operation successfully
retrieved

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 461

Get Result of Operation
Retrieves the final result of a completed Content Creation (Email) operation of a specific
operation ID.

Request takes no content, and on success returns a response containing a report on the
number of emails that were successfully sent.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/email/getResult/
{operationId}

Parameters: Path:

l operationId – Operation ID of Content Creation (Email) operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Result of Content Creation (Email) Operation (with
successful email count) (e.g. "3 of 3 emails sent")

Content
Type:

text/plain

Status: l 200 OK – Result of completed operation

Page 462

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getResult/{operationId}
http://localhost:9340/rest/serverengine/workflow/contentcreation/email/getResult/{operationId}

successfully retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 463

Cancel an Operation
Requests the cancellation of a running Content Creation (Email) operation of a specific
operation ID.

Request takes no content, and on success returns a response with no content.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/email/cancel/{operationId}

Parameters: Path:

l operationId – Operation ID of Content Creation (Email) operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: –

Content
Type:

–

Status: l 204 No Content – Operation cancellation
requested

l 401 Unauthorized – Server authentication
required

Page 464

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/cancel/{operationId}

l 403 Forbidden – Server authentication has
failed or expired

Page 465

Service Version
Returns the version of the Content Creation (Email) service.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/email/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 466

http://localhost:9340/rest/serverengine/workflow/contentcreation/email/version

Entity Service
The following table is a summary of the resources and methods available in the Entity service:

Method Name Uniform Resource Identifier (URI) Method Type

Service Handshake /entity GET

Find Data Entity /entity/find PUT

Service Version /entity/version GET

Page 467

Service Handshake
Queries the availability of the Entity service.

Type: GET

URI: /rest/serverengine/entity

Parameters: –

Requs
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
EntityRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 468

http://localhost:9340/rest/serverengine/entity

Find Data Entity
Submits data entity search criteria to the PlanetPress Connect Server.

Request takes a JSON Search Parameters structure as content and on success returns a
response containing JSON Identifier Lists (with Sort Key) of the data entity IDs matching the
search criteria.

Type: PUT

URI: /rest/serverengine/entity/find

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Search Parameters containing search
criteria/rules

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: JSON Identifier Lists (with Sort Key) containing all
the entities matching the search criteria

Content
Type:

application/json

Status: l 200 OK – Search request successfully
executed

Page 469

http://localhost:9340/rest/serverengine/entity/find

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or
Invalid JSON structure specified

Page 470

Service Version
Returns the version of the Entity service.

Type: GET

URI: /rest/serverengine/entity/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 471

http://localhost:9340/rest/serverengine/entity/version

File Store Service
The following table is a summary of the resources and methods available in the File Store
service:

Method Name Uniform Resource Identifier
(URI)

Method
Type

Service Handshake /filestore GET

Download Managed File or
Directory

/filestore/file/{fileId} GET

Delete Managed File or Directory /filestore/delete/{fileId} GET

Upload Data Mapping Configuration /filestore/DataMiningConfig POST

Upload Job Creation Preset /filestore/JobCreationConfig POST

Upload Data File /filestore/DataFile POST

Upload Design Template /filestore/template POST

Upload Output Creation Preset /filestore/OutputCreationConfig POST

Service Version /filestore/version GET

Page 472

Service Handshake
Queries the availability of the File Store service.

Type: GET

URI: /rest/serverengine/filestore

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
FilestoreRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 473

http://localhost:9340/rest/serverengine/filestore

Download Managed File or Directory
Obtains an existing file or directory of a specific Managed File ID (or Name) from the File Store.

Request takes no content, and on success returns a response containing the file or directory
data (as zipped file).

Type: GET

URI: /rest/serverengine/filestore/file/{fileId}

Parameters: Path:

l fileId – the Managed File ID (or Name) of the file or directory in File
Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

Content-Disposition

l File – "attachment; filename={OrigFileName}"
l Directory – "attachment; filename=
{OrigDirName}.zip"

Content: File or Directory (zipped as file)

Content
Type:

l File – application/octet-stream
l Directory – application/zip

Page 474

http://localhost:9340/rest/serverengine/filestore/file/{fileId}

Status: l 200 OK – File or directory successfully
downloaded from File Store

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – File or directory not found in
File Store

Page 475

Delete Managed File or Directory
Removes an existing file or directory of a specific Managed File ID (or Name) from the File
Store.

Request takes no content, and on success returns a response containing the result of the
request for removal (“true” or “false”).

Type: GET

URI: /rest/serverengine/filestore/delete/{fileId}

Parameters: Path:

l fileId – the Managed File ID (or Name) of the file or directory in File
Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Result of request for removal

Content
Type:

text/plain

Status: l 200 OK – Removal of file or directory
successfully requested from File Store

Page 476

http://localhost:9340/rest/serverengine/filestore/delete/{fileId}

(response of “true” for success or “false” for
failure)

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – File or directory not found in
File Store

Page 477

Upload Data Mapping Configuration
Submits a Data Mapping configuration to the File Store.

Request takes binary file data as content, and on success returns a response containing the
new Managed File ID for the configuration.

Type: POST

URI: /rest/serverengine/filestore/DataMiningConfig

Parameters: Query:

l filename – the file name of the configuration to be uploaded (No
Default Value)

l persistent – whether the configuration to be uploaded will be
persistent in File Store (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: Data Mapping Configuration (File)

Content
Type:

application/octet-stream

Response:
Add.
Headers:

–

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Configuration successfully uploaded

Page 478

http://localhost:9340/rest/serverengine/filestore/DataMiningConfig

to File Store
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 479

Upload Job Creation Preset
Submits a Job Creation preset to the File Store.

Request takes XML file data as content, and on success returns a response containing the new
Managed File ID for the preset.

Type: POST

URI: /rest/serverengine/filestore/JobCreationConfig

Parameters: Query:

l filename – the file name of the preset to be uploaded (No Default
Value)

l persistent – whether the preset to be uploaded will be persistent
in File Store (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: Job Creation Preset (File)

Content
Type:

application/xml

Response:
Add.
Headers:

–

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Preset successfully uploaded to File

Page 480

http://localhost:9340/rest/serverengine/filestore/JobCreationConfig

Store
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 481

Upload Data File
Submits a data file to the File Store.

Request takes binary file data as content, and on success returns a response containing the
new Managed File ID for the data file.

Type: POST

URI: /rest/serverengine/filestore/DataFile

Parameters: Query:

l filename – the file name of the data file to be uploaded (No Default
Value)

l persistent – whether the data file to be uploaded will be persistent
in File Store (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: Data File (File)

Content
Type:

application/octet-stream

Response:
Add.
Headers:

–

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Data file successfully uploaded to

Page 482

http://localhost:9340/rest/serverengine/filestore/DataFile

File Store
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 483

Upload Design Template
Submits a design template to the File Store.

Request takes zipped file data as content, and on success returns a response containing the
new Managed File ID for the design template.

Type: POST

URI: /rest/serverengine/filestore/template

Parameters: Query:

l filename – the file name of the design template to be uploaded
(No Default Value)

l persistent – whether the design template to be uploaded will be
persistent in File Store (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: Design Template (File)

Content
Type:

application/zip

Response:
Add.
Headers:

–

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Template successfully uploaded to

Page 484

http://localhost:9340/rest/serverengine/filestore/template

File Store
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 485

Upload Output Creation Preset
Submits an Output Creation preset to the File Store.

Request takes XML file data as content, and on success returns a response containing the new
Managed File ID for the preset.

Type: POST

URI: /rest/serverengine/filestore/OutputCreationConfig

Parameters: Query:

l filename – the file name of the preset to be uploaded (No Default
Value)

l persistent – whether the preset to be uploaded will be persistent
in File Store (Default Value: false)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: Output Creation Preset (File)

Content
Type:

application/xml

Response:
Add.
Headers:

–

Content: Managed File ID

Content
Type:

text/plain

Status: l 200 OK – Preset successfully uploaded to File

Page 486

http://localhost:9340/rest/serverengine/filestore/OutputCreationConfig

Store
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 487

Service Version
Returns the version of the File Store service.

Type: GET

URI: /rest/serverengine/filestore/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 488

http://localhost:9340/rest/serverengine/filestore/version

Content Creation (HTML) Service
The following table is a summary of the resources and methods available in the Content
Creation (HTML) service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/contentcreation/html GET

Process Content Creation (By
Data Record)

/workflow/contentcreation/html/
{templateId}/{dataRecordId: [0-9]+}

GET

Process Content Creation (By
Data Record) (JSON)

/workflow/contentcreation/html/
{templateId}/{dataRecordId: [0-9]+}

POST

Process Content Creation (By
Data) (JSON)

/workflow/contentcreation/html/
{templateId}

POST

Process Content Creation (No
Data)

/workflow/contentcreation/html/
{templateId}

POST

Get Template Resource /workflow/contentcreation/html/
{templateId}/{relPath: .+}

GET

Service Version /workflow/contentcreation/html/version GET

Page 489

Service Handshake
Queries the availability of the Content Creation (HTML) service.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/html

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
HTMLMergeRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 490

http://localhost:9340/rest/serverengine/workflow/contentcreation/html

Process Content Creation (By Data Record)
Submits a request to create new HTML content for the Web context.

Request takes no content, and on success returns a response containing the HTML output
produced, specific to the Data Record and section specified.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/html/{templateId}/
{dataRecordId: [0-9]+}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design
template in File Store

l dataRecordId – the ID of the Data Record entity in Server

Query:

l section – the section within the Web context to create (Defaults to
default section in design template)

l inline – the inline mode to be used in the creation of content
(Possible values: NONE, CSS or ALL. Default Value: NONE)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Page 491

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}
http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}

Content: HTML output for the Data Record

Content
Type:

text/html

Status: l 200 OK – Output created successfully
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template or Data
Record entity not found in File Store/Server

l 500 Internal Server Error – Content Creation
Error: Data Record not found / Web context in
template not found

Page 492

Process Content Creation (By Data Record) (JSON)
Submits a request to create new HTML content for the Web context.

Request takes a JSON HTML Parameters List as content, and on success returns a response
containing the HTML output produced, specific to the Data Record specified.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/html/{templateId}/
{dataRecordId: [0-9]+}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design
template in File Store

l dataRecordId – the ID of the Data Record entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON HTML Parameters List specifying parameters
to be used for content creation

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: HTML output for the Data Record

Content
Type:

text/html

Page 493

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}
http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{dataRecordId: [0-9]+}

Status: l 200 OK – Output created successfully
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template or Data
Record entity not found in File Store/Server

l 500 Internal Server Error – Content Creation
Error: Data Record not found / Web context in
template not found

Page 494

Process Content Creation (By Data) (JSON)
Submits a request to create new HTML content for the Web context.

Request takes a JSON Record Data List of the data values for the Data Record as content, and
on success returns a response containing the HTML output produced, specific to the record
data specified.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/html/{templateId}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design
template in File Store

Query:

l section – the section within the Web context to create (Defaults to
default section in design template)

l inline – the inline mode to be used in the creation of content
(Possible values: NONE, CSS or ALL. Default Value: NONE)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Record Data List specifying a list of data
values for the Data Record

Content
Type:

application/json

Response:
Add.
Headers:

–

Page 495

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}

Content: HTML output for the Data Record

Content
Type:

text/html

Status: l 200 OK – Output created successfully
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template not found in
File Store

l 500 Internal Server Error – Content Creation
Error: Web context in template not found

Page 496

Process Content Creation (No Data)
Submits a request to create new HTML content for the Web context.

Request takes no content, and on success returns a response containing the HTML output
produced, using only the design template and no input data.

Type: POST

URI: /rest/serverengine/workflow/contentcreation/html/{templateId}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design
template in File Store

Query:

l section – the section within the Web context to create (Defaults to
default section in design template)

l inline – the inline mode to be used in the creation of content
(Possible values: NONE, CSS or ALL. Default Value: NONE)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: HTML output from only the template (no data)

Page 497

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}

Content
Type:

text/html

Status: l 200 OK – Output created successfully
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template not found in
File Store

l 500 Internal Server Error – Content Creation
Error: Web context in template not found

Page 498

Get Template Resource
Submits a request to retrieve a resource from a design template stored in the File Store.

Request takes no content, and on success returns a response containing the resource from the
design template.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/html/{templateId}/{relPath:
.+}

Parameters: Path:

l templateId – the Managed File ID (or Name) of the design
template in File Store

l relPath – the relative path to the resource within the design
template

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Resource located at the relative path within template

Content
Type:

(Depends on Resource requested)

Page 499

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{relPath: .+}
http://localhost:9340/rest/serverengine/workflow/contentcreation/html/{templateId}/{relPath: .+}

Status: l 200 OK – Resource successfully retrieved
l 400 Bad Request – Unable to open resource
within template or resource doesn’t exist

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Design template not found in
File Store

l 500 Internal Server Error – Unable to open
template or template doesn’t exist

Page 500

Service Version
Returns the version of the Content Creation (HTML) service.

Type: GET

URI: /rest/serverengine/workflow/contentcreation/html/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 501

http://localhost:9340/rest/serverengine/workflow/contentcreation/html/version

Job Creation Service
The following table is a summary of the resources and methods available in the Job Creation
service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/jobcreation GET

Process Job Creation /workflow/jobcreation/{configId} POST

Process Job Creation (JSON) /workflow/jobcreation/{configId} POST

Process Job Creation (JSON Job
Set Structure)

/workflow/jobcreation POST

Get All Operations /workflow/jobcreation/getOperations GET

Get Progress of Operation /workflow/jobcreation/getProgress/
{operationId}

GET

Get Result of Operation /workflow/jobcreation/getResult/
{operationId}

POST

Cancel an Operation /workflow/jobcreation/cancel/
{operationId}

POST

Service Version /workflow/jobcreation/version GET

Page 502

Service Handshake
Queries the availability of the Job Creation service.

Type: GET

URI: /rest/serverengine/workflow/jobcreation

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
JobCreationRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 503

http://localhost:9340/rest/serverengine/workflow/jobcreation

Process Job Creation
Submits a request to initiate a new Job Creation operation.

Request takes no content, and on success returns a response containing additional headers
that specify the ID of the new operation as well as link URLs that can be used to retrieve further
information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/jobcreation/{configId}

Parameters: Path:

l configId – the Managed File ID (or Name) of the Job Creation
Preset in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

l operationId – Operation ID of new Job
Creation operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Content
Type:

–

Page 504

http://localhost:9340/rest/serverengine/workflow/jobcreation/{configId}

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Job Creation Preset not
found in File Store

Page 505

Process Job Creation (JSON)
Submits a request to initiate a new Job Creation operation.

Request takes a JSON Identifier List of Content Set IDs as content, and on success returns a
response containing additional headers that specify the ID of the new operation as well as link
URLs that can be used to retrieve further information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/jobcreation/{configId}

Parameters: Path:

l configId – the Managed File ID (or Name) of the Job Creation
Preset in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Identifier List specifying a list of Content Set
entity IDs

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Job
Creation operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Content –

Page 506

http://localhost:9340/rest/serverengine/workflow/jobcreation/{configId}

Type:

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Job Creation Preset or
Content Set entity not found in File
Store/Server

Page 507

Process Job Creation (JSON Job Set Structure)
Submits a request to initiate a new Job Creation operation.

Request takes a JSON Job Set Structure containing a list of Content Items as content, and on
success returns a response containing additional headers that specify the ID of the new
operation as well as link URLs that can be used to retrieve further information/cancel the
operation.

Type: POST

URI: /rest/serverengine/workflow/jobcreation

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Job Set Structure describing Job Set (and
Content Items)

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Job
Creation operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Content
Type:

–

Page 508

http://localhost:9340/rest/serverengine/workflow/jobcreation

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 509

Get All Operations
Returns a list of all the workflow operations actively running on the Server.

Request takes no content, and on success returns a response containing a JSON Operations
List of all the actively running operations.

Type: GET

URI: /rest/serverengine/workflow/jobcreation/getOperations

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Operations List of all the actively running
operations in Server

Content
Type:

application/json

Status: l 200 OK – List of actively running operations
successfully retrieved

l 401 Unauthorized – Server authentication
required

Page 510

http://localhost:9340/rest/serverengine/workflow/jobcreation/getOperations

l 403 Forbidden – Server authentication has
failed or expired

Page 511

Get Progress of Operation
Retrieves the progress of a running Job Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing the current value of
operation progress (values ranging from 0 – 100, followed by the value of 'done' on
completion).

Type: GET

URI: /rest/serverengine/workflow/jobcreation/getProgress/{operationId}

Parameters: Path:

l operationId – Operation ID of Job Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Progress value of Job Creation operation

Content
Type:

text/plain

Status: l 200 OK – Progress of operation successfully
retrieved

l 401 Unauthorized – Server authentication

Page 512

http://localhost:9340/rest/serverengine/workflow/jobcreation/getProgress/{operationId}

required
l 403 Forbidden – Server authentication has
failed or expired

Page 513

Get Result of Operation
Retrieves the final result of a completed Job Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing the ID of the Job Set
produced.

Type: POST

URI: /rest/serverengine/workflow/jobcreation/getResult/{operationId}

Parameters: Path:

l operationId – Operation ID of Job Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Job Set ID

Content
Type:

text/plain

Status: l 200 OK – Result of completed operation
successfully retrieved

l 401 Unauthorized – Server authentication
required

Page 514

http://localhost:9340/rest/serverengine/workflow/jobcreation/getResult/{operationId}

l 403 Forbidden – Server authentication has
failed or expired

Page 515

Cancel an Operation
Requests the cancellation of a running Job Creation operation of a specific operation ID.

Request takes no content, and on success returns a response with no content.

Type: POST

URI: /rest/serverengine/workflow/jobcreation/cancel/{operationId}

Parameters: Path:

l operationId – Operation ID of Job Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: –

Content
Type:

–

Status: l 204 No Content – Operation cancellation
requested

l 401 Unauthorized – Server authentication
required

Page 516

http://localhost:9340/rest/serverengine/workflow/jobcreation/cancel/{operationId}

l 403 Forbidden – Server authentication has
failed or expired

Page 517

Service Version
Returns the version of the Job Creation service.

Type: GET

URI: /rest/serverengine/workflow/jobcreation/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 518

http://localhost:9340/rest/serverengine/workflow/jobcreation/version

Job Entity Service
The following table is a summary of the resources and methods available in the Job Entity
service:

Method Name Uniform Resource Identifier (URI) Method Type

Service Handshake /entity/jobs GET

Get Content Items for Job /entity/jobs/{jobId}/contents GET

Get Job Segments for Job /entity/jobs/{jobId} GET

Get Job Metadata Properties /entity/jobs/{jobId}/metadata GET

Update Job Metadata Properties /entity/jobs/{jobId}/metadata PUT

Get Job Properties /entity/jobs/{jobId}/properties GET

Update Job Properties /entity/jobs/{jobId}/properties PUT

Update Multiple Job Properties /entity/jobs/properties PUT

Service Version /entity/jobs/version GET

Page 519

Service Handshake
Queries the availability of the Job Entity service.

Type: GET

URI: /rest/serverengine/entity/jobs

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
JobEntityRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 520

http://localhost:9340/rest/serverengine/entity/jobs

Get Content Items for Job
Returns a list of all the Content Item entities (and their corresponding Data Record entities)
contained within a specific Job entity.

Request takes no content, and on success returns a response containing a JSON Content Item
Identifier List of all the Content Items for the Job.

Type: GET

URI: /rest/serverengine/entity/jobs/{jobId}/contents

Parameters: Path:

l jobId – the ID of the Job entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Content Item Identifier List of all the Content
Items in Job

Content
Type:

application/json

Status: l 200 OK – Content Item Identifier List returned
l 401 Unauthorized – Server authentication

Page 521

http://localhost:9340/rest/serverengine/entity/jobs/{jobId}/contents

required
l 403 Forbidden – Server authentication has
failed or expired

Page 522

Get Job Segments for Job
Returns a list of all the Job Segment entities contained within a specific Job entity.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Job Segments in the Job.

Type: GET

URI: /rest/serverengine/entity/jobs/{jobId}

Parameters: Path:

l jobId – the ID of the Job entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Identifier List of all the Job Segments in Job

Content
Type:

application/json

Status: l 200 OK – Identifier List of Job Segments
returned

l 401 Unauthorized – Server authentication
required

Page 523

http://localhost:9340/rest/serverengine/entity/jobs/{jobId}

l 403 Forbidden – Server authentication has
failed or expired

Page 524

Get Job Metadata Properties
Returns a list of the metadata properties for a specific Job entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the metadata properties for the Job.

Type: GET

URI: /rest/serverengine/entity/jobs/{jobId}/metadata

Parameters: Path:

l jobId – the ID of the Job entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Name/Value List (Properties Only) of
metadata properties for Job

Content
Type:

application/json

Status: l 200 OK – Job entity metadata properties
successfully retrieved

l 401 Unauthorized – Server authentication

Page 525

http://localhost:9340/rest/serverengine/entity/jobs/{jobId}/metadata

required
l 403 Forbidden – Server authentication has
failed or expired

Page 526

Update Job Metadata Properties
Submits a request to update (and replace) the metadata properties for a specific Job entity in
the Server.

Request takes a JSON Name/Value List as content (the Job ID and the new metadata
properties), and on success returns a response containing the result of the request for
update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/jobs/{jobId}/metadata

Parameters: Path:

l jobId – the ID of the Job entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of metadata properties for
Job

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: Result of request to update Job

Content
Type:

text/plain

Status: l 200 OK – Update of Job metadata properties

Page 527

http://localhost:9340/rest/serverengine/entity/jobs/{jobId}/metadata

successfully requested (response of “true” for
success)

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or Job
ID mismatch in JSON

Page 528

Get Job Properties
Returns a list of the properties for a specific Job entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the properties for the Job.

Type: GET

URI: /rest/serverengine/entity/jobs/{jobId}/properties

Parameters: Path:

l jobId – the ID of the Job entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Name/Value List (Properties Only) of
properties for Job

Content
Type:

application/json

Status: l 200 OK – Job entity properties successfully
retrieved

l 401 Unauthorized – Server authentication

Page 529

http://localhost:9340/rest/serverengine/entity/jobs/{jobId}/properties

required
l 403 Forbidden – Server authentication has
failed or expired

Page 530

Update Job Properties
Submits a request to update (and replace) the properties for a specific Job entity in the Server.

Request takes a JSON Name/Value List as content (the Job ID and the new properties), and on
success returns a response containing the result of the request for update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/jobs/{jobId}/properties

Parameters: Path:

l jobId – the ID of the Job entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of properties for Job

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: Result of request to update Job

Content
Type:

text/plain

Status: l 200 OK – Update of Job properties
successfully requested (response of “true” for
success)

l 401 Unauthorized – Server authentication

Page 531

http://localhost:9340/rest/serverengine/entity/jobs/{jobId}/properties

required
l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or Job
ID mismatch in JSON

Page 532

Update Multiple Job Properties
Submits a request to update one or more properties for one or more Job entities in the Server.

Request takes JSON Name/Value Lists as content (each with the Job ID and the new
properties), and on success returns a response containing no content.

Type: PUT

URI: /rest/serverengine/entity/jobs/properties

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value Lists of the properties of the Jobs

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: –

Content
Type:

–

Status: l 200 OK – Properties of Job entities
successfully updated

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 533

http://localhost:9340/rest/serverengine/entity/jobs/properties

Service Version
Returns the version of the Job Entity service.

Type: GET

URI: /rest/serverengine/entity/jobs/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 534

http://localhost:9340/rest/serverengine/entity/jobs/version

Job Segment Entity Service
The following table is a summary of the resources and methods available in the Job Segment
Entity service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /entity/jobsegments GET

Get Document Sets for Job
Segment

/entity/jobsegments/{jobSegmentId} GET

Get Job Segment Metadata
Properties

/entity/jobsegments/
{jobSegmentId}/metadata

GET

Update Job Segment Metadata
Properties

/entity/jobsegments/
{jobSegmentId}/metadata

PUT

Service Version /entity/jobsegments/version GET

Page 535

Service Handshake
Queries the availability of the Job Segment Entity service.

Type: GET

URI: /rest/serverengine/entity/jobsegments

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
JobSegmentEntityRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 536

http://localhost:9340/rest/serverengine/entity/jobsegments

Get Document Sets for Job Segment
Returns a list of all the Document Set entities contained within a specific Job Segment entity.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Document Sets in the Job Segment.

Type: GET

URI: /rest/serverengine/entity/jobsegments/{jobSegmentId}

Parameters: Path:

l jobSegmentId – the ID of the Job Segment entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Identifier List of all the Document Sets in Job
Segment

Content
Type:

application/json

Status: l 200 OK – Identifier List of Document Sets
returned

l 401 Unauthorized – Server authentication

Page 537

http://localhost:9340/rest/serverengine/entity/jobsegments/{jobSegmentId}

required
l 403 Forbidden – Server authentication has
failed or expired

Page 538

Get Job Segment Metadata Properties
Returns a list of the metadata properties for a specific Job Segment entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the metadata properties for the Job Segment.

Type: GET

URI: /rest/serverengine/entity/jobsegments/{jobSegmentId}/metadata

Parameters: Path:

l jobSegmentId – the ID of the Job Segment entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Name/Value List (Properties Only) of
metadata properties for Job Segment

Content
Type:

application/json

Status: l 200 OK – Job Segment entity metadata
properties successfully retrieved

l 401 Unauthorized – Server authentication

Page 539

http://localhost:9340/rest/serverengine/entity/jobsegments/{jobSegmentId}/metadata

required
l 403 Forbidden – Server authentication has
failed or expired

Page 540

Update Job Segment Metadata Properties
Submits a request to update (and replace) the metadata properties for a specific Job Segment
entity in the Server.

Request takes a JSON Name/Value List as content (the Job Segment ID and the new metadata
properties), and on success returns a response containing the result of the request for
update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/jobsegments/{jobSegmentId}/metadata

Parameters: Path:

l jobSegmentId – the ID of the Job Segment entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of metadata properties for
Job Segment

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: Result of request to update Job Segment

Content
Type:

text/plain

Status: l 200 OK – Update of Job Segment metadata

Page 541

http://localhost:9340/rest/serverengine/entity/jobsegments/{jobSegmentId}/metadata

properties successfully requested (response of
“true” for success)

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or Job
Segment ID mismatch in JSON

Page 542

Service Version
Returns the version of the Job Segment Entity service.

Type: GET

URI: /rest/serverengine/entity/jobsegments/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 543

http://localhost:9340/rest/serverengine/entity/jobsegments/version

Job Set Entity Service
The following table is a summary of the resources and methods available in the Job Set Entity
service:

Method Name Uniform Resource Identifier
(URI)

Method
Type

Get All Job Sets /entity/jobsets GET

Get Jobs for Job Set /entity/jobsets/{jobSetId} GET

Delete Job Set Entity /entity/jobsets/{jobSetId}/delete POST

Get Job Set Metadata Properties /entity/jobsets/{jobSetId}/metadata GET

Update Job Set Metadata
Properties

/entity/jobsets/{jobSetId}/metadata PUT

Get Job Set Properties /entity/jobsets/{jobSetId}/properties GET

Update Job Set Properties /entity/jobsets/{jobSetId}/properties PUT

Service Version /entity/jobsets/version GET

Page 544

Get All Job Sets
Returns a list of all the Job Set entities currently contained within the Server.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Job Sets.

Type: GET

URI: /rest/serverengine/entity/jobsets

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Identifier List of all the Job Sets in Server

Content
Type:

application/json

Status: l 200 OK – Identifier List of Job Sets returned
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 545

http://localhost:9340/rest/serverengine/entity/jobsets

Get Jobs for Job Set
Returns a list of all the Job entities contained within a specific Job Set entity.

Request takes no content, and on success returns a response containing a JSON Identifier List
of all the Jobs in the Job Set.

Type: GET

URI: /rest/serverengine/entity/jobsets/{jobSetId}

Parameters: Path:

l jobSetId – the ID of the Job Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Identifier List of all the Jobs in Job Set

Content
Type:

application/json

Status: l 200 OK – Identifier List of Jobs returned
l 401 Unauthorized – Server authentication
required

Page 546

http://localhost:9340/rest/serverengine/entity/jobsets/{jobSetId}

l 403 Forbidden – Server authentication has
failed or expired

Page 547

Delete Job Set Entity
Submits a request for a specific Job Set entity to be marked for deletion from the Server.

Request takes no content, and on success returns a response containing the result of the
request for deletion (“true” or “false”).

Type: POST

URI: /rest/serverengine/entity/jobsets/{jobSetId}/delete

Parameters: Path:

l jobSetId – the ID of the Job Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Result of request for Job Set removal

Content
Type:

text/plain

Status: l 200 OK – Deletion of Job Set successfully
requested from Server (response of “true” for
success or “false” for failure)

l 401 Unauthorized – Server authentication

Page 548

http://localhost:9340/rest/serverengine/entity/jobsets/{jobSetId}/delete

required
l 403 Forbidden – Server authentication has
failed or expired

Page 549

Get Job Set Metadata Properties
Returns a list of the metadata properties for a specific Job Set entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the metadata properties for the Job Set.

Type: GET

URI: /rest/serverengine/entity/jobsets/{jobSetId}/metadata

Parameters: Path:

l jobSetId – the ID of the Job Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Name/Value List (Properties Only) of
metadata properties for Job Set

Content
Type:

application/json

Status: l 200 OK – Job Set entity metadata properties
successfully retrieved

l 401 Unauthorized – Server authentication

Page 550

http://localhost:9340/rest/serverengine/entity/jobsets/{jobSetId}/metadata

required
l 403 Forbidden – Server authentication has
failed or expired

Page 551

Update Job Set Metadata Properties
Submits a request to update (and replace) the metadata properties for a specific Job Set entity
in the Server.

Request takes a JSON Name/Value List as content (the Job Set ID and the new metadata
properties), and on success returns a response containing the result of the request for
update/replacement (“true”).

Type: PUT

URI: /rest/serverengine/entity/jobsets/{jobSetId}/metadata

Parameters: Path:

l jobSetId – the ID of the Job Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of metadata properties for
Job Set

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: Result of request to update Job Set

Content
Type:

text/plain

Status: l 200 OK – Update of Job Set metadata

Page 552

http://localhost:9340/rest/serverengine/entity/jobsets/{jobSetId}/metadata

properties successfully requested (response of
“true” for success)

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or Job
Set ID mismatch in JSON

Page 553

Get Job Set Properties
Returns a list of the properties for a specific Job Set entity.

Request takes no content, and on success returns a response containing a JSON Name/Value
List (Properties Only) of all the properties for the Job Set.

Type: GET

URI: /rest/serverengine/entity/jobsets/{jobSetId}/properties

Parameters: Path:

l jobSetId – the ID of the Job Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Name/Value List (Properties Only) of
properties for Job Set

Content
Type:

application/json

Status: l 200 OK – Job Set entity properties successfully
retrieved

l 401 Unauthorized – Server authentication

Page 554

http://localhost:9340/rest/serverengine/entity/jobsets/{jobSetId}/properties

required
l 403 Forbidden – Server authentication has
failed or expired

Page 555

Update Job Set Properties
Submits a request to update (and replace) the properties for a specific Job Set entity in the
Server.

Request takes a JSON Name/Value List as content (the Job Set ID and the new properties),
and on success returns a response containing the result of the request for update/replacement
(“true”).

Type: PUT

URI: /rest/serverengine/entity/jobsets/{jobSetId}/properties

Parameters: Path:

l jobSetId – the ID of the Job Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Name/Value List of properties for Job Set

Content
Type:

application/json

Response:
Add.
Headers:

–

Content: Result of request to update Job Set

Content
Type:

text/plain

Status: l 200 OK – Update of Job Set properties
successfully requested (response of “true” for

Page 556

http://localhost:9340/rest/serverengine/entity/jobsets/{jobSetId}/properties

success)
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – Server error or Job
Set ID mismatch in JSON

Page 557

Service Version
Returns the version of the Job Set Entity service.

Type: GET

URI: /rest/serverengine/entity/jobsets/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 558

http://localhost:9340/rest/serverengine/entity/jobsets/version

Output Creation Service
The following table is a summary of the resources and methods available in the Output
Creation service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/outputcreation GET

Process Output Creation /workflow/outputcreation/{configId}/
{jobSetId}

POST

Process Output Creation
(JSON)

/workflow/outputcreation/{configId} POST

Process Output Creation (By
Job) (JSON)

/workflow/outputcreation/{configId}/jobs POST

Run +PReS Enhance Workflow
Configuration

/workflow/outputcreation/execute/{args}/
{size}

GET

Get All Operations /workflow/outputcreation/getOperations GET

Get Progress of Operation /workflow/outputcreation/getProgress/
{operationId}

GET

Get Result of Operation /workflow/outputcreation/getResult/
{operationId}

POST

Get Result of Operation (as
Text)

/workflow/outputcreation/getResultTxt/
{operationId}

POST

Cancel an Operation /workflow/outputcreation/cancel/
{operationId}

POST

Service Version /workflow/outputcreation/version GET

Page 559

Service Handshake
Queries the availability of the Output Creation service.

Type: GET

URI: /rest/serverengine/workflow/outputcreation

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
OutputCreationRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 560

http://localhost:9340/rest/serverengine/workflow/outputcreation

Process Output Creation
Submits a request to initiate a new Output Creation operation.

Request takes no content, and on success returns a response containing additional headers
that specify the ID of the new operation as well as link URLs that can be used to retrieve further
information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/outputcreation/{configId}/{jobSetId}

Parameters: Path:

l configId – the Managed File ID (or Name) of the Output Creation
Preset in File Store

l jobSetId – the ID of the Job Set entity in Server

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

l operationId – Operation ID of new Output
Creation operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Content –

Page 561

http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}/{jobSetId}

Type:

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Output Creation Preset or Job
Set entity not found in File Store/Server

Page 562

Process Output Creation (JSON)
Submits a request to initiate a new Output Creation operation.

Request takes a JSON Identifier (with Output Parameters) of the Job Set ID as content, and on
success returns a response containing additional headers that specify the ID of the new
operation as well as link URLs that can be used to retrieve further information/cancel the
operation.

Type: POST

URI: /rest/serverengine/workflow/outputcreation/{configId}

Parameters: Path:

l configId – the Managed File ID (or Name) of the Output Creation
Preset in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Identifier (with Output Parameters) specifying
the Job Set entity's ID

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Output
Creation operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Page 563

http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}

Content
Type:

–

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Output Creation Preset or Job
Set entity not found in File Store/Server

l 500 Internal Server Error – JSON Identifier
invalid or missing required structure

Page 564

Process Output Creation (By Job) (JSON)
Submits a request to initiate a new Output Creation operation.

Request takes a JSON Identifier List (with Output Parameters) of the Job IDs as content, and on
success returns a response containing additional headers that specify the ID of the new
operation as well as link URLs that can be used to retrieve further information/cancel the
operation.

Type: POST

URI: /rest/serverengine/workflow/outputcreation/{configId}/jobs

Parameters: Path:

l configId – the Managed File ID (or Name) of the Output Creation
Preset in File Store

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON Identifier List (with Output Parameters)
specifying the Job entity IDs

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new Output
Creation operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Page 565

http://localhost:9340/rest/serverengine/workflow/outputcreation/{configId}/jobs

Content
Type:

–

Status: l 202 Accepted – Creation of new operation
successful

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 404 Not Found – Output Creation Preset or Job
entity not found in File Store/Server

l 500 Internal Server Error – JSON Identifier List
invalid or missing required structure

Page 566

Run +PReS EnhanceWorkflow Configuration
Submits a request to run a +PReS Enhance workflow configuration via the Weaver engine
directly, using a list of command-line arguments.

Request takes no content, and on success returns a response containing the result of the
request to run/execute the workflow configuration.

Type: GET

URI: /rest/serverengine/workflow/outputcreation/execute/{args}/{size}

Parameters: Path:

l args – a comma delimited, URI encoded list of command-line
arguments to use to execute the Weaver engine including1:

l -c,<workflow file> – the path to +PReS Enhance workflow
configuration

l -O,<output dir> – the path to directory to be used for output
l <input file> – the path(s) to the file(s) to be used as input

l size – the estimated page size, used by PlanetPress Connect to
determine the job size (which determines the number of speed
units to use)

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

1For a list of all the available command-line arguments accepted by the Weaver engine, please reference
the +PReS Enhance documentation.

Page 567

http://localhost:9340/rest/serverengine/workflow/outputcreation/execute/{args}/{size}

Response:
Add.
Headers:

–

Content: Result of request to run +PReS Enhance workflow

Content
Type:

text/plain

Status: l 200 OK – +PReS Enhance Workflow
Configuration successfully run/executed

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 568

Get All Operations
Returns a list of all the workflow operations actively running on the Server.

Request takes no content, and on success returns a response containing a JSON Operations
List of all the actively running operations.

Type: GET

URI: /rest/serverengine/workflow/outputcreation/getOperations

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Operations List of all the actively running
operations in Server

Content
Type:

application/json

Status: l 200 OK – List of actively running operations
successfully retrieved

l 401 Unauthorized – Server authentication
required

Page 569

http://localhost:9340/rest/serverengine/workflow/outputcreation/getOperations

l 403 Forbidden – Server authentication has
failed or expired

Page 570

Get Progress of Operation
Retrieves the progress of a running Output Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing the current value of
operation progress (values ranging from 0 – 100, followed by the value of 'done' on
completion).

Type: GET

URI: /rest/serverengine/workflow/outputcreation/getProgress/{operationId}

Parameters: Path:

l operationId – Operation ID of Output Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Progress value of Output Creation operation

Content
Type:

text/plain

Status: l 200 OK – Progress of operation successfully
retrieved

l 401 Unauthorized – Server authentication

Page 571

http://localhost:9340/rest/serverengine/workflow/outputcreation/getProgress/{operationId}

required
l 403 Forbidden – Server authentication has
failed or expired

Page 572

Get Result of Operation
Retrieves the final result of a completed Output Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing either the absolute
paths of the final output files produced (multiple spool files) or the content of a final output file
(single spool file).

Type: POST

URI: /rest/serverengine/workflow/outputcreation/getResult/{operationId}

Parameters: Path:

l operationId – Operation ID of Output Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Absolute Paths of the Output Files or the Output File
itself

Content
Type:

application/octet-stream

Status: l 200 OK – Result of completed operation
successfully retrieved

Page 573

http://localhost:9340/rest/serverengine/workflow/outputcreation/getResult/{operationId}

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 574

Get Result of Operation (as Text)
Retrieves the final result of a completed Output Creation operation of a specific operation ID.

Request takes no content, and on success returns a response containing the absolute path or
paths of the final output file or files produced (single or multiple spool files respectively).

Type: POST

URI: /rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}

Parameters: Path:

l operationId – Operation ID of Output Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Absolute Path(s) of the Output File(s)

Content
Type:

text/plain

Status: l 200 OK – Result of completed operation
successfully retrieved

l 401 Unauthorized – Server authentication
required

Page 575

http://localhost:9340/rest/serverengine/workflow/outputcreation/getResultTxt/{operationId}

l 403 Forbidden – Server authentication has
failed or expired

Page 576

Cancel an Operation
Requests the cancellation of a running Output Creation operation of a specific operation ID.

Request takes no content, and on success returns a response with no content.

Type: POST

URI: /rest/serverengine/workflow/outputcreation/cancel/{operationId}

Parameters: Path:

l operationId – Operation ID of Output Creation operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: –

Content
Type:

–

Status: l 204 No Content – Operation cancellation
requested

l 401 Unauthorized – Server authentication
required

Page 577

http://localhost:9340/rest/serverengine/workflow/outputcreation/cancel/{operationId}

l 403 Forbidden – Server authentication has
failed or expired

Page 578

Service Version
Returns the version of the Output Creation service.

Type: GET

URI: /rest/serverengine/workflow/outputcreation/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 579

http://localhost:9340/rest/serverengine/workflow/outputcreation/version

All-In-One Service
The following table is a summary of the resources and methods available in the All-In-One
service:

Method Name Uniform Resource Identifier (URI) Method
Type

Service Handshake /workflow/print GET

Process All-In-One
(JSON)

/workflow/print/submit POST

Process All-In-One
(Adhoc Data)

/workflow/print/{dmConfigId}/{templateId}/
{jcConfigId}/{ocConfigId}

POST

Get All Operations /workflow/print/getOperations GET

Get Progress of
Operation

/workflow/print/getProgress/{operationId} GET

Get Result of Operation /workflow/print/getResult/{operationId} POST

Get Result of Operation
(as Text)

/workflow/print/getResultTxt/{operationId} POST

Cancel an Operation /workflow/print/cancel/{operationId} POST

Service Version /workflow/print/version GET

Page 580

Service Handshake
Queries the availability of the All-In-One service.

Type: GET

URI: /rest/serverengine/workflow/print

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Handshake message:

Server Engine REST Service available:
PrintRestService

Content
Type:

text/plain

Status: l 200 OK – REST Service available
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 581

http://localhost:9340/rest/serverengine/workflow/print

Process All-In-One (JSON)
Submits a request to initiate a new All-In-One operation.

Request takes a JSON All-In-One Configuration as content, and on success returns a response
containing additional headers that specify the ID of the new operation as well as link URLs that
can be used to retrieve further information/cancel the operation.

Type: POST

URI: /rest/serverengine/workflow/print/submit

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: JSON All-In-One Configuration containing workflow
processes/parameters

Content
Type:

application/json

Response:
Add.
Headers:

l operationId – Operation ID of new All-In-One
operation

l Link – Contains multiple link URLs that can be
used to retrieve further information/cancel the
operation

Content: –

Content
Type:

–

Status: l 202 Accepted – Creation of new operation

Page 582

http://localhost:9340/rest/serverengine/workflow/print/submit

successful
l 400 Bad Request – Required Input
resource/file not found in File Store

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – General error with
running the All-In-One Process or a Specific
error relating to an individual workflow process
(see error description)

Page 583

Process All-In-One (Adhoc Data)
Submits a request to initiate a new All-In-One operation using pre-existing inputs, with the
exception of input data, which is submitting along with the request.

Request takes binary file data as content, and on success will return one of two responses
depending on the type of operation:

l Asynchronous – response containing additional headers that specify the ID of the new
operation as well as link URLs that can be used to retrieve further information/cancel the
operation (Default)

l Synchronous – response (depending on the parameters specified) containing either:
l the absolute paths of the final output files produced (multiple spool files) or the
content of a final output file (single spool file)

l the absolute path or paths of the final output file or files produced (single or multiple
spool files respectively) (Get Result as Text Only)

Type: POST

URI: /rest/serverengine/workflow/print/{dmConfigId}/{templateId}/
{jcConfigId}/{ocConfigId}

Parameters: Path:

l dmConfigId – the Managed File ID (or Name) of the Data
Mapping configuration in File Store

l templateId – the Managed File ID (or Name) of the design
template in File Store

l jcConfigId – the Managed File ID (or Name) of the Job
Creation Preset in File Store (Optional – the value of "0" can
be specified if no preset is to be used)

l ocConfigId – the Managed File ID (or Name) of the Output
Creation Preset in File Store

Query:

l async – whether to run the operation asynchronously (Default

Page 584

http://localhost:9340/rest/serverengine/workflow/print/{dmConfigId}/{templateId}/{jcConfigId}/{ocConfigId}
http://localhost:9340/rest/serverengine/workflow/print/{dmConfigId}/{templateId}/{jcConfigId}/{ocConfigId}

Value: true)
l resultAsTxt – whether to retrieve the result as text
(Synchronous Only) (Default Value: false)

l createOnly – whether output is to be only created in the server
and not sent to it's final destination (Default Value: false)

l printRange – a specific range of records in the input data file
to restrict the print output to (No Default Value)

l filename – the file name of the data file to be uploaded (No
Default Value)

Request:
Add.
Headers:

auth_token – Authorization Token (if server
security settings enabled)

Content: Data File (File)

Content
Type:

application/octet-stream

Response:
Add.
Headers:

l operationId – Operation ID of new All-In-
One operation

l Link – Contains multiple link URLs that
can be used to retrieve further
information/cancel the operation

Content: –

Content
Type:

–

Status: l 202 Accepted – Data file successfully
uploaded to File Store and creation of new
operation successful

l 400 Bad Request – Unable to locate one or
more inputs in File Store with Managed

Page 585

File ID(s) and/or Name(s) specified
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – General error
with running the All-In-One Process or a
Specific error relating to the uploading of
the data file or an individual workflow
process (see error description)

Response
(Synchronous): Add.

Headers:
–

Content: Absolute Paths of the Output Files or the Output
File itself

Content
Type:

application/octet-stream

Status: l 200 OK – Data file uploaded to File Store,
and a new operation was created and
completed successfully with the result
returned

l 400 Bad Request – Unable to locate one or
more inputs in File Store with Managed
File ID(s) and/or Name(s) specified

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – General error
with running the All-In-One Process or a
Specific error relating to the uploading of

Page 586

the data file or an individual workflow
process (see error description)

Response
(Synchronous +
Get Result as
Text):

Add.
Headers:

–

Content: Absolute Path(s) of the Output File(s)

Content
Type:

text/plain

Status: l 200 OK – Data file uploaded to File Store,
and a new operation was created and
completed successfully with the result
returned

l 400 Bad Request – Unable to locate one or
more inputs in File Store with Managed
File ID(s) and/or Name(s) specified

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

l 500 Internal Server Error – General error
with running the All-In-One Process or a
Specific error relating to the uploading of
the data file or an individual workflow
process (see error description)

Page 587

Get All Operations
Returns a list of all the workflow operations actively running on the Server.

Request takes no content, and on success returns a response containing a JSON Operations
List of all the actively running operations.

Type: GET

URI: /rest/serverengine/workflow/print/getOperations

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: JSON Operations List of all the actively running
operations in Server

Content
Type:

application/json

Status: l 200 OK – List of actively running operations
successfully retrieved

l 401 Unauthorized – Server authentication
required

Page 588

http://localhost:9340/rest/serverengine/workflow/print/getOperations

l 403 Forbidden – Server authentication has
failed or expired

Page 589

Get Progress of Operation
Retrieves the progress of a running All-In-One operation of a specific operation ID.

Request takes no content, and on success returns a response containing the current value of
operation progress (values ranging from 0 – 100, followed by the value of 'done' on
completion).

Type: GET

URI: /rest/serverengine/workflow/print/getProgress/{operationId}

Parameters: Path:

l operationId – Operation ID of All-In-One operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Progress value of All-In-One operation

Content
Type:

text/plain

Status: l 200 OK – Progress of operation successfully
retrieved

l 401 Unauthorized – Server authentication

Page 590

http://localhost:9340/rest/serverengine/workflow/print/getProgress/{operationId}

required
l 403 Forbidden – Server authentication has
failed or expired

Page 591

Get Result of Operation
Retrieves the final result of a completed All-In-One operation of a specific operation ID.

Request takes no content, and on success returns a response (depending on the All-In-One
configuration) containing either:

l the ID of the Data Set, Content Set or Job Set entity produced, or
l the absolute paths of the final output files produced (multiple spool files) or the content of
a final output file (single spool file).

Type: POST

URI: /rest/serverengine/workflow/print/getResult/{operationId}

Parameters: Path:

l operationId – Operation ID of All-In-One operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Either:

l the ID of the Data Set, Content Set or Job Set,
or

l the Absolute Paths of the Output Files or the

Page 592

http://localhost:9340/rest/serverengine/workflow/print/getResult/{operationId}

Output File itself

Content
Type:

application/octet-stream

Status: l 200 OK – Result of completed operation
successfully retrieved

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 593

Get Result of Operation (as Text)
Retrieves the final result of a completed All-In-One operation of a specific operation ID.

Request takes no content, and on success returns a response (depending on the All-In-One
configuration) containing either:

l the ID of the Data Set, Content Set or Job Set entity produced, or
l the absolute path or paths of the final output file or files produced (single or multiple spool
files respectively).

Type: POST

URI: /rest/serverengine/workflow/print/getResultTxt/{operationId}

Parameters: Path:

l operationId – Operation ID of All-In-One operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Either:

l the ID of the Data Set, Content Set or Job Set,
or

l the Absolute Path(s) of the Output File(s)

Page 594

http://localhost:9340/rest/serverengine/workflow/print/getResultTxt/{operationId}

Content
Type:

text/plain

Status: l 200 OK – Result of completed operation
successfully retrieved

l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 595

Cancel an Operation
Requests the cancellation of a running All-In-One operation of a specific operation ID.

Request takes no content, and on success returns a response with no content.

Type: POST

URI: /rest/serverengine/workflow/print/cancel/{operationId}

Parameters: Path:

l operationId – Operation ID of All-In-One operation

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: –

Content
Type:

–

Status: l 204 No Content – Operation cancellation
requested

l 401 Unauthorized – Server authentication
required

Page 596

http://localhost:9340/rest/serverengine/workflow/print/cancel/{operationId}

l 403 Forbidden – Server authentication has
failed or expired

Page 597

Service Version
Returns the version of the All-In-One service.

Type: GET

URI: /rest/serverengine/workflow/print/version

Parameters: –

Request:
Add.
Headers:

auth_token – Authorization Token (if server security
settings enabled)

Content: –

Content
Type:

–

Response:
Add.
Headers:

–

Content: Version of Service

Content
Type:

text/plain

Status: l 200 OK – Version of REST Service retrieved
l 401 Unauthorized – Server authentication
required

l 403 Forbidden – Server authentication has
failed or expired

Page 598

http://localhost:9340/rest/serverengine/workflow/print/version

Copyright Information
Copyright © 1994–2021 Objectif Lune Inc. All Rights Reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any other language or computer language in whole or in part, in any
form or by any means, whether it be electronic, mechanical, magnetic, optical, manual or
otherwise, without prior written consent of Objectif Lune Inc.

Objectif Lune Inc. disclaims all warranties as to this software, whether expressed or implied,
including without limitation any implied warranties of merchantability, fitness for a particular
purpose, functionality, data integrity or protection.

PlanetPress and PReS are registered trademarks of Objectif Lune Inc.

Page 599

Legal Notices and
Acknowledgements
PlanetPress Connect, Copyright © 2021, Objectif Lune Inc. All rights reserved.

This guide uses the following third party components:

l jQuery Library Copyright © JS Foundation and other contributors. This is distributed
under the terms of the Massachusetts Institute of Technology (MIT) license.

l QUnit Library Copyright © JS/jQuery Foundation and other contributors. This is
distributed under the terms of the Massachusetts Institute of Technology (MIT) license.

Page 600

	Table of Contents
	Welcome to the PlanetPress Connect REST API Cookbook
	Technical Overview
	Workflow & Workflow Processes
	Data Mapping
	Content Creation
	Job Creation
	Output Creation
	All-In-One

	Input Files
	Data Entities
	Data Set & Data Record Entities
	Content Set & Content Item Entities
	Job Set & Job Entities

	Workflow Operations
	Asynchronous Operations
	Synchronous Operations

	JSON Structures
	Common Structures
	Specific Structures

	Working Examples
	Getting Started
	Requirements & Installation
	Structure of the Working Examples
	HTML Input Placeholders & Multiple Value Fields
	Display of Working Example Results
	Using the Working Examples with Server Security

	Server Security & Authentication
	Authenticating with the Server

	Working with the File Store
	Uploading a Data File to the File Store
	Uploading a Data Mapping Configuration to the File Store
	Uploading a Design Template to the File Store
	Uploading a Job Creation Preset to the File Store
	Uploading an Output Creation Preset to the File Store

	Working with the Entity Services
	Finding Specific Data Entities in the Server
	Finding all the Data Sets in the Server
	Finding the Data Records in a Data Set
	Finding all the Content Sets in the Server
	Finding the Content Items in a Content Set
	Finding all the Job Sets in the Server
	Finding the Jobs in a Job Set

	Working with the Workflow Services
	Running a Data Mapping Operation
	Running a Data Mapping Operation (Using JSON)
	Running a Data Mapping Operation for PDF/VT File (to Data Set)
	Running a Data Mapping Operation for PDF/VT File (to Content Set)
	Running a Content Creation Operation for Print
	Running a Content Creation Operation for Print By Data Record (Using JSON)
	Running a Content Creation Operation for Email By Data Record (Using JSON)
	Creating Content for Web By Data Record
	Creating Content for Web By Data Record (Using JSON)
	Running a Job Creation Operation (Using JSON)
	Running an Output Creation Operation
	Running an Output Creation Operation (Using JSON)
	Running an Output Creation Operation By Job (Using JSON)
	Running an All-In-One Operation (Using JSON)

	REST API Reference
	Authentication Service
	Service Handshake
	Authenticate/Login to Server
	Service Version

	Content Creation Service
	Service Handshake
	Process Content Creation
	Process Content Creation (By Data Record) (JSON)
	Process Content Creation (By Data) (JSON)
	Create Preview PDF
	Create Preview PDF (By Data Record)
	Create Preview PDF (By Data) (JSON)
	Get All Operations
	Get Progress of Operation
	Get Result of Operation
	Cancel an Operation
	Service Version

	Content Item Entity Service
	Service Handshake
	Get Data Record for Content Item
	Get Content Item Properties
	Update Content Item Properties
	Update Multiple Content Item Properties
	Service Version

	Content Set Entity Service
	Get All Content Sets
	Get Content Items for Content Set
	Get Page Details for Content Set
	Delete Content Set Entity
	Get Content Set Properties
	Update Content Set Properties
	Service Version

	Data Record Entity Service
	Service Handshake
	Add Data Records
	Get Data Record Values
	Update Data Record Values
	Get Data Record Properties
	Update Data Record Properties
	Get Multiple Data Record Values
	Get Multiple Data Record Values (JSON)
	Update Multiple Data Record Values
	Update Multiple Data Record Properties
	Service Version

	Data Set Entity Service
	Get All Data Sets
	Get Data Records for Data Set
	Delete Data Set Entity
	Get Data Set Properties
	Update Data Set Properties
	Service Version

	Data Mapping Service
	Service Handshake
	Process Data Mapping
	Process Data Mapping (JSON)
	Process Data Mapping (PDF/VT to Data Set)
	Process Data Mapping (PDF/VT to Content Set)
	Get All Operations
	Get Progress of Operation
	Get Result of Operation
	Cancel an Operation
	Service Version

	Document Entity Service
	Service Handshake
	Get Document Metadata Properties
	Update Document Metadata Properties
	Service Version

	Document Set Entity Service
	Service Handshake
	Get Documents for Document Set
	Get Document Set Metadata Properties
	Update Document Set Metadata Properties
	Service Version

	Content Creation (Email) Service
	Service Handshake
	Process Content Creation (By Data Record) (JSON)
	Process Content Creation (By Data) (JSON)
	Get All Operations
	Get Progress of Operation
	Get Result of Operation
	Cancel an Operation
	Service Version

	Entity Service
	Service Handshake
	Find Data Entity
	Service Version

	File Store Service
	Service Handshake
	Download Managed File or Directory
	Delete Managed File or Directory
	Upload Data Mapping Configuration
	Upload Job Creation Preset
	Upload Data File
	Upload Design Template
	Upload Output Creation Preset
	Service Version

	Content Creation (HTML) Service
	Service Handshake
	Process Content Creation (By Data Record)
	Process Content Creation (By Data Record) (JSON)
	Process Content Creation (By Data) (JSON)
	Process Content Creation (No Data)
	Get Template Resource
	Service Version

	Job Creation Service
	Service Handshake
	Process Job Creation
	Process Job Creation (JSON)
	Process Job Creation (JSON Job Set Structure)
	Get All Operations
	Get Progress of Operation
	Get Result of Operation
	Cancel an Operation
	Service Version

	Job Entity Service
	Service Handshake
	Get Content Items for Job
	Get Job Segments for Job
	Get Job Metadata Properties
	Update Job Metadata Properties
	Get Job Properties
	Update Job Properties
	Update Multiple Job Properties
	Service Version

	Job Segment Entity Service
	Service Handshake
	Get Document Sets for Job Segment
	Get Job Segment Metadata Properties
	Update Job Segment Metadata Properties
	Service Version

	Job Set Entity Service
	Get All Job Sets
	Get Jobs for Job Set
	Delete Job Set Entity
	Get Job Set Metadata Properties
	Update Job Set Metadata Properties
	Get Job Set Properties
	Update Job Set Properties
	Service Version

	Output Creation Service
	Service Handshake
	Process Output Creation
	Process Output Creation (JSON)
	Process Output Creation (By Job) (JSON)
	Run +PReS Enhance Workflow Configuration
	Get All Operations
	Get Progress of Operation
	Get Result of Operation
	Get Result of Operation (as Text)
	Cancel an Operation
	Service Version

	All-In-One Service
	Service Handshake
	Process All-In-One (JSON)
	Process All-In-One (Adhoc Data)
	Get All Operations
	Get Progress of Operation
	Get Result of Operation
	Get Result of Operation (as Text)
	Cancel an Operation
	Service Version

	Copyright Information
	Legal Notices and Acknowledgements

