
PlanetPress Design
User Guide

www.objectiflune.com

©2010 Objectif Lune Inc - 2 -

Copyright Information
Copyright© 1994-2011 Objectif Lune Inc. All Rights Reserved.

No part of this publicationmay be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
other language or computer language in whole or in part, in any form or by any means, whether it be electronic, mechanical,
magnetic, optical, manual or otherwise, without prior written consent of Objectif Lune Inc.

Objectif Lune Inc.disclaims all warranties as to this software, whether expressed or implied, including without limitation any
implied warranties of merchantability, fitness for a particular purpose, functionality, data integrity or protection.

PlanetPress and PrintShop Mail are registered trademarks of Objectif Lune Inc.

PostScript and Acrobat are registered trademarks of Adobe Systems Inc.

Pentium is a registered trademark of Intel Corporation.

Windows is a registered trademark of Microsoft Corporation.

Adobe, Adobe PDF Library, Adobe Acrobat, Adobe Distiller, Adobe Reader, Adobe Illustrator, Adobe Photoshop, Optimized
Postcript Stream, the Adobe logo, the Adobe PDF logo are either registered trademarks or trademarks of Adobe Systems Incor-
porated in the United States and/or other countries.

Trademarks of other companies mentioned in this documentation appear for identification purposes only and are the property
of their respective companies.

Title PlanetPress Design User Guide

Revision 2013-03-22

Copyright Information

©2010 Objectif Lune Inc - 3 -

©2010 Objectif Lune Inc - 4 -

Table of Content
Copyright Information 3
Table of Content 5
Fonts and Styles 29

Create a Style 29

Apply a Style 31

View or Edit the Properties of a Style 31

Delete a Style 32

Set the Default Style for New Objects and Groups 32

Create a MICR Style for Account Information on Cheques 33

Arabic Content in PlanetPress Design Documents 33

CID-Keyed Fonts 34

Double-byte Character Sets 34

Encoding Tables 34
Why have different encoding tables? 35

Encoding Tables in PlanetPress Design 35

Edit the Encoding Table for a Style 35

Set a Default Encoding Table 38

Export an Encoding Table 38

Refresh the Font Lists 38

Install a PostScript Font in PlanetPress Design 39

Overview 41
Icons used in this guide 41

Other Documentation 41

Getting Started 43
Environment Considerations 43
Terminal Server/Service 43

VMWare/ESX 43

32-Bit or 64-Bit? 43

Network Considerations 43
Mapped Drives 43

Activate Your Printers 44

The Nature of PlanetPress Design 44

The PlanetPress Design Program 45
Start PlanetPress Design 45

The PlanetPress Suite Button 45
Open a Document 46

Save a Document 47

Save and Open a Document Template 47

Change the Interface Language 47

Exit PlanetPress Design 48

The Quick Access Toolbar 48

The PlanetPress Design Ribbon 49

Table of Content

©2010 Objectif Lune Inc - 5 -

Undo and Redo Commands 50

Navigate Data Pages 51

Document Structure Area 51
Selecting and moving elements 52

Add a Metadata Field 52
Add a Document Page 53

Edit the Order of Pages 53

Duplicate a Page 53

Delete a Page 54

Object Layering Order 54

Group and Ungroup Objects and/or Groups 55

Data Pane 55

Object Inspector 55

Workspace Area 56
Using the Select Tool in the Workspace 56

Zoom in and out of the Workspace 57

Pan the Workspace 57

Use Guides 58

Right-Click Menu in the Workspace 59

Detailed Directions 59
Debug an Object or Group 60

Select Objects and/or Groups 60

Lock and Unlock Objects and Groups 60

Reposition Objects and/or Groups 61

Resize Objects and/or Groups 61

Delete Objects and/or Groups 62

Align Objects and/or Groups 63

Rotate Objects and/or Groups 63

Duplicate Objects and/or Groups 63

Snap or Unsnap Objects and/or Groups 63

Copy Values of Properties between Objects and/or Groups 66

Adding image resources to your document 66

Messages Area 67
Adding External Resources 67

PlanetPress Design Preferences 68
Notification Messages Preferences 69

Image Resources Preferences 70

Color Preferences 71

Object Duplication Preferences 71

Miscellaneous Preferences 72

Editor Preferences 73

Display Preferences 74

Color Preferences 75

Ribbon Preferences 75

Object Inspector Preferences 75

Document Structure Area Preferences 76

Table of Content

©2010 Objectif Lune Inc - 6 -

Rulers Preferences 76

Form Pages Preferences 77

Compiler Messages Preferences 77

Document and Pages Preferences 77

Image Resources Preferences 78

PDF Text Extraction Tolerance Factors 79

Data Selector Display Preferences 80

Dock and Undock Areas of the Program Window 81

Minimize and Customize the Ribbon 82

Show or Hide Areas of the Program Window 82

Resize the Program Window Area 82

Data in PlanetPress Design 83
Sample Data File 83

Capturing Data 85
Capture Sample Data Using the Data Capture Tool 85

LPD Input 85

Serial Input 86

Telnet Input 86

Windows Queue Input 87

The Data Selector 88
Metadata tab 89

Data Page 90

Emulation 90
Text-Based Emulation Properties 91

Line Printer Emulation 91

ASCII Emulation 92

Comma Separated Value (CSV) Emulation 92

Channel Skip Emulation 93

Database Emulation 93

Export or Import a Database Emulation Configuration 95

XML Emulation 96

PDF Emulation 96

User-Defined Emulation 96

Associate a Sample Data File with a Document 97

Metadata 97

Setting Up a Document 105
Set Up a Document 105

Cacheable Execution Options 109
FreeForm Caching 110

FreeForm 2 Caching 111

VPS Caching 112

VDX Caching 112

PPD Setup 113

Add or Remove PPDs 114

Refresh the PPD Lists 114

Specify Job Infos 114

Table of Content

©2010 Objectif Lune Inc - 7 -

Associate Attachments with a Document 115

Setting Up Pages 117
Page Properties 117

Page Types 119
Normal Page 119

Overlay Page 119

Virtual Page 120

Execution Order of Pages 120

Advanced Paper Handling 120
Associate Attachments with a Page 121

Add or Remove Overlays 121

PlanetPress Design Objects 123
View or Edit the Properties of an Object 123
Basic Attributes 123

Repeat 124

Snapping Points 126

Manipulation 126

PlanetPress Talk Before and PlanetPress Talk After 127

Preview options 127

Line Repeat and Data Overflow 127
Snapping Points 128

Object Preview Window 129

Text and Box Object 130
Borders 130

Color 131

Text 131

Apply a Style to Text in a Text Object 132

Set Tabs 133

Adjust Alignment and Lines Per Unit settings 134

Spell Check Text in a Text Object 135

Use the Thesaurus 137

Change the Width of the Text Object in the Text Area 138

Use Variables in a Text Object 138

Data Selection Object 140
Data 140

Lines 140

Archive/Email/Fax 141

Text-Based Data Selections 142

Database Data Selections 143

XML Data Selections 144

PDF Data Selections 145

Edit Text-Based Data Selection Size 145

Postal Address Object 146
Metadata 146

PlanetPress Talk Object 147

Table of Content

©2010 Objectif Lune Inc - 8 -

Shape Object 149
N-Up Object 149

Picture Object 150
Barcode Object 152

Supported Barcodes 152
Australia Post 152

Aztec 153

CEPNet (Brazilian Postal Code) 153

Codabar 153

CodablockF 153

Code 11 154

Code 16k 154

Code 39 154

Code 49 155

Code 93 156

Code 128 157

Datamatrix 158

Discrete 2 of 5 159

FIM 159

GS1 Databar (RSS) 159

IMB/OneCode 159

Interleaved 2 of 5 159

Japan Post 160

Maxicode 160

Micro PDF417 160

Micro QR 160

MSI Plessey 161

PDF417 161

Plessey 161

USPS Postnet 161

QR Code 162

Royal Mail 162

UPC 162

ISBN 163

Business Graphic Object 164
Excel Graphic 165

Capture Field Object 166
Considerations 168

Pidgets 168

Capture Field Masks 169
Custom Masks 169

Regular Expressions 170

Document Resources 173
Image Resources 175
Location of image resources 175

Static and Dynamic Images 175

Table of Content

©2010 Objectif Lune Inc - 9 -

Supported Image Formats 175

Image Glossary 176

Scanline Orientation 177
Image Quality Settings 178

Caches 178
Host-Based Cache 179

Printer-Based Cache 179

Adding Image Resources 179

Guidelines for Optimizing Images 180
Modifying and Updating Images 180

Color Management and Matching 181

PostScript Attachments 183
Delete a Resource 184

Conditions 187
Conditions 187

Global Conditions 187

Local Conditions 187

Line Conditions 187

Create or Remove a Line Condition 188

PlanetPress Supports Global Variables in the Global Function Library Manager 189

Create a Global Condition 190

View or Edit the Properties of a Global Condition 192

Apply or Remove a Global Condition 192

Use a Global Condition as a Variable 192

Combine Global Conditions 192

Override a Global Condition 195

Delete a Global Condition 195

Create, Edit, or Delete Local Conditions 195

Verify a Condition 196

Add a Global Function 196

View or Edit a Global Function 196

Delete a Global Function 197

PlanetPress Talk 199
Variable PlanetPressTalk Properties 199
The PlanetPress Talk Editor 201

PlanetPress Talk Editor Features 202

Debugging Features 203

Code Execution in the Editor 203

Enter a New Program in the Editor 205

Import or Export a Program 205

Save a Program 205

Print a Program 205

Exit the PlanetPress Talk Editor 206

Show or Hide the Commands Area or Spy List 206

Adjust the Sizes of the Commands Area, Code Area and Spy List 206

Expand or Collapse Command Groups 207

Table of Content

©2010 Objectif Lune Inc - 10 -

Enter Commands in the Editor 207

Use Command and Variable Name Completion 208

Dynamic Images 209

PlanetPress Talk Expressions for Dynamic Images that Reference Image Resources 209

PlanetPress Talk Expressions for Dynamic Images that Reference External Images 209
Physical Location of Dynamic Images 210

Host-Based or Printer-Based Document Execution 210

Image Format 211

Summary of Execution Environments 211

Examples of PlanetPress Talk Expressions that Resolve to Pathnames 212

Image Name and Pathname Resolution in Dynamic Images 213
Custom Data Selections 213

PlanetPress Talk Before and After 213

Creating and using Runpages 214
Convert an Object to PlanetPress Talk 215

PlanetPress Talk Basics 217
Assumed Knowledge 217

PlanetPress Talk 217

PlanetPress Talk Terminology 219

The Elements of PlanetPress Talk 219

PlanetPress Talk Syntax 220

Data Types 222

Variables 224

Create a Global Variable 225

View or Edit a Global Variable 226

Delete a Global Variable 226

System Variables with Local Scope 228

System Variables with Global Scope 228

System Objects with Global Scope 229

Current System Object 229
Runpage 232

Using Foreign Language Text with PPtalk 232

Learning PlanetPress Talk 236

Integrate PlanetPress Talk into Documents 237

Define and Assign Values to Variables 237

Select Data 238

Use Functions as Arguments 238

Debug Scripts 238

Tips and Tricks 238

Code Samples 239
Print a variable number of copies of a page based on a value in the datastream 239

Store two lines of input data on one line of the data page 240

Print a line of text on odd-numbered pages 241

Determine the proper page to print based on the width of the data in the data page 241

Language Reference 243

Language Reference (Alphabetical) 243

Table of Content

©2010 Objectif Lune Inc - 11 -

% (procedure) 243

Current (system object) 243

¤titeration (variable) 245

&Document (system object) 246

&EOJob (system variable) 246

&FirstSide (system variable) 246

&Height (system variable) 247

&iterationcount (variable) 247

lastoverflowcount (variable) 247

&Metamode (variable) 247

Physical (system object) 248

&PrinterMode (system variable) 248

Script (system object) 249

&Str (system variable) 250

&system (system object) 250

&watch (system object) 251

&Width (system variable) 251

@ (function) 251

@name (function/procedure) 252

@page (procedure) 252

$element (procedure) 253

+ (operator & function) 253

– (operator) 254

Asterisk (*) operator 254

/ (operator) 254

Greater than (>) operator 254

Greater or equal to (>=) operator 254

Less than (<) operator 254

Less or equal to (<=) operator 254

= (operator) 254

<> (operator) 255

Add (function) 255

And (Boolean operator function) 255

Arc and ArcN (procedures) 256

BeginDocument/EndDocument (procedure) 257

BeginGroup/EndGroup (procedure) 258

BeginParagraph … EndParagraph (procedure) 258

BeginUTF8Paragraph … EndUTF8Paragraph (procedure) 260

BitmapWidth/BitmapHeight (function) 260

Breakpoint (procedure) 261

C128 (function) 261

CallPPD (procedure) 262

Ceil (function) 262

Char (function) 263

CharPath (procedure) 263

ClearPage (procedure) 264

ClipPath (procedure) 264

Table of Content

©2010 Objectif Lune Inc - 12 -

ClosePath (procedure) 265

Cos (function) 265

CRLF (procedure) 266

CurToStr (function) 266

CurToFloat (function) 267

CurveTo/RCurveTo (procedure) 267

Date (function) 268

Define (procedure) 269

DefineData (procedure) 269

DefineImageIndex (procedure) 270

Definemeta (function) 270

Div (function) 271

DoForm (procedure) 272

endpageset (procedure) 272

EPSWidth/EPSHeight (function) 273

Eq (function) 274

ExecPage (procedure) 274

ExecScriptFile (function) 275

Exit (procedure) 276

ExpandString (function) 277

Field (function) 277

FieldCount (function) 278

FieldName (function) 278

Fill (procedure) 278

Find (function) 279

FloatToCur (function) 279

FloatToInt (function) 280

FloatToStr (function) 280

For… EndFor (procedure) 281

Function @name (procedure) 282

GE (function) 284

Get (function) 285

GetBlack (function) 286

GetCyan (function) 286

GetMagenta (function) 286

Getmeta (function) 287

Getmetacount (function) 288

GetNextDataPage(procedure) 289

GetYellow (function) 290

GRestore (procedure) 290

GSave (procedure) 290

GT (function) 291

If (function) 292

If … ElseIf… EndIf (procedure) 292

InStream... EndInStream (procedure) 294

IntToCur (function) 295

IntToFloat (function) 295

Table of Content

©2010 Objectif Lune Inc - 13 -

IntToStr (function) 296

IsNumber (function) 297

IsPageEmpty (function) 297

LE (function) 297

Left (function) 298

Length (function) 299

LineTo/RLineTo (procedure) 299

LowerCase (function) 300

LT (function) 300

MapUTF8 (function) 301

Margin (procedure) 303

Mid (function) 303

Mod (function & procedure) 304

MoveTo/RMoveTo (procedure) 305

Mul (function) 305

NE (function) 306

Neg (function) 307

Not (Boolean operator function) 307

Object $name()... EndObject (procedure) 308

Or (Boolean operator function) 310

Ord (function) 310

OutputDebugString (procedure) 311

PassThrough (procedure) 311

PDFPageCount (function) 312

PDFWidth/PDFHeight (function) 312

Pie (procedure) 313

PixelHeight (function) 314

PixelWidth (function) 314

Pos (function) 314

Put (procedure) 315

Random (function) 315

Rectangle (procedure) 316

RectFill (procedure) 317

RectFillStroke (procedure) 318

RectStroke (procedure) 318

Region (function) 319

Regionline (function) 320

Repeat... Until (procedure) 320

ResourceType (function) 321

Right (function) 322

RunPS (procedure) 323

Scale (procedure) 323

Search … EndSearch (procedure) 323

SelectMedia (procedure) 324

SelectPrinter (procedure) 325

Set (procedure) 325

SetAngle (procedure) 326

Table of Content

©2010 Objectif Lune Inc - 14 -

SetBodyText (procedure) 327

SetDash(procedure) 327

SetDataPage(procedure) 328

SetEmailAddress (procedure) 328

SetEmailSubject (procedure) 328

SetEmulation(procedure) 328

SetUserCRLF (procedure) 329

SetFaxInformation (procedure) 329

SetFaxNumber (procedure) 330

SetFillColor (procedure) 330

SetImageIndex (procedure) 331

SetLineWidth (procedure) 331

SetLPP(procedure) 332

SetPDFBookmark (procedure) 332

SetStrokeColor (procedure) 333

SetStyle (procedure) 333

SetStyleExt (procedure) 334

Show / ShowCenter / ShowRight (procedure) 335

ShowBarCode (procedure) 335

ShowBarcode2of5(procedure) 337

ShowBarcodeAustPost (procedure) 337

ShowBarcodeAztec (procedure) 337

ShowBarcodeCodabar (procedure) 338

ShowBarcodeCodablockF (procedure) 339

ShowBarcodeCode11 (procedure) 340

ShowBarcodeCode128 (procedure) 340

ShowBarcodeCode16k (procedure) 341

ShowBarcodeCode39 (procedure) 341

ShowBarcodeCode49 (procedure) 342

ShowBarcodeCode93 (procedure) 342

ShowBarcodeDatamatrix (procedure) 343

ShowBarcodeEAN8 (procedure) 344

ShowBarcodeEAN13 (procedure) 344

ShowBarcodeFIM (procedure) 345

ShowBarcodeI2of5 (procedure) 345

ShowBarcodeISBN (procedure) 346

ShowBarcodeJapanpost (procedure) 347

ShowBarcodeMaxicode (procedure) 347

ShowBarcodeMicroPDF (procedure) 348

ShowBarcodeMicroQR (procedure) 348

ShowBarcodeMSI (procedure) 349

ShowBarcodeOnecode (procedure) 349

ShowBarcodePDF417 (procedure) 350

ShowBarcodePlessey (procedure) 351

ShowBarcodePostnet (procedure) 351

ShowBarcodeQRCode (procedure) 352

ShowBarcodeRoyalMail (procedure) 352

Table of Content

©2010 Objectif Lune Inc - 15 -

ShowBarcodeRSS (procedure) 353

ShowBarcodeUPCA (procedure) 353

ShowBarcodeUPCE (procedure) 354

ShowBitmap (procedure) 355

ShowCaptureUserArea (procedure) 356

ShowEPS (procedure) 357

ShowLeftRight (procedure) 358

ShowPage (procedure) 358

ShowPDF (procedure) 359

ShowUTF8 (procedure) 360

ShowUTF8Left / ShowUTF8Right / ShowUTF8Center (procedure) 361

Sin (function) 362

StopJob (procedure) 363

Store (procedure) 363

StringReplace (function) 363

StringWidth (function) 364

StringWidthUTF8 (function) 365

Strip (function) 365

Stroke (procedure) 366

StrokeAndFill (procedure) 366

StrToCur (function) 367

StrToFloat (function) 367

StrToInt (function) 368

Sub (function) 368

SubRecCount (function) 369

Time (function) 370

Translate (procedure) 371

Trim (function) 372

TrimLeft (function) 372

TrimRight (function) 372

UpperCase (function) 373

xmlCount() 373

xmlGet() 374

XOr (Boolean operator function) 375

Language Reference (by element type) 375
System Variables 376

&EOJob (system variable) 376

&FirstSide (system variable) 376

&Height (system variable) 376

&PrinterMode (system variable) 377

&Str (system variable) 377

&Width (system variable) 378

System Objects 378

Current (system object) 378

Physical (system object) 380

&system (system object) 380

Assignment Operator 381

Table of Content

©2010 Objectif Lune Inc - 16 -

= (operator) 381

Mathematical Operators and Operator Functions 381

+ (operator & function) 381

Add (function) 382

– (operator) 382

Sub (function) 382

Asterisk (*) operator 383

Mul (function) 383

/ (operator) 383

Div (function) 383

Neg (function) 384

Cos (function) 384

Sin (function) 385

Random (function) 386

Ceil (function) 386

String Operator 387

+ (operator & function) 387

Boolean Operator Functions 387

And (Boolean operator function) 387

Not (Boolean operator function) 388

Or (Boolean operator function) 388

XOr (Boolean operator function) 389

Comparison Operators and Operator Functions 390

GT (function) 390

Greater than (>) operator 391

GE (function) 391

Greater or equal to (>=) operator 391

LT (function) 391

Less than (<) operator 392

LE (function) 392

Less or equal to (<=) operator 393

Eq (function) 393

= (operator) 393

NE (function) 394

<> (operator) 394

Conversion Operator Functions 394

FloatToCur (function) 395

FloatToInt (function) 395

FloatToStr (function) 395

IntToCur (function) 396

IntToFloat (function) 396

IntToStr (function) 397

StrToCur (function) 398

StrToFloat (function) 398

StrToInt (function) 398

Loop Structures 399

For… EndFor (procedure) 399

Table of Content

©2010 Objectif Lune Inc - 17 -

Repeat... Until (procedure) 400

Search … EndSearch (procedure) 401

Exit (procedure) 402

Condition Structures 402

If … ElseIf… EndIf (procedure) 402

If (function) 404

Procedures 405

% (procedure) 405

@name (function/procedure) 405

@page (procedure) 406

$element (procedure) 406

Arc and ArcN (procedures) 407

BeginDocument/EndDocument (procedure) 408

BeginGroup/EndGroup (procedure) 409

BeginParagraph … EndParagraph (procedure) 409

BeginUTF8Paragraph … EndUTF8Paragraph (procedure) 411

Breakpoint (procedure) 412

CallPPD (procedure) 412

CharPath (procedure) 413

ClearPage (procedure) 413

ClipPath (procedure) 414

ClosePath (procedure) 414

CRLF (procedure) 415

CurveTo/RCurveTo (procedure) 415

Define (procedure) 416

DefineData (procedure) 417

DefineImageIndex (procedure) 418

DoForm (procedure) 418

endpageset (procedure) 419

ExecPage (procedure) 419

Exit (procedure) 420

Fill (procedure) 421

For… EndFor (procedure) 421

Function @name (procedure) 422

GetNextDataPage(procedure) 425

GRestore (procedure) 425

GSave (procedure) 425

If … ElseIf… EndIf (procedure) 426

InStream... EndInStream (procedure) 428

LineTo/RLineTo (procedure) 429

Margin (procedure) 430

MoveTo/RMoveTo (procedure) 430

Object $name()... EndObject (procedure) 431

OutputDebugString (procedure) 432

PassThrough (procedure) 433

Pie (procedure) 433

Put (procedure) 434

Table of Content

©2010 Objectif Lune Inc - 18 -

Rectangle (procedure) 435

RectFill (procedure) 435

RectFillStroke (procedure) 436

RectStroke (procedure) 437

Repeat... Until (procedure) 437

RunPS (procedure) 438

Scale (procedure) 439

Search … EndSearch (procedure) 439

SelectMedia (procedure) 440

SelectPrinter (procedure) 441

Set (procedure) 441

SetAngle (procedure) 442

SetBodyText (procedure) 442

SetDash(procedure) 443

SetDataPage(procedure) 443

SetEmailAddress (procedure) 444

SetEmailSubject (procedure) 444

SetEmulation(procedure) 444

SetUserCRLF (procedure) 444

SetFaxInformation (procedure) 445

SetFaxNumber (procedure) 445

SetFillColor (procedure) 446

SetImageIndex (procedure) 446

SetLineWidth (procedure) 447

SetLPP(procedure) 448

SetPDFBookmark (procedure) 448

SetStrokeColor (procedure) 449

SetStyle (procedure) 449

SetStyleExt (procedure) 450

Show / ShowCenter / ShowRight (procedure) 451

ShowBarCode (procedure) 451

ShowBarcode2of5(procedure) 452

ShowBarcodeAustPost (procedure) 453

ShowBarcodeAztec (procedure) 453

ShowBarcodeCodabar (procedure) 454

ShowBarcodeCodablockF (procedure) 455

ShowBarcodeCode11 (procedure) 455

ShowBarcodeCode128 (procedure) 456

ShowBarcodeCode16k (procedure) 457

ShowBarcodeCode39 (procedure) 457

ShowBarcodeCode49 (procedure) 458

ShowBarcodeCode93 (procedure) 458

ShowBarcodeDatamatrix (procedure) 459

ShowBarcodeEAN8 (procedure) 459

ShowBarcodeEAN13 (procedure) 460

ShowBarcodeFIM (procedure) 461

ShowBarcodeI2of5 (procedure) 461

Table of Content

©2010 Objectif Lune Inc - 19 -

ShowBarcodeISBN (procedure) 462

ShowBarcodeJapanpost (procedure) 462

ShowBarcodeMaxicode (procedure) 463

ShowBarcodeMicroPDF (procedure) 463

ShowBarcodeMicroQR (procedure) 464

ShowBarcodeMSI (procedure) 465

ShowBarcodeOnecode (procedure) 465

ShowBarcodePDF417 (procedure) 466

ShowBarcodePlessey (procedure) 466

ShowBarcodePostnet (procedure) 467

ShowBarcodeQRCode (procedure) 467

ShowBarcodeRoyalMail (procedure) 468

ShowBarcodeRSS (procedure) 468

ShowBarcodeUPCA (procedure) 469

ShowBarcodeUPCE (procedure) 470

ShowBitmap (procedure) 470

ShowCaptureUserArea (procedure) 472

ShowEPS (procedure) 473

ShowLeftRight (procedure) 473

ShowPage (procedure) 474

ShowPDF (procedure) 475

ShowUTF8 (procedure) 475

ShowUTF8Left / ShowUTF8Right / ShowUTF8Center (procedure) 476

StopJob (procedure) 478

Store (procedure) 478

Stroke (procedure) 479

StrokeAndFill (procedure) 479

Translate (procedure) 480

Functions 481

@ (function) 481

@name (function/procedure) 481

BitmapWidth/BitmapHeight (function) 482

C128 (function) 482

Ceil (function) 483

Char (function) 483

Date (function) 484

Definemeta (function) 484

EPSWidth/EPSHeight (function) 485

ExecScriptFile (function) 486

ExpandString (function) 487

Field (function) 487

FieldCount (function) 488

FieldName (function) 488

Find (function) 489

Get (function) 489

GetBlack (function) 490

GetCyan (function) 490

Table of Content

©2010 Objectif Lune Inc - 20 -

GetMagenta (function) 491

Getmeta (function) 491

Getmetacount (function) 493

GetYellow (function) 494

IsNumber (function) 494

IsPageEmpty (function) 494

Left (function) 495

Length (function) 495

LowerCase (function) 496

MapUTF8 (function) 496

Mid (function) 498

Mul (function) 499

Ord (function) 499

PDFPageCount (function) 500

PDFWidth/PDFHeight (function) 500

PixelHeight (function) 501

PixelWidth (function) 501

Pos (function) 501

Random (function) 502

Region (function) 502

Regionline (function) 503

ResourceType (function) 504

Right (function) 505

StringReplace (function) 505

StringWidth (function) 506

StringWidthUTF8 (function) 507

Strip (function) 507

Sub (function) 507

SubRecCount (function) 508

Time (function) 509

Trim (function) 510

TrimLeft (function) 510

TrimRight (function) 511

UpperCase (function) 511

xmlCount() 511

xmlGet() 512

System Variables (by data type) 513
Integer 513

Measure 513

String 514

Boolean 514

Functions (by return value data type) 514
Currency 514

Add (function) 514

FloatToCur (function) 515

IntToCur (function) 515

Table of Content

©2010 Objectif Lune Inc - 21 -

StrToCur (function) 515

Integer 516

Add (function) 516

Ceil (function) 516

Div (function) 517

FieldCount (function) 517

FloatToInt (function) 517

Get (function) 518

GetBlack (function) 518

GetCyan (function) 519

GetMagenta (function) 519

GetYellow (function) 520

Getmetacount (function) 520

If (function) 521

Length (function) 522

Mod (function & procedure) 522

Mul (function) 523

Neg (function) 524

Ord (function) 524

PDFPageCount (function) 525

PixelHeight (function) 525

PixelWidth (function) 525

Pos (function) 526

ResourceType (function) 526

StrToInt (function) 527

Sub (function) 528

SubRecCount (function) 528

xmlCount() 529

Measure 530

Add (function) 530

BitmapWidth/BitmapHeight (function) 531

Cos (function) 531

CurToFloat (function) 532

Div (function) 532

EPSWidth/EPSHeight (function) 532

Get (function) 533

If (function) 533

IntToFloat (function) 534

Mul (function) 535

Neg (function) 535

PDFWidth/PDFHeight (function) 536

Random (function) 536

Sin (function) 537

StringWidth (function) 537

StringWidthUTF8 (function) 538

StrToFloat (function) 538

Sub (function) 539

Table of Content

©2010 Objectif Lune Inc - 22 -

String 540

@ (function) 540

C128 (function) 540

Char (function) 541

CurToStr (function) 541

ExpandString (function) 541

Field (function) 542

FieldName (function) 542

FloatToStr (function) 543

Get (function) 543

If (function) 544

IntToStr (function) 544

Left (function) 545

LowerCase (function) 546

Mid (function) 546

Right (function) 547

StringReplace (function) 548

Strip (function) 548

Trim (function) 549

TrimLeft (function) 549

TrimRight (function) 550

UpperCase (function) 550

xmlGet() 550

Boolean 551

Add (function) 551

Eq (function) 552

Find (function) 553

GE (function) 553

GT (function) 554

If (function) 554

IsNumber (function) 555

IsPageEmpty (function) 555

LE (function) 556

LT (function) 556

NE (function) 557

Not (Boolean operator function) 558

Or (Boolean operator function) 558

XOr (Boolean operator function) 559

Procedures (by category) 560
Debugging 560

Breakpoint (procedure) 561

OutputDebugString (procedure) 561

Variables 561

Define (procedure) 561

Put (procedure) 562

Set (procedure) 563

Global Functions 563

Table of Content

©2010 Objectif Lune Inc - 23 -

@name (function/procedure) 563

Function @name (procedure) 564

Comments 566

% (procedure) 566

Graphics State 567

GRestore (procedure) 567

GSave (procedure) 567

Scale (procedure) 568

SetAngle (procedure) 569

SetDash(procedure) 569

SetFillColor (procedure) 570

SetLineWidth (procedure) 571

SetStrokeColor (procedure) 571

Translate (procedure) 571

Path 572

Arc and ArcN (procedures) 573

ClosePath (procedure) 574

CurveTo/RCurveTo (procedure) 574

Fill (procedure) 575

LineTo/RLineTo (procedure) 576

MoveTo/RMoveTo (procedure) 577

Pie (procedure) 577

Rectangle (procedure) 578

RectFill (procedure) 579

RectFillStroke (procedure) 580

RectStroke (procedure) 580

Stroke (procedure) 581

StrokeAndFill (procedure) 582

Paragraphs and Text 582

BeginParagraph … EndParagraph (procedure) 582

BeginUTF8Paragraph … EndUTF8Paragraph (procedure) 584

CRLF (procedure) 585

Margin (procedure) 585

ShowLeftRight (procedure) 586

Show / ShowCenter / ShowRight (procedure) 586

Styles 587

SetStyle (procedure) 587

SetStyleExt (procedure) 588

Objects 589

Object $name()... EndObject (procedure) 589

Bar Codes 590

ShowBarCode (procedure) 590

ShowBarcode2of5(procedure) 591

ShowBarcodeAustPost (procedure) 592

ShowBarcodeAztec (procedure) 592

ShowBarcodeCodabar (procedure) 593

ShowBarcodeCodablockF (procedure) 594

Table of Content

©2010 Objectif Lune Inc - 24 -

ShowBarcodeCode11 (procedure) 594

ShowBarcodeCode128 (procedure) 595

ShowBarcodeCode16k (procedure) 596

ShowBarcodeCode39 (procedure) 596

ShowBarcodeCode49 (procedure) 597

ShowBarcodeCode93 (procedure) 597

ShowBarcodeDatamatrix (procedure) 598

ShowBarcodeEAN8 (procedure) 598

ShowBarcodeEAN13 (procedure) 599

ShowBarcodeFIM (procedure) 600

ShowBarcodeI2of5 (procedure) 600

ShowBarcodeISBN (procedure) 601

ShowBarcodeJapanpost (procedure) 601

ShowBarcodeMaxicode (procedure) 602

ShowBarcodeMicroPDF (procedure) 602

ShowBarcodeMicroQR (procedure) 603

ShowBarcodeMSI (procedure) 604

ShowBarcodeOnecode (procedure) 604

ShowBarcodePDF417 (procedure) 605

ShowBarcodePlessey (procedure) 605

ShowBarcodePostnet (procedure) 606

ShowBarcodeQRCode (procedure) 607

ShowBarcodeRoyalMail (procedure) 607

ShowBarcodeRSS (procedure) 608

ShowBarcodeUPCA (procedure) 608

ShowBarcodeUPCE (procedure) 609

Resources 610

InStream... EndInStream (procedure) 610

ShowBitmap (procedure) 611

ShowEPS (procedure) 612

ShowPDF (procedure) 613

Elements 613

$element (procedure) 613

Emulation, Data File, and Data Pages 614

ClearPage (procedure) 614

DefineData (procedure) 615

DoForm (procedure) 615

GetNextDataPage(procedure) 616

SetDataPage(procedure) 616

SetEmulation(procedure) 616

SetLPP(procedure) 617

Store (procedure) 617

Data Destined for PlanetPress Image, PlanetPress Fax and PlanetPress Search 617

DefineImageIndex (procedure) 618

SetBodyText (procedure) 618

SetEmailAddress (procedure) 618

SetEmailSubject (procedure) 619

Table of Content

©2010 Objectif Lune Inc - 25 -

SetFaxInformation (procedure) 619

SetFaxNumber (procedure) 619

SetImageIndex (procedure) 620

SetPDFBookmark (procedure) 620

Document Pages 621

@page (procedure) 621

ExecPage (procedure) 622

ShowPage (procedure) 622

PPDs and PostScript 623

CallPPD (procedure) 623

PassThrough (procedure) 624

RunPS (procedure) 624

SelectMedia (procedure) 624

Program Control 625

Exit (procedure) 625

For… EndFor (procedure) 626

If … ElseIf… EndIf (procedure) 627

Repeat... Until (procedure) 629

Search … EndSearch (procedure) 629

StopJob (procedure) 630

Conversion Tables 631

ASCII Conversion Table 632

Points to Inches or Centimeters 634
Points to Inches 635

Points to Centimeters 637

Line Height as a Function of Lines Per Unit (LPU) 638
Line Height as a Function of Lines Per Inch 638

Line Height as a Function of Lines Per Centimeter 638

Tools and Utilities 641
The Image Downloader 641

Adjust the Image Quality Options 643

Virtual Drive Manager 645

Access Manager 645
To open the Access Manager 646

To add a new entry in the list 646

To modify permissions 647

SOAP Access 647
To add a new SOAP user 648

To define or change the permissions for a SOAP User 648

Managing Documents and Printers 651
Obtain Information from a Printer 651

Delete Documents or Files on the Printer 651

Printer Firmware Version 652

Control Versions of a Document 652

Adjust Printer Settings 653

Form Cache 654

Table of Content

©2010 Objectif Lune Inc - 26 -

Remove Background Color 654

Named Colors 655

Create a Graybar Report 656

The Hex Viewer 658

Date and Time Format 660

Document Output and Preview 663
About Previewing and Printing 663
Preview a Document On Screen 663

Previews of Documents that Use ASCII Emulation 666

Preview a Capture-Ready document 667

Print a Document Preview 667

Print Using a Windows Driver 668

Printing Using a Windows Driver 670

Generate a Soft Proof 670

Convert a Document and Save It to a File 672

Install a Document 673
Install a document on one or more printers 673

Send the document to one or more local PlanetPress Workflow servers 674

Save a PTK or PTZ file to send to a remote PlanetPress Workflow installation 675

Send a document to PlanetPress iWatch or a UNIX or Linux CodeHost BrightQ print spooler system: 675

Perform a Batch Conversion and/or Installation 676
To use the Batch Send To wizard 676

Move a Document between PlanetPress Design Installations 676

Trigger 676

How a Variable Content Document Runs on a Printer 677
Phase 1: Data Reading 677

Phase 2: Global Condition Resolution 677

Phase 3: Document Page Printing 677

Techniques for Inserting Triggers 677

Trigger Syntax 678
Trigger Syntax for Documents Installed on a Hard Disk 679

Trigger Syntax for Documents Installed in RAM 679

Trigger Syntax for Documents Installed in Flash Memory 679

Run a Document Installed on a Printer 680

Run a Document Installed in a PlanetPress Suite Workflow Tool 680

Run a Document that Uses a Database Emulation 680

Run Several Documents as a Single Job 681

Troubleshoot Execution Problems 681

Keyboard Shortcuts 685
PlanetPress Design General 685
Exit PlanetPress Design 685

Use the Help System 685

Show or Hide Areas of the Program Window 686

Work with Hierarchies 686

Work in the Document Structure Area 686

Work with Documents 686

Table of Content

©2010 Objectif Lune Inc - 27 -

Preview and Install Documents 687

Work with Pages 687

Adjust the Zoom 688

Use Basic Editing Commands 688

Work in the Data Pane 688

Work with the Data File 689

Work with Data Selections 689

Use the Hex Viewer 690

Work with Objects 691

Work in the Text Properties of a Text Object 692

PlanetPress Talk Editor 692
General 693

Show or Hide Areas of the Editor 693

Expand or Collapse Groups in the Commands Area 693

Work in the Code Area 694

Use Command Name Completion/Argument Insertion 694

Undo Commands 694

Work with Selections 694

Add/Remove Comments 695

Indent Code 695

Search 695

Jump to a Specific Line 695

Use Bookmarks 695

Execute a Program 695

Debug Code 696

Print the Script 696

Converted Document 696

About Documents 696
About Document Elements 697

About Data Selections 698

About Objects 698

PPD File 698
PP7 File 698

PTZ File 699

PTK File 699

About Resources 699

Table of Content

©2010 Objectif Lune Inc - 28 -

Fonts and Styles
A style is a specific set of properties that describe how a font is used within a PlanetPress Design object. Styles are created at
the document level and can be used in any object where text is displayed, including data selections, text boxes, human-read-
able barcode text and business graphics.

While creating your PlanetPress Design document, you can use multiple styles as well as unique fonts for each style. This chap-
ter explains how to create andmanage styles, how to install andmanage fonts, as well as how to troubleshoot font issues.

Create a Style

To create a style:

1. Do one of the following to display the Style properties dialog box:
l In the Structure area, right-click on the Styles folder and choose Style.
l ChooseHome | Style.
The Style properties dialog box appears.

2. If you want to preview the style as you work, click the Preview button to display the Style Preview. Click the Preview
button a second time to hide the Style Preview. You can show or hide the Style Preview at any time as you work in the
Style dialog. As you work the Style Preview updates to reflect any changes youmake to the properties in the Style
dialog. See To work in the Style Preview: for help using the Style Preview.

3. In the Style properties dialog box, click Style properties, enter a name for the style, indicate whether or not you
want to set it as the default style, and set the font properties for the style.
Name: Enter a name for the style. Although PlanetPress Design supplies a default name, it is recommended you
choose a name that reflects the purpose of the style. A meaningful name makes it easier to distinguish one style from
another in a document, and thus makes the document easier to design andmaintain. Names cannot begin with a
number, and can contain only the following ASCII characters: underscore, upper and lower case letters of the alphabet,
all digits 0 through 9. If you use an underscore in the name, it should not appear as either the first or last character of
the name as this may cause internal conflicts in the software. Names are case-insensitive andmust be unique (no two
elements in a document can have the same name). Names can be a maximum of 50 characters in length. Finally, Plan-
etPress Talk variable and command names are reserved words; you cannot use any of these reserved words as a
name.
Default style: Select to make this style the default style. The default style is the style PlanetPress Design associates
by default with each new object it creates. It is the style that appears by default in the Style box in the Basic attributes
properties of an object when you create that object. The current default style appears in bold in the Structure area.
Font Definition
Font type: Select the type of font for the style. PostScript fonts are strongly recommended to improve printer per-
formance and reduce the file size of a document. The type you select determines the contents and availability of the
remaining options. The Default font type option in the User Options dialog box determines the font type that appears
here by default.
Refresh Fonts List button: Click to refresh the list of available fonts. You use this button if you added fonts to, or
removed fonts from, your PlanetPress Design installation after you began your current PlanetPress Design session.
PlanetPress Design automatically refreshes the list of available fonts each time it starts.
Font name: Select the font you want to use for the style. The Font type you selected determines the contents of this
box. If the font you want to use is a Bold, Italic, or Bold Italic font, you should choose the regular version of the font in
this box, and use the Bold and/or Italic buttons to adjust its Bold and Italic properties. For example, if you want to use
the Helvetica Bold font, select Helvetica in this box, and click the Bold button. This increases the flexibility of the style;
rather than create a new style for each version of the font, you create a single style and adjust the properties as nec-
essary when you reference the style. Note that if the font you select exists in the PPD file of the document (i.e. is
printer-resident), PlanetPress Design does not include the font when it performs a hard copy preview or installation of

Fonts and Styles

©2010 Objectif Lune Inc - 29 -

the document. If you did not modify the Font type option, the font name that appears by default is the one set in the
Default font name option in the User Options dialog box.
Default attributes
Font size: Select or type the point size for the font. Note that this is the default font size for the style. You can override
the default as necessary in various places in PlanetPress Design, including the text in text/box objects, and in Plan-
etPress Talk using the setstyleext() command.
Bold button: Click to turn the Bold property of the font on or off. When you turn the Bold property on, the style uses
the font selected in the Bold font name box, or, if the Italic property is also on, the font selected in the Bold italic font
name box, of the Advanced Fonts dialog box. The property is on when the button appears recessed.
Italic button: Click to turn the Italic property of the font on or off. When you turn the Italic property on, the style uses
the font you selected in the Italic font name box, or, if the Bold property is also on, the font selected in the Bold italic
font name box, of the Advanced Fonts dialog box. The property is on when the button appears recessed.
Underline button: Click to turn the Underline property of the font on or off. When you turn the Underline property
on, the style underlines the characters of its font. The property is on when the button appears recessed. Note that
spaces may not appear underlined in PlanetPress Design, but that they will be when the document is used to generate
output.
Color box: View the current color for the style. When you select a color in the Color Picker, this box updates to reflect
the selected color.
Color button: Click to select a color for the style using the Color Picker. The Color box displays the selected color for
the style.
Font ratio: Enter a percentage by which you want to shrink or stretch the font spacing. This value adjusts both the
width of each glyph and the spacing between glyphs. This is in contrast to kerning, whichmodifies the spacing between
characters without modifying the width of characters.

4. If necessary, click Set advanced fonts (the button to the right of the Font name box), and use the Advanced Fonts
dialog box to specify the fonts to use when you set the Bold, Italic, and BoldItalic properties on this style.
Bold font name: Select the font to use when you set the Bold property on this style. You use the Bold button to set
the Bold property. The Font type you selected determines the contents of this box, and the Font name you selected
determines which font appears by default in this box. It is important to select a font from the same family as the font
you selected for the style in the Font name box. For example, if you selected Helvetica in the Font name box, you
should select a Helvetica font (for example, Helvetica Bold) in this box. This ensures all fonts the style references use
the same encoding table, and thus prevents unpredictable results. Note that if the font you select exists in the PPD file
of the document (i.e. is printer-resident), PlanetPress Design does not include the font when it performs a hard copy
preview or an installation of the document.
Italic font name: Select the font to use when you set the Italic property on this style. You use the Italic button to set
the Italic property. The Font type you selected determines the contents of this box, and the Font name you selected
determines which font appears by default in this box. It is important to select a font from the same family as the font
you selected for the style in the Font name box. For example, if you selected Helvetica in the Font name box, you
should select a Helvetica font (for example, Helvetica Oblique) in this box. This ensures all fonts the style references
use the same encoding table, and thus prevents unpredictable results. Note that if the font you select exists in the PPD
file of the document (i.e. is printer-resident), PlanetPress Design does not include the font when it performs a hard copy
preview or an installation of the document.
Bold italic font name: Select the font to use when you set both the Bold and Italic properties on this style. You use
the Italic and Bold buttons to set these properties. The Font type you selected determines the contents of this box, and
the Font name you selected determines which font appears by default in this box. It is important to select a font from
the same family as the font you selected for the style in the Font name box. For example, if you selected Helvetica in
the Font name box, you should select a Helvetica font (for example, Helvetica Bold Oblique) in this box. This ensures all
fonts the style references use the same encoding table, and thus prevents unpredictable results. Note that if the font
you select exists in the PPD file of the document (i.e. is printer-resident), PlanetPress Design does not include the font
when it performs a hard copy preview or an installation of the document.

5. In the Encoding box, select the encoding table you want to use for the font.

Fonts and Styles

©2010 Objectif Lune Inc - 30 -

6. Click OK.
PlanetPress Design creates the style. The style appears in the Styles folder in the Structure area.

To work in the Style Preview:

1. If the Style Preview is not visible, in the Style dialog click the Preview button.
The Style Preview appears, and displays the test string using the settings entered to date in the Style dialog.

2. In the Style Preview do any of the following:
l To change the test string, in the Test string box either modify the currently selected string or select a previously
entered string. The Preview updates to reflect the changes to the test string.

l To change the zoom level, use the Zoom toolbar in the upper left of the Style Preview. Click in the Current zoom
factor box and enter the new zoom (the zoom factor can be any value from 10 to 1000). Alternatively click the
Zoom in or Zoom out tool to zoom in or out respectively, by the zoom factor set in the User Options dialog box.
PlanetPress Design updates the Current zoom factor box to reflect the new zoom level.

Apply a Style

The procedures here describe how to apply a style to one or more objects in a document. Note that when you first create an
object or a group, PlanetPress Design assigns the default style to that object or group. You can subsequently change that style
using the object’s properties dialog box, the Object Inspector, or the procedures described here.

You can also change the style PlanetPress Design assigns to new objects by default. See "Set the Default Style for New Objects
and Groups" (page 32).

To apply a style to a single object or group:

1. In the Structure area, drag the style to the object or group to which you want to apply it.
2. Release it.

To apply a style to one or more objects and/or groups in a document:

1. Select one or more objects and/or groups.
2. In theObject Inspector, select the style you want to associate with the selected objects and/or groups. Note that if

you associate a style with a text object as a whole, that style overrides any others defined in the text object.
PlanetPress Design applies the style to all text in the selected objects and/or groups. This style becomes the default
style for any PlanetPress Talk code you add in the PlanetPress Talk properties of the objects/groups.

View or Edit the Properties of a Style

You can view or edit the properties of a style using either the Object Inspector or the properties dialog box for the style. If the
property you want to edit is the name of the style, also see "Change the Display Name of an Element in the Structure Area"
(page n).

To view or edit properties using the Object Inspector:

1. In the Structure area, select the style whose properties you want to view or edit.
The Object Inspector displays the properties of that style. If the Object Inspector is not visible, see "Show or Hide
Areas of the ProgramWindow" (page 82).

2. In the Object Inspector, make any necessary modifications to the properties. See "Use the Object Inspector" (page n)
for help.
PlanetPress Design updates the style. If you edited the name of the style, PlanetPress Design also updates the name of
the style in all objects that reference it

To view or edit properties using the properties dialog box:

Fonts and Styles

©2010 Objectif Lune Inc - 31 -

../../../../../Content/1219.html
../../../../../Content/1219.html
../../../../../Content/1219.html
../../../../../Content/1219.html
../../../../../Content/1219.html
../../../../../Content/1219.html
../../../../../Content/1219.html
../../../../../Content/1219.html
../../../../../Content/1219.html
../../../../../Content/1219.html
../../../../../Content/1219.html
../../../../../Content/1219.html
../../../../../Content/1219.html
../../../../../Content/1226.html
../../../../../Content/1226.html
../../../../../Content/1226.html
../../../../../Content/1226.html
../../../../../Content/1226.html
../../../../../Content/1226.html

1. In the Structure area, do any of the following to display the properties dialog box for the style:
l Double-click the style.
l Select the style and press ENTER.
l Select the style and, in the Object Inspector, double-click one of its properties.

2. Use the properties dialog box to edit the style properties, if necessary.
3. In the properties dialog box, click OK.

PlanetPress Design updates the style. If you edited the name of the style, PlanetPress Design also updates the name of
the style in all objects that reference it.

Delete a Style

This procedure describes how to delete one or more styles. When you delete a style, youmust define how youwant Plan-
etPress Design to handle references to that style in existing document elements.

To delete one or more styles:

1. In the Structure area, select the styles you want to delete.
2. Do any of the following:

l Select your style and go toHome | Clipboard |Delete.
l In the Structure area, right-click one of the selected styles and chooseDelete.
l Press DELETE.
If no objects or groups reference any of the selected styles, PlanetPress Design performs the deletion.
If any objects or groups reference any of the selected styles, PlanetPress Design prompts you to define how you
want to handle the deletion of each referenced style. More precisely, for each referenced style, it displays the
Style Deletion dialog box. You use that dialog box to set the deletion options and proceed with the deletion. See
To use the Style Deletion dialog box:.

To use the Style Deletion dialog box:

1. Adjust the options to reflect how youwant PlanetPress Design to handle the deletion request. The name of the style you
selected for deletion appears in the title bar of the Style Deletion dialog box, and the list of objects and groups that ref-
erence it appear on the right of the dialog box.
Replace reference by: Select to delete the style and to replace all references to it with a reference to another of the
styles in the document.
Styles available: Select the style you want to use as the replacement reference. When you delete the style, Plan-
etPress Design replaces all references to the deleted style with a reference to the style you select here. You can use the
Styles button to create a new style to add to this list.
Style button: Click to create a new style. PlanetPress Design creates the new style, and selects it in the Styles avail-
able box.
Delete: Select to delete the style and all objects and groups that reference it. All objects and groups that reference the
style appear in the list on the right of the Style Deletion dialog box.

2. Click OK.
PlanetPress Design deletes the style according to the selected option.
If the style you deleted was the default style, PlanetPress Designmakes the topmost style in the Structure area the new
default style. Recall that the style whose name appears in bold in the Structure area is the default style.

Set the Default Style for New Objects and Groups

You can set the default style PlanetPress Design uses for objects and groups you add to a document. The default style is the
one that appears by default in the Style box in the Basic attributes properties of an object or a group. The style that appears in
bold in the Structure area is the current default style.

To set the default style:

Fonts and Styles

©2010 Objectif Lune Inc - 32 -

l Do either of the following:
l In the Structure area, click the style you want to set as the default style. Then, in the Object Inspector, locate
the property IsDefaultStyle, click Press to Set as Default, then click the button the appears on the right of
the property.

l Open the Style properties dialog box of the style you want to set as the default style (either double-click the style
in the Structure area, or select it in the Structure area and press ENTER). In the Style properties dialog box,
click Style properties, selectDefaultstyle, then click OK to exit the dialog box.
PlanetPress Design updates the default style to reflect the chosen style. The chosen style appears in bold in the
Structure area.

Create a MICR Style for Account Information on Cheques

Magnetic Ink Character Recognition (MICR) is a technology commonly used by banks to mark account information at the bot-
tom of cheques. It uses a highly stylized font with precise dimensions. This procedure describes how to create a style that uses
the MICR font.

To create a style that uses the MICR font:

1. Do one of the following to display the Style properties dialog box:
l In the Structure area, right-click on the Styles folder and choose Style.
l ChooseHome | Style.
The Style properties dialog box appears.

2. In the Style properties dialog box, click Style properties and enter a name for the style.
3. Set the font properties for the MICR style.
4. In the Font type box, select TrueType host single byte.
5. In the Font name box, selectMICRE 13B.
6. In the Font size box, set the size of the font to 17 points.
7. Leave all other settings at their default values.
8. Click OK.

PlanetPress Design creates the MICR style. The style appears in the Styles folder in the Structure area.

Arabic Content in PlanetPress Design Documents
PlanetPress Suite provides you with two ways to add Arabic content to PlanetPress Design documents. Static text as well as
variable data can be added using both Text objects and PlanetPress Talk objects.

You can use Text objects to display both static text and variable content, such as data selections, in the same object. Text
objects also let youmix Arabic and non-Arabic styles within the same object, although not in the same paragraph.

Before you can create documents that contain Arabic text, youmust have enabled the linguistic options required for Arabic
text. Refer to Windows documentation for more information on regional settings and linguistic options.

To include objects that contain Arabic text, be it Text or PlanetPress Talk objects, your PlanetPress Design documentmust
have at least one Arabic style. Arabic styles must be associated with the font type ”TT, host, Arabic” and with a Unicode font,
such as Andalus or Arial.

Note that in some cases, Arabic characters included in the same wordmay not be correctly attached.

Arabic Support in the Data Selector

You can display Arabic text in the Data Pane as well as in the Data Selector itself. A box named Data encoding lists all the sin-
gle and double-byte encodings supported by PlanetPress Design Just below this box is a new option that lets you specify

Fonts and Styles

©2010 Objectif Lune Inc - 33 -

wether or not the data is already formatted as Arabic text. Finally, an option lets you turn contextual analysis of the data on or
off.

CID-Keyed Fonts
A CID-keyed font is a postscript (or Open Type) font designed to hold Chinese, Japanese and Korean characters efficiently.
More accurately a CID font is a collection of several sub-fonts each with certain common features—one might hold all the latin
letters, another all the kana, a third all the kanji. CID keyed fonts do not have an encoding built into the font, and the char-
acters do not have names. Instead the font is associated with a character set and on each character set there are several char-
acter mappings defined. These mappings are similar to encodings but allow for a wider range of behaviors.

PlanetPress only accepts horizontal fonts and double-byte character set (DBCS) font encodings. In a PPD file, a typical DBCS
font is defined as follows:

*Font HeiseiKakuGo-W5-90ms-RKSJ-H: RKSJ "()" 90ms ROM

where:

Font Defines a font

HeiseiKakuGo-W5 Font Name

90ms-RKSJ Encoding type. In this example, the type is RKSJ Japanese. Other language options include: GBK EUC, ETen-B5,
Chinese B5, and KSCms-UHC:Korean.

H Specifies whether it is a horizontal font. PlanetPress supports only horizontal fonts and DBCS encodings.

Double-byte Character Sets
Does PlanetPress Design support double-byte character sets?

Double-byte character sets are supported in the PlanetPress Suite. It is important to note that double-byte character sets
occupy twice the amount of space as single-byte character sets.

Whenworking with Asian character sets and other non-Latin character sets that are double-byte, note that in the doc-
umentation, the length of strings is specified for single-byte character sets. For example, if the limit is specified as 256 char-
acters and you are using a double-byte character set, the limit is actually 128 characters.

Supported double-byte character sets include PostScript and TrueType fonts. For optimum performance, PostScript fonts are
recommended.

When previewing or printing PlanetPress Design documents that contain double-byte TrueType fonts, such as those used for
some Asian languages, youmust enable the Run locally option. This true whether the document is previewed or printed by
PlanetPress Design or via PlanetPress Suite Workflow Tool.

Encoding Tables
What is an encoding table and why is there more than one?

Fonts and Styles

©2010 Objectif Lune Inc - 34 -

Encoding tables are tables computers use to map keystrokes to font glyphs. Your keystroke generates a numeric code and the
computer consults an encoding table for the Helvetica font. The encoding table tells the computer which glyph is associated
with that numeric code, in this case the glyph for the upper case ‘A’. The computer displays the upper case ‘A’ glyph for the Hel-
vetica font on the screen.

Why have different encoding tables?

The obvious immediate strategy was to extend the ASCII character set. Each character in the standard ASCII character set fits
in a single byte, but it uses only seven of the eight bits in the byte to represent characters. Using the full 8 bits of a byte to rep-
resent a character increased the number of characters you could represent from 128 to 255 andmade it possible to represent
many more languages.

Other strategies also developed for multi-byte character sets, such as those for the Chinese, Japanese and Korean languages.

Encoding Tables in PlanetPress Design

Encoding tables can vary across platforms. When you create your documents in PlanetPress Design, you want to ensure that
the input data the document receives maps to the correct glyphs in the output. You use encoding tables to make any necessary
adjustments.

In PlanetPress Design you specify the encoding table you want a given style to use, or you define your own encoding table for
that style. You can rearrange the glyphs in the encoding table, altering the glyph associated with a specific numeric code. You
can also add glyphs to the encoding table from the list of all glyphs in the font. Not all glyphs in a font necessarily appear in an
encoding table.

You also specify an encoding table for the font you select to display the sample data file in the Data Pane.

There are four key points to keep inmind as you work with encoding tables in PlanetPress Design:

1. A font usually contains more glyphs than an encoding table references.
2. Different fonts have different glyphs. If you use two different fonts, there may be differences in the glyphs available in

each.
3. Different encoding tables reference different glyphs and/or may place the same glyphs in different positions. If you use

the same font but a different encoding table, the glyph that represents a given input character may change.
4. You can edit the encoding table a style uses, and adjust both the glyphs the encoding table references and the positions

of those glyphs within the encoding table. You cannot edit the encoding table for the font you use to display the sample
data file.The output of the document always reflects what appears in the data selections on the document page.

Edit the Encoding Table for a Style

The procedures here describe how to edit the encoding table for a style, and how to import an external encoding table for a
style. Editing an encoding table means editing the individual characters that compose it. You set the encoding table that
appears by default in the Style properties dialog box, in the User Options dialog box. See "Set a Default Encoding Table" (page
38).

It is important to understand that when you edit the encoding table for a style, the edits are internal to that style and are not
made to the encoding table itself. Thus the edits youmake to an encoding table in one style do not appear in that encoding
table when you view it in another style.

Note that PlanetPress Design saves all the encoding tables the styles in a document use in the PP7 file for that document.

To edit the encoding table for a style:

Fonts and Styles

©2010 Objectif Lune Inc - 35 -

1. If you are not currently in the Style properties dialog box for the style whose encoding table you want to edit, do either
of the following to display the dialog box:

l In the Structure area, double-click the style.
l In the Structure area, select the style and press ENTER.

2. In the Style properties dialog box, click Style properties.
3. In Style properties, click Encoding (the button to the right of the Encoding box).

The Font Encoding dialog box appears. The Preview area displays a string that uses the currently selected encoding.
Use the box just above the Preview area to select or enter the string you want to preview.

A. Encoding table B. Preview area
4. In the View box, select a view.
View: Use to control the information that appears above each glyphin the table. The encoding table currently asso-
ciated with the font determines the values associated with each glyph. Select Name to display the name of glyph. Select
Decimal to display the position of each glyph in the encoding table as a decimal value. Select Hex to display the position
of each glyph in the encoding table as a hexadecimal value. Select ANSI to display the ANSI equivalent of each glyph.
Select Unicode to display the Unicode equivalent of each glyph. SelectWidth to display the width of each glyph.

5. Do either of the following:
Import an Encoding Table
See To import an encoding table: .
Edit the glyphs
In the Encoding box, select the encoding table you want to use as a starting point. Alternatively, import the encoding
table you want to use as a starting point (see To import an encoding table:). Note that the ISO Latin-9 encoding table
includes the euro symbol. Edit the glyphs in the encoding table. See To edit the glyphs in an encoding table:.

6. If useful, use the Preview box just above the Preview area to select or enter a string to preview using the imported
and/or edited encoding table.

7. Click OK to exit the Font Encoding dialog box and return to the Style properties dialog box.

To edit the glyphs in an encoding table:

Fonts and Styles

©2010 Objectif Lune Inc - 36 -

1. Do any of the following. Notice that as soon as you edit the first glyph, the Encoding box updates to User defined font
encoding. You can only modify a user defined encoding table.
Drag and Drop
In the Available glyphs list, locate the glyph you want to use in a given position in the encoding table. Use the scroll-
bar, or click in the list and use the ARROW keys to navigate in the table. Click on the glyph, then drag and drop it into
the position in the Encodingtable.
Double-click
In the Encodingtable, click on the glyph you want to edit. Use the scrollbar, or click in the table and use the ARROW
keys to navigate in the table. In the Available glyphs list, double-click the glyph with which you want to replace the
glyph selected in the encoding table.
Use The Transfer Button
In the Encodingtable, click on the glyph you want to edit. Use the scrollbar, or click in the table and use the ARROW
keys to navigate in the table. In the Available glyphs list, click the glyph then click the Transfer button.

A. Transfer button
2. Repeat step 1 for each glyph you want to edit.

To import an encoding table:

1. In the Font Encoding dialog box, click the Browse button ().
The Import an Encoding dialog box appears.

2. In the Import an Encoding dialog box, navigate to the file containing the encoding table you want to import and click
Open. Encoding files have an .enc file name extension.
PlanetPress Design imports the encoding table and returns you to the Font Encoding dialog box. The imported encoding
table appears in the Font Encoding dialog box. The Encoding box displays User defined encoding.

Fonts and Styles

©2010 Objectif Lune Inc - 37 -

Set a Default Encoding Table

This procedure describes how to set the encoding table that appears by default in the Encoding box in the Style properties
dialog box. This is useful if most of the styles you create use the same encoding table, and you do not want to select it each
time you create a style.

To set a default encoding table:

1. From the PlanetPress Design Button, choose Preferences to display the Preferences dialog box.
2. In the User Options dialog box, click Document and pages, under Document defaultvalues.
3. In theDefault single byte font encoding box, select the encoding table you want to have appear by default in the

Encoding box of the Style properties dialog box.
4. Click OK to exit the User Options dialog box.

Export an Encoding Table

This procedure describes how to export an encoding table. This is useful if you want to create an encoding table and re-use it
in other styles you create in this or other variable content documents.

To export an encoding table:

1. If you are not currently in the Style properties dialog box for the style whose encoding table you want to export, do
either of the following to display the dialog box:

l In the Structure area, double-click the style.
l In the Structure area, select the style and press ENTER.

2. In the Style properties dialog box, click Style properties.
3. In Style properties, click Encoding (the button to the right of the Encoding box).

The Font Encoding dialog box appears.
4. Verify the encoding table that appears in the Font Encoding dialog box is the one you want to export.

5. Click the Export button ().
The Export Encoding dialog box appears.

6. In the Export Encoding dialog box, specify the folder and file name for the file in which you want to save the encod-
ing table, and click Save. Files that contain encoding tables have an .enc file name extension.
PlanetPress Design exports the encoding table and returns to the Font Encoding dialog box.

7. Click OK to exit the Font Encoding dialog box.
8. Click OK to exit the Style properties dialog box.

Refresh the Font Lists

If you update the set of fonts in the PlanetPress Design installation, you can refresh the contents of the relevant boxes in the
interface either by restarting PlanetPress Design or by using the Refresh Fonts List button in the Style properties dialog box.

To refresh the list of fonts using the Refresh Fonts List button:

1. Do one of the following to display the Style properties dialog box:
l In the Structure area, double-click an existing style.
l In the Structure area, click an existing style and press ENTER.
l In the Structure area, right-click on the Styles folder and choose Style.
l In the Structure area or in the Page area, right-click and choose Style.
l ChooseHome | Style.
The Style properties dialog box appears.

2. In the Style properties dialog box, click Font properties.

Fonts and Styles

©2010 Objectif Lune Inc - 38 -

3. Click the Refresh Fonts List button located on the right of the Font type box.
4. PlanetPress Design refreshes all font lists in the interface.

Install a PostScript Font in PlanetPress Design

The set of Postscript fonts available in PlanetPress Design is the combination of those available in the PlanetPress Design Fonts
subfolder of the Windows Common Files folder (in a default installation, the path of this subfolder is C:\Documents and Set-
tings\All Users\Application Data\Objectif Lune\PlanetPress Suite X\Fonts) and those available in the PPD file selected for the
document.

To install a PostScript font in PlanetPress Design:

1. Verify the font is ready for installation. If the PostScript font files exist on a CD-ROM and are read-only, youmust copy
them to the hard disk and clear the read-only property of the hard disk copies before you can install the font in Plan-
etPress Design. You should provide the .pfb file for each PostScript font you install in PlanetPress Design.

2. Verify there is an appropriate TrueType font inWindows that you can use to represent the PostScript font on-screen.
Ideally, you should install the TrueType version of the PostScript Type 1 font.

3. Choose Tools | Install PostScript Font. The Install a PostScript Font in PlanetPress Design dialog box appears.
4. Select the font you want to install.
Font name: Select a font or click the Browse button to navigate to the file and select it.
Font name info: Displays information about the font selected in the Font name box.

5. Select the TrueType font you want to associate with this PostScript font. Note that you can later edit this selection.
TrueType font to represent this font: Select the TrueType font you want PlanetPress Design to use to represent
this PostScript font on-screen. If the TrueType version of this PostScript font is not installed, select the TrueType font
that most closely resembles it. When you select a TrueType font, the Glyphs available in TrueType font box updates to
contain all the glyphs in the selected TrueType font. The Glyphs list also updates to display each of the glyphs in the
PostScript font, with their corresponding glyph in the selected TrueType font. Note that this association between a True-
Type font and a PostScript font is local to the computer on which PlanetPress Design is currently running and that the
PlanetPress Suite Workflow Tool Configuration program does not let youmake such associations between fonts.

6. If necessary or of interest, click Preview to display a PDF file of the complete character set of the selected PostScript
font and its default encoding. Exit this file to return to the Install a PostScript Font in PlanetPress Design dialog box.

7. In the Glyphs list, verify the correct TrueType glyph is associated with each PostScript glyph, and use the Glyphs avail-
able in TrueType font box to edit any that are incorrect.

8. Click OK. PlanetPress Design copies the font files to the Fonts subfolder, and updates its font lists to make the font avail-
able from PlanetPress Design.

To change the TrueType glyph associated with a PostScript glyph:

1. In the Glyphs list, select the glyph correspondence you want to edit.
2. In the Glyphs available in TrueType font box, edit the glyph correspondence. Glyphs available in TrueType font: Select

the TrueType glyph you want to associate with the PostScript glyph currently selected in the Glyphs list. When you
select a glyph, PlanetPress Design immediately updates the Glyphs list to reflect the new correspondence.

Things to Remember

l Use PostScript fonts when possible to improve printer performance and reduce the file size of a document.
l PlanetPress Designmust include in the document any PostScript fonts that the document uses and that do not appear in
the PPD selected for the document.

Fonts and Styles

©2010 Objectif Lune Inc - 39 -

©2010 Objectif Lune Inc - 40 -

Overview
This documentation covers PlanetPress Suite version 7.3. To view the documentation of previous versions please refer to
the PDF files available in the Downloads section of our website:
http://www.objectiflune.com/OL/en-CA/Download/DownloadCenter.

Icons used in this guide
Some icons are used throughout this guide in order to catch your attention to certain particular information.

Notes: This icon shows you something that complements the information around it. Understanding notes is not crit-
ical but may be helpful when using PlanetPress Design.

Warnings: This icon shows information that may be critical when using PlanetPress Design. It is important to pay
attention to these warnings.

Technical: This icon shows technical information that may require some technical knowledge to understand.

Other Documentation
For more online documentation on different PlanetPress Suite Products, refer to:

PlanetPress Design User Guide
PlanetPress Search User Guide
PlanetPress Talk Reference Guide
PlanetPress Trigger and Data Capture Guide

Overview

©2010 Objectif Lune Inc - 41 -

http://www.objectiflune.com/OL/en-CA/Download/DownloadCenter.aspx?Product=PlanetPress&Cat=DocumentationItem#1
http://www.objectiflune.com/OL/en-CA/Download/DownloadCenter.aspx?Product=PlanetPress&Cat=DocumentationItem#1
http://www.objectiflune.com/documentation/en/planetpress-design-user-guide/index.html
http://www.objectiflune.com/documentation/en/planetpress-design-user-guide/index.html
http://www.objectiflune.com/documentation/en/planetpress-design-user-guide/index.html
http://www.objectiflune.com/documentation/en/planetpress-design-user-guide/index.html
http://www.objectiflune.com/documentation/en/planetpress-search/index.html
http://www.objectiflune.com/documentation/en/planetpress-search/index.html
http://www.objectiflune.com/documentation/en/planetpress-search/index.html
http://www.objectiflune.com/documentation/en/planetpress-search/index.html
http://www.objectiflune.com/documentation/en/planetpress-talk/index.html
http://www.objectiflune.com/documentation/en/planetpress-talk/index.html
http://www.objectiflune.com/documentation/en/planetpress-talk/index.html
http://www.objectiflune.com/documentation/en/planetpress-talk/index.html
http://www.objectiflune.com/documentation/en/planetpress-trigger-and-data-capture/index.html
http://www.objectiflune.com/documentation/en/planetpress-trigger-and-data-capture/index.html
http://www.objectiflune.com/documentation/en/planetpress-trigger-and-data-capture/index.html
http://www.objectiflune.com/documentation/en/planetpress-trigger-and-data-capture/index.html
http://www.objectiflune.com/documentation/en/planetpress-trigger-and-data-capture/index.html
http://www.objectiflune.com/documentation/en/planetpress-trigger-and-data-capture/index.html

©2010 Objectif Lune Inc - 42 -

Getting Started
This section will help you get started with PlanetPress Design

Environment Considerations
This page is intended to provide technical information about the environment in which PlanetPress Suite is intended to run.

Terminal Server/Service

PlanetPress Suite does not support Terminal Server (or Terminal Service) environment as possible under Windows 2000, 2003
and 2008. This is to say, if Terminal Service is installed on the server where PlanetPress Suite is located, unexpected behav-
iours may occur and will not be supported by our company. Furthermore, using PlanetPress Suite in a Terminal Service envi-
ronment is probably an infringement of our End-User License Agreement.

Terminal Service is not to be confused with "Remote Desktop" used in conjunction with the "Remote Desktop" options of all
Windows operating systems. Remote Desktop, when used to connect to a PlanetPress Server in a non-simultaneous setting, is
perfectly acceptable. However, it has been reported that PlanetPress may lock up when access through Remote Desktop con-
nections.

VMWare/ESX

PlanetPress Suite supports VMWare Workstation, VMWare Server, VMWare Player and VMWare ESX infrastructure envi-
ronments as software installed on the Guest operating system. However, note that only PlanetPress version 7.1.3 and higher
support VMotion under ESX. Also note that copying (duplicating) your VMWare Guest Machine and using it simultaneously con-
stitutes an infringement of our End-User License Agreement.

Note that while VMWare ESX, Workstation, Server and Player (from VMWare, Inc.) are supported, other virtual environments
(such as Microsoft Virtual PC, Parallels, Xen and others) are not supported at this time.

32-Bit or 64-Bit?

PlanetPress Suite version 7.1.3 and higher support 64-Bit operating system. However, our application remains 32-bits in this
environment, whichmeans that for all intents and purposes there is no difference between those two environments as far as
PlanetPress Suite is concerned.

Network Considerations

Mapped Drives

This section only applies when sending documents to the PlanetPress Suite Workflow Tools and when usingmapped
drives in your PlanetPress Talk scripts or in any variable property that refers to a mapped drive path.

Mapped drives (for example, drive X: leading to \\server\public\) are always user-specific and are created at logon. This
means that mapped drives are typically not available by the PlanetPress Suite services when running a live configuration. Fur-
thermore, while the mapped drives are not shared, they are still limited to one map per computer, meaning if one user maps
the X: drive, a different user (or a service) will not be able to map it again.

Getting Started

©2010 Objectif Lune Inc - 43 -

http://www.vmware.com/
http://www.vmware.com/

This creates a limitation in the PlanetPress Suite Workflow Tools: if you create a mapped drive as a user, you will not have
access to this mapped drive while running as a service unless you log off, and then have PlanetPress Workflow Tools map the
drive using a Run Script action inside a Startup Process.

We strongly recommended that instead of usingmapped drives, you use full UNC paths for your network drives.

Activate Your Printers
The Activate a Printer dialog lists the existing activated printers on the system and lets you add new activations.

Printer activations are normally given to you by the activations department electronically, including a file that will auto-
matically add all your printers in this dialog.

The printer list displays the following information

l License Number: Reference number of the activation, linked to your customer account.
l Magic Number: The magic number generated by the printer. If the magic number is incorrect, your jobs will output
with a watermark on that printer.

l Activation Code: The activation code generated by your license number andmagic number. If the activation code is
incorrect, your jobs will output with a watermark on that printer.

l Printer Name (Optional): Name and/or model of the printer.
l Comments (Optional): Comments about the printer.

The following buttons are available in this dialog:

l Add: Brings up the Printer Activation dialog. This dialog lets you enter the information for the printer (see previous sec-
tion), then click OK to save the new activation.

l Delete: Removes the currently selected activation from the list.
l Web Activation: Click to access the online activationmanager on our website.
l OK: Save changes and exit.
l Cancel: Exit without saving changes.

You can also double-click on any existing activation to edit it.

The Nature of PlanetPress Design
PlanetPress Design allows you to create variable content documents from scratch or repurpose and enhance existing business
documents. You can create documents for every need from a simple mail merge to complex multi-part business forms. All doc-
uments created with PlanetPress Design can have built-in conditions and rules to dynamically add barcodes, graphics & logos,
page numbers, targetedmarketingmessages or envelope inserter controls, all based on the information found in the data or
the original formatted document.

PlanetPress Design is included with the purchase of any of PlanetPress Suite software modules. It has an intuitive interface
with various design features that are easy to use yet powerful enough to create simple to complex variable content doc-
uments. The possibilities are endless with PlanetPress Talk, a straightforward scripting language that allows you to fully cus-
tomize your documents to answer highly complex or unique requirements.

Getting Started

©2010 Objectif Lune Inc - 44 -

The PlanetPress Design Program
This chapter provides basic information about the PlanetPress Design user interface and how to use it.

Start PlanetPress Design
To start the PlanetPress Design program:

l In the Windows Start menu, choose Programs | PlanetPress Suite 7 | PlanetPress Design.

The PlanetPress Design window appears and a blank document is created.

You can also double-click on any existing PlanetPress Design document (*.pp7) in order to open it in PlanetPress Design.

You can have multiple instances of PlanetPress Design open. Note however that each instance uses more memory and proc-
essing power, so only open the documents you need to work on and closed the unused ones.

The PlanetPress Suite Button
The PlanetPress Design Button replaces the File menu from previous versions, and provides access to the File menu options.

The available menu options in the PlanetPress Suite Button are:

l New: Closes the PlanetPress Design Document that is currently opened and creates a new PlanetPress Design Doc-
ument, with a single page and no objects.

l Open: Displays the dialog to open an existing PlanetPress Design Document. Supported documents are PlanetPress 4
to PlanetPress Design 7. See "Open a Document" (page 46).

l Save: Saves the current PlanetPress Design Document under the same name. If the file is new and has not been
saved, the Save As dialog is displayed instead. See "Save a Document" (page 47)

l Save As: Saves the current PlanetPress Design Document under a new name. It does not overwrite any existing doc-
ument, unless an existing file is selected and overwrittenmanually by the user.

l Import:
l PlanetPress 3 Documents: PlanetPress 3 documents cannot be opened directly and need to be converted
to the newer PlanetPress Design 7 format. Use this menu option to do this automatically.

l FSL... : Import a Xerox Form Description Language (FSL) file.
l Preview : Opens the Preview dialog. See "Preview a Document On Screen" (page 663).
l Print : Opens the Print dialog. See "Print a Document Preview" (page 667).
l Print using a Windows Driver : Opens the standardWindows Print Dialog, which prints in non-optimized format
but lets you print on any printer, whether postscript or not. See "Printing Using a Windows Driver" (page 670).

l Create SoftProof : Opens the Soft Proof dialog, which lets you create a PDF file of a maximum of 10 pages which
bears no watermark whatever your activation status. See "Generate a Soft Proof" (page 670).

l Batch Send To : Opens the Batch Send To wizard, which lets you sendmultiple PlanetPress Design Documents to any
number of printers, PlanetPress Suite Workflow Tools or iWatch servers. See "Perform a Batch Conversion and/or
Installation" (page 676).

l Send To (see Install a Document) :
l Printer : Sends your document to a PostScript printer.
l PlanetPress Suite Workflow : Sends your document to PlanetPress Suite Workflow Tools.
l Host : Sends your document to and iWatch or Codehost BrightQ server.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 45 -

l Set Password : Protects the editing of the document with a password. The password is required when opening the
document. Setting the password without entering any password will remove it and unprotect the document.

l Close: Closes the PlanetPress Design Document that is currently opened and creates a new document, with a single
page and no objects. Closing the current document is the same as creating a one.

l Recent Documents: Displays a list of the 9 most recently opened PlanetPress Design documents. Click on any of
them to open it.

l Select Language: Click to display the language selection dialog, which changes the PlanetPress Design interface lan-
guage.

l Preferences: Displays the User Preferences dialog.
l Exit: Closes the PlanetPress Design program window. See "Exit PlanetPress Design" (page 48).

Open a Document

You can open the document from PlanetPress Design or fromWindows. Documents created using PlanetPress Design6 as well
as those created with versions 4 and 5 can be opened directly. Those documents that were created using PlanetPress Design 3
must be imported.

When opening PlanetPress 4 documents created with earlier releases of this software, some style changes may not be
imported correctly. When this occurs, you can fix the problem by first opening the documents with a later release PlanetPress
4, by saving it and then by opening it again with PlanetPress Design6. In some cases youmay also have to reapply the style
changes before opening the document with PlanetPress Design 6.

To open a document edited with PlanetPress Design version 4 to 6:

1. From the PlanetPress Design Button, chooseOpen.
2. In theOpen Document dialog box, navigate to the PlanetPress Design document you want to open and click Open.

By default, PlanetPress Design looks for documents with the PP6 extension. If the document was created with either
version 4 or 5, select the corresponding extension in the File of type box.

3. If the document is password protected, enter the correct password in the dialog box displayed by PlanetPress Design.
4. If the sample data file associated with the document is more recent than the copy in the document, confirm whether or

not to update the copy in the dialog box displayed by PlanetPress Design.
5. If any of the attachments associated with the document are more recent than the copy in the document, confirm

whether or not to update the copy in the dialog box displayed by PlanetPress Design.
6. If any of the static image resources associated with the document are more recent than the copy in the document, con-

firm whether or not to update the copy in the dialog box displayed by PlanetPress Design.
The first page of the document appears in the Page area of the program window. The sample data associated with the
document appears in the Data Pane.

To open a document edited with PlanetPress Design version 3:

1. From the PlanetPress Design Button, choose Import | PlanetPress Design 3 Document.
2. In the Import PlanetPress Design 3 Document dialog box, navigate to the PlanetPress Design document you

want to open and click Open.
3. If the document is password protected, enter the correct password in the dialog box displayed by PlanetPress Design.
4. If the sample data file associated with the document is more recent than the copy in the document, confirm whether or

not to update the copy in the dialog box displayed by PlanetPress Design.
5. If any of the attachments associated with the document are more recent than the copy in the document, confirm

whether or not to update the copy in the dialog box displayed by PlanetPress Design.
6. If any of the static image resources associated with the document are more recent than the copy in the document, con-

firm whether or not to update the copy in the dialog box displayed by PlanetPress Design.
The first page of the document appears in the Page area of the program window. The sample data associated with the
document appears in the Data Pane.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 46 -

Save a Document

To save a document:

l From the PlanetPress Design Button, choose Save.
If the document has been saved at least once, PlanetPress Design copies the last save of the file to a file bearing the
name of the document with the extension .BAK, and then saves the document.

To save a document under a new name:

1. From the PlanetPress Design Button, choose Save As.
2. Enter the new name under which you want to save the document, and then click Save.

Save and Open a Document Template

To save a document as a PlanetPress Design template:

1. From the PlanetPress Design Button, choose Save As, and enter a name for the document.
2. In the Save as type field, selectPlanetPress Design 7 Template and click Save.

The document is saved as a template with the file extension tpl7.

To open a PlanetPress Design template:

1. From the PlanetPress Design Button, chooseOpen.
2. In the Files of type field, selectPlanetPress Design 7 Template (*.tlp7).
3. Browse to select the template of your choice, and click Open.

Change the Interface Language

PlanetPress Design can be used inmultiple languages, and the list of available languages grows as we translate the software.
The first time you use PlanetPress Design, it starts in the language used for the installation. Youmay change this setting as
often as you like, but you need to restart the application every time you do so.

To change the language used by PlanetPress Design program:

1. Click the PlanetPress Suite Button, then click Select Language.
The Select Language dialog box appears. This box lists all the languages that can be used by PlanetPress Design as
well as the "Use System Default Locale" checkbox,.

2. Select the desired language and option.
3. Click OK.

Use System Default Locale: Select to mirror your language settings, as defined in the Regional and Language Options of
the Windows Control Panel. This option is typically used to enter and process information in non-European languages. It is only
enabled when English is selected as the program language.

If you plan to enter and process information in non-European languages, you should know that PlanetPress Suite uses
codepages when storing and retrieving information (a codepage is a mapping used to convert back and forth the
letters and numbers used by humans to the numeric characters used by computers). By default, codepage 1252 is
used for Latin languages (good for Afrikaans, Basque, Catalan, Danish, Dutch, English, Faroese, Finnish, French, Gal-
ician, German, Icelandic, Indonesian, Italian, Malay, Norwegian, Portuguese, Spanish, Swahili and Swedish) and
codepage 932 is used for Japanese.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 47 -

Exit PlanetPress Design

Once you are done working on your PlanetPress Design document, you can close the program. Youmay exit the PlanetPress
Design in any of the following ways:

1. From the PlanetPress Design Button, choose Exit.
2. Click the X at the top-right corner of PlanetPress Design.
3. Press ALT+F4 on your keyboard.
4. Right-click on the PlanetPress Design button in your task bar, and selectClose.

If your document has been changed, a dialog appears asking you if you want to save the file. Choose one of the following
options:

l Yes: Save all unsaved work and then exit. If the document is new, the Save As dialog appears to let you choose a file-
name. If the document was existing, it saves under the same name.

l No: Exit without saving any unsaved work.
l Cancel: Cancels the exit request and returns to the document.
l Always save before closing: Check to have PlanetPress Design always save any unsaved work automatically
before exiting. The option has no effect when clicking on Cancel. The option can be changed in the Settings windows.
See "Notification Messages Preferences" (page 69).

The Quick Access Toolbar
The PlanetPress Suite Workflow Tools Quick Access Toolbar is displayed, by default, on the right side of the PlanetPress Suite
Button and provides one-click shortcuts to commonly used functions and features. You can add as many buttons as you want
to the Quick Access Toolbar and remove them at will.

To add a new button to the Quick Access Toolbar:

1. Locate the button you want to add in one of the tabs of the Ribbon
2. Right-Click on the button
3. SelectAdd to Quick Access toolbar.

To remove a button from the Quick Access Toolbar:

1. Locate the button you want to remove in the Quick Access Toolbar.
2. Right-click on the button
3. SelectRemove From Quick Access toolbar.

To move the Quick Access Toolbar below or above the Ribbon:

1. Right-click on the Quick Access Toolbar, or click on the downwards arrow at the rightmost end of the Quick Access Tool-
bar.

2. Click on Show Quick Access Toolbar Below the Ribbon or Show Quick Access Toolbar Above the Rib-
bon, depending on where you want it.

The Quick Access Toolbar buttons cannot be moved or re-ordered. If you wish to re-order them, you will need to
remove all the buttons and re-add them in the desired order.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 48 -

The PlanetPress Design Ribbon
The PlanetPress Design Ribbon replaces the mainmenu and toolbars of previous versions, and centralizes commands, organ-
izing them into a set of Tabs, each Tab containingGroups of Controls. Each tab on the Ribbon displays the commands that
are most relevant to a given feature set. For instance, theObjects tab in PlanetPress Design is used to draw any of the sup-
ported objects.

You canminimize the Ribbon by right-clicking on it and selectingMinimize the Ribbon or by double-clicking on any of the
tabs.

You can also customize the Ribbon's color scheme in the User Options window.

PlanetPress Design’s Ribbon has five tabs: theHome tab, the View tab, the Page Layout tab, the Tools tab and the
Help tab. Each one of these tabs contains a series of groups, each group holding a number of controls.

l TheHome tab includes the Tools, Clipboard,Document andObjects groups.
l The Tools group contains:

l The Select Tool is used to select objects on the document page.
l TheHand Tool is used to move the document page.
l The Zoom Tool is used for zooming in and out of the Page area.

l The Clipboard group contains the typical Windows-based editing controls: Cut, Copy, Paste, Select All,
Delete.

l TheDocument group contains the document objects controls, used to add objects to the document: Page,
Style, Condition,Global Variable,Global Function,Metadata Field, Image Resource andAttach-
ment.

l TheObjects group contains the page objects controls, used to add objects to the selected page: Text,Data
Selection, Picture, PlanetPress Talk, N-Up Printing, Address, Box, Shape, Barcode andBusiness
Graphic.
Some tools in theObjects controls lead to dropdownmenus that let youmake selections among often-used ver-
sions of those objects. This is the case with the Box, Shape, Business Graphics andBarcode objects.
These menus can be opened by clicking the arrowhead visible at the bottom of each control.

l The View tab includes the Zoom,Navigate and Show/Hide groups.
l The Zoom group contains the zoom controls: Zoom In, Zoom Out, Zoom Factor, as well as Fit Page
Width and Fit in window.

l TheNavigate group contains a data page box you can use to move forward and backward in the sample data
file, and tools to move forward and backward in your document one page at a time.

l The Show/Hide group contains four controls to display or hide any of the four panes; theDocument Struc-
ture area, theObject Inspector pane, the PlanetPress Talk Messages pane and theData Pane.

l The Page Layout tab includes the Arrange, Lock/Unlock andDuplicate groups.
l The Arrange group contains the Alignment andOrder controls, allowing to align and reorder objects on a
document page.

l The Lock/Unlock group contains controls to lock or unlock a single object on a document page, or every
objects on a document page.

l TheDuplicate group contains controls to duplicate, and duplicate and pack objects on a document page.
l The Tools tab includes theData, Advanced,Managers, Application and PressTalk Messages groups.

l TheData group contains:
l The Add New Data control allows you to associate multiple sample data files with your document.
l TheOpen Active Data loads the active sample data in the Data selector.
l The Save Active allows you to save a local copy of the active sample data file.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 49 -

l The Set as Background control allows you to set a PDF sample data file as the background for the
selected document page.

l The Advanced group contains:
l TheData Capture control triggers the selected capture tool and allows to grab incoming data.
l The Convert to PlanetPress Talk control converts the selected object to a PlanetPress Talk object,
using PlanetPress Talk code.

l The Refresh Metadata control reloads the metadata file associated with the active sample data file.
(Important Note: When a user-defined emulation is used withmetadata, results and behavior are
unknown and unsupported. For instance, refreshing the metadata file may cause the document to crash
and/or corrupt. For this reason, it is strongly advised to create backup copies of your documents before-
hand.)

l TheManagers group contains:
l The Printer Utilies control displays the Printer information dialog box.
l The Virtual Drive Manager control loads the PlanetPress Suite Virtual Drive.
l The Access Manager control loads the Access Manager, allowing to grant/remove permissions to
hosts.

l The Install PostScript Font control allows to install a PostScript font into your PlanetPress Suite instal-
lation.

l The Application group contains:
l TheHex Viewer control, used to load PlanetPress Suite's Hexadecimal Viewer.
l The Image Downloader control, used to send image resources to a printer.
l The Check for updates control, used to update the current PlanetPress Design version.
l The Launch Upgrade Wizard control, used whenmigrating from a previous PlanetPress Design ver-
sion.

l TheDocument Utilies control, used to acces the Global Function Library Manager.
l The Graybar Wizard control, used to generate grabar reports.

l The PlanetPress Talk Messages group contains the Save Error Log and the Clear Messages controls,
used to interact with the PlanetPress Talk Messages pane.

l TheHelp tab includes theHelp andActivation groups.
l TheHelp group contains the User Guide, the Reference Guide and the About controls, used to access
online documentation and version information.

l The Activation group contains the Software Activation and the Printer Activation controls, used to
enter activation codes for either the software or a given device.

Undo and Redo Commands

You cannot undo any move of an object or group that were performed using the mouse or shortcuts. Undo/Redo functionality
supports up to 100 levels of undo operations.

Avoid using Undo/Redo to undo or redo a database emulation. If you want to modify the database emulation, re- create the
emulation to ensure database integrity and accurate results.

To undo a command or a sequence of commands:

1. From theQuick Access Toolbar, click Undo.
2. Repeat step 1 as many times as necessary to move backwards through the sequence of commands.

To reverse the effect of one or more undo commands:

1. From theQuick Access Toolbar, click Redo.
2. Repeat step 1 as many times as necessary to move backwards through the sequence of undo commands.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 50 -

Navigate Data Pages

Tomove through the pages in a sample data file using a Data page box:

1. Locate a Data page box in the toolbar in the PlanetPress Design Program window.
2. Click in the Data page box and press SHIFT+PAGE UP to move forward one page or SHIFT+PAGE DOWN to move

backward one page.

To move through the pages in a sample data file, in the Data Selector:

l In the Data Selector, press SHIFT+PAGE UP to move forward one page or SHIFT+PAGE DOWN to move back-
ward one page.

Document Structure Area
The Document Structure area is a hierarchical representation of all the elements in your document. You can use the
expand/collapse buttons in the hierarchy to expand and collapse the top level folders of the hierarchy as well as the contents
of each page, and the contents of any group of objects.

The Document Structure area contains all of the elements used in your document.

The following options are available in all contextual (right-click) menus, though some options may be disabled or have no
effect on some elements of the Document Structure area:

l Cut: Cuts the object under the mouse location and places it in the clipboard.
l Copy: Places a copy of the object under the mouse location in the clipboard.
l Paste Removes the object located in the clipboard and places it on the page at the current mouse location. Has no
effect if the clipboard does not contain an object.

You should never try to paste a PostScript attachment. If you needmultiple copies of a postscript attachment,
simply rename the one you have an re-add it to your document.

l Delete: Deletes the object under the mouse location.
l Rename: Changes the display name of the object under the mouse location. Note that this changes the display name,
not the PlanetPress Talk ID which is used to call the object from a PlanetPress Talk script.

l Align: Aligns multiple selected objects, either horizontally or vertically.
l Order: Changes the top-down order of the object, so it is either "on top" or "behind" other objects.
l Group: Groups multiple selected objects together.
l Ungroup: Removes the object under the mouse location from any group in which it is located. Has no effect on objects
not in a group.

l Add: Displays a menu of any object or element you can add to your document, including objects, pages, conditions,
variables and functions. This menu has the same effect as using the Home tab of the PlanetPress Design Ribbon to add
these objects and document elements.

l Properties: Displays the properties of the object under the mouse location.

To expand or collapse elements in the Structure area:

l Click the expand/collapse button to the left of the element you want to expand or collapse.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 51 -

Selecting and moving elements

You can select objects in the Structure area, as well as drag and drop any element in the Structure area to reposition it in the
hierarchy. Note that in the case of pages and objects, the position of the element within the hierarchy influences the order in
which it executes:

l Normal pages are always processed from top to bottom, the first page on the top will print first, followed by the sec-
ond one. This can be controlled using a runpage. For more information see "Setting Up Pages" (page 117).

l Objects on a page are processed from top to bottom and displayed on the page successively from the back towards
the front. This means that the last object of the page will always appear on top of all the objects before it.

l Conditions are evaluated from top to bottom. A condition that depends on another one or multiple other conditions
must be placed after the conditions on which it depends.

l Metadata fields are also evaluated from top to bottom. A metadata fields that contains another metadata field value
must be placed after the field on which it depends.

l Global Functions are also evaluated from top to bottom. A function that calls another function or multiple other func-
tions must be placed after the functions on which it depends.

To select elements in the Document structure area, do one of the following:

l Click an element to select it, and thenCTRL+click each subsequent element you want to add to the selection.
Note that you can only add elements at the same level in the Structure area hierarchy.

l Use SHIFT+UPARROW and SHIFT+DOWN ARROW to add the next element above or below the currently
selected elements, to the selection. CTRL+click a selected element to remove it from the selection.

l SHIFT+click an element to select all elements at the same level in the Structure area hierarchy between it
and the last element selected.

l Click one of the elements that appears in the Structure area at the level of the element(s) you want to include in the
selection. Then click and drag to draw a marquee around the elements you want to move.

To select all elements at the same level in the Structure area hierarchy:

1. In the Structure area, click on one of the elements that occupies the level in the Structure area hierarchy whose ele-
ments you want to select.

2. ChooseHome |Clipboard | Select All or press CTRL+A.
All elements at that level in the Structure area hierarchy appear highlighted in the Structure area. If the elements are
objects or groups, those objects and groups also appear highlighted in the Page area.

To move an element in the Structure area:

1. In the Structure area, select the element or elements you want to move.
2. Drag the elements. As you drag, a ghost image of the element(s) you are moving follows the pointer, and either a blue

bar appears (if the pointer is outside the name of an element) or the element is highlighted in black (if the pointer is
over the name of an element) to indicate the current drop target. The pointer changes to indicate whether the current

drop target is legal () or illegal (). Note that if you pause over a collapsed group or page as you drag, PlanetPress
Design expands that group or page.

3. Release the elements at a legal drop target.
PlanetPress Designmoves the element(s) to the new position.

Add a Metadata Field
To add a metadata field:

The PlanetPress Design Program

©2010 Objectif Lune Inc - 52 -

l ChooseHome |Document |Metadata Field, or right-click onMetadata Fields in the Document Structure Pane
and clickMetadata Field.

l Enter the PlanetPress Talk ID, the unique identifier for your new metadata field (Note that Metadata objects do not
possess aDisplay Name attribute).

l Choose the Level where your new field should be created in the metadata structure.
l Use the Fields list to addmetadata fields, providing a Value, a Condition (optional) and a Create action.
l Click OK.

Metadata Field Properties

l PlanetPress Talk ID: A unique identifier for the metadata field. The name you choose should be both descriptive
and unique, cannot begin with a number, and can contain only the following ASCII characters: underscore (_), upper
and lower case letters of the alphabet, all digits 0 through 9.If you use an underscore in the name, it should not appear
as either the first or last character of the name as this may cause internal conflicts in the software. Names are case-
insensitive andmust be unique; no two elements in a document can have the same name. Names can be a maximum
of 50 characters in length. Finally, PlanetPress Talk variable and command names are reserved words; you cannot use
any of these reserved words as a name.

l Level: The hierarchical level where the new field will be created.
l Fields: Attributes for the actual field(s) to be created:

l Value: The actual value of the new field(s).
l Condition: A global or local condition to determine whether or not the field will be created.
l Create action: How the field(s) creation will behave if the currently added field already exists.

l Add button: Used to add a new element to the current metadata field, thus creating an array of metadata values with-
ing this field.

l Delete button: Used to remove a given value from the metadata field.
l Move up/Move down buttons: Used to modify the order of the values within the current metadata field.

Add a Document Page

There are 3 ways to add a new blank page:

1. Go to theHome tab, then click the Page icon.
2. Right-click on the Pages folder in theDocument structure, then click the Page icon.
3. Right-click on any element under the Pages folder of theDocument structure, then click onAdd thenPage icon.

New pages will always appear at the end of the document structure

Edit the Order of Pages

To edit the order of pages in a document:

l In the Structure area, select the page whose position you want to edit, drag it to its new position and release.
As you drag, a blue bar appears indicating the new position the page will occupy if you release the mouse button at that
point.

Duplicate a Page

To duplicate one or more page(s):

1. In the Structure area, select the page(s) you want to duplicate.
2. Choose Page Layout |Duplicate or use the Ctrl-D keyboard shortcut to duplicate the selected page(s).

The PlanetPress Design Program

©2010 Objectif Lune Inc - 53 -

Delete a Page

To delete one or more page(s):

1. In the Structure area, select the page(s) you want to delete.
2. Either use theDelete key or right-click and chooseDelete.

If no elements in the document reference any of the selected page(s), PlanetPress Design performs the deletion.
If any elements in the document reference any of the selected pages, PlanetPress Design prompts you to define how
youwant to handle the deletion of each of the referenced pages.

To use the Page Deletion dialog box:

1. Adjust the options to reflect how youwant PlanetPress Design to handle the deletion request. The name of the page
you selected for deletion appears in the title bar of the Page Deletion dialog box, and the list of elements that reference
it appear on the right of the dialog box.
Replace reference by: Select to delete the page and to replace all references to it with a reference to another page
in the document.
Pages available: Select the page you want to use as the replacement reference. When you delete the page, Plan-
etPress Design replaces all references to the deleted page with a reference to the page you select here. You can use
the Page button to create a new page to add to this list.
Page button: Click to create a new page.
Delete: Select to delete the page and all document elements that reference it.

2. Click OK.

Object Layering Order

Is the order in which objects appear in the Structure area significant?

The order in which objects appear in the Structure area determines the order in which the document executes them, as well as
which object appears on top when two objects overlap.

You can think of each object as existing on its own layer. As you add objects, you add layers. The most recently added object
always occupies the foreground layer. In the Structure area, the topmost object occupies the background layer.

If two objects overlap, the one closest to the foreground appears on top. If you have several objects you want to place either
on top of or under another object or group, it may be useful to group them into a single unit and then edit the layering order of
the group.

To edit the layering order of objects:

l In the PlanetPress Designmainmenu, choose Page Layout | Arrange |Order and then choose any of the fol-
lowing:
Bring Forward: Move the selected objects or groups forward one layer graphically. This also results in moving the
selected objects or groups downward one spot in the Document Structure.
Send Backward: Move the selected objects or groups backward one layer graphically. This also results in moving
the selected objects or groups upward one spot in the Document Structure.
Bring to Front: Move the selected objects or groups to the very front of all layers graphically. This also results in
moving the selected objects or groups to the bottom of the Document Structure.
Send to Back: Move the selected objects or groups to the very back of all layers graphically. This also results in mov-
ing the selected objects or groups to the top of the Document Structure.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 54 -

Group and Ungroup Objects and/or Groups

A group is a set of objects that you group together to treat as a single unit. A groupmay be composed of individual objects,
groups, or both. There is no restriction on the type of object you can include in a group, or on the number of different types of
objects you can include in a single group. However, any objects and groups you want to include in the groupmust exist on the
same page of a document.

To create a group:

1. Select the objects and/or groups you want to include in the group.
2. Choose Page Layout | Arrange |Group.

To ungroup a group:

1. In the Structure area or the Page area, select the group you want to ungroup.
2. Choose Page Layout | Arrange |Ungroup.

Data Pane
The Data Pane is a view on your input data, and one of the ways you can select data to include in your document. The Data
Pane is a component of the Data Selector and its contents and appearance reflect the options set for it in the Data Selector.

You can drag and drop a data selection directly from the Data Pane into the Page area to quickly create a data selection object,
a bar code object, or a business graphic object.

In the Document Structure area or in the Page area, when you select a data selection, bar code, or business graphic that uses
a Contiguous data selection, PlanetPress Design highlights the data selection for that object in the Data Pane.

For more information on the data pane and data selections, see the chapter on Data in PlanetPress Design.

Object Inspector
The Object Inspector displays the properties of the element currently selected in the Document structure area or in the Page
area. If you select several elements, the Object Inspector displays values only for those properties that are common to all the
selected elements. If you select an image resource, the Object Inspector also displays the image.

The number of elements currently selected appears in the upper left of the Object Inspector, and you use the Object Inspector
to view and edit properties.

To edit properties Using the Object Inspector:

1. Select the element (object, page, document, condition, style, attachment) you want to change. To change multiple ele-
ments, do a multiple selection (CTRL-click).

2. In the Object Inspector, select the property you want to edit. If you selectedmultiple elements, only those properties
common to all of the selected elements appear in the Object Inspector. If necessary use the scroll bar and/or the
expand/collapse button.

3. Edit the property using the appropriate method, as described below:
l If the property lets you enter any value, type in the new value and press ENTER.
l If the property is associated with a list of possible values, select the new value from the list.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 55 -

l If the property lets you select any value, click the selection button located to the right of the value field. For
example, if the button is for a PlanetPress Talk before, PlanetPress Talk after, or PlanetPress Talk code prop-
erty, click it to launch the PlanetPress Talk Editor.

To expand or collapse a group:

l In the Object Inspector, click the expand/collapse button for the group.

Workspace Area
The Worskpace always displays the currently selected, or active, page of your document. It displays the result of what your
page should look like when it previews or print. The data shown in the Workspace is that of the current data page, and it will
only show objects that are not hidden through a condition.

The Workspace is separated in a few important elements:

l The white area is your actual page, and is always the size of the page as set in the page's properties (for example,
Letter or A4). If you change the page size, the white space in the Workspace will also be updated to reflect the new
size.

l The light gray line inside the page indicates the outside margin, where the printer drive or PPD has determined that
data will never be printed. If you place objects within this margin, it may not print since it is outside of the printer-
definedmargins.

l The dark gray area around the page is never printed as it is outside of physical page area. However, you can still place
objects in this area and they will be executed. For example, you could place statistics you would like to see when open-
ing the document, or run some PlanetPress Talk code without being seen.

l The Rulers (top and left) are used to help guide where you place objects. While youmove your mouse in the Work-
space, lines appear in the rules to display the horizontal and vertical position on the page. You can also use the rule to
place guides on your page.

Using the Select Tool in the Workspace

The Select Tool is the default tool that is used when opening or creating a PlanetPress Design document, and is most likely to
be the one you will use most of the time. The Select Tool lets you select andmove objects around in the Workspace.

To select any object in the Workspace:

l Place your mouse over the object and click on it.

To select multiple objects in the Workspace, use either methods:

l Create a box around all the objects you want to select by using drag & drop from an empty area on the page.
l Click on the first object you want to select and, while holding down the CTRL button, click on any number of other
objects to add to your selection.
Selected objects have a red border around them, as well as resize handles in the corner and edges.

To move an object or objects in the Workspace:

l First, select one or more objects to move.
l Drag the object or objects to the new location.

To resize an object or objects in the Workspace:

The PlanetPress Design Program

©2010 Objectif Lune Inc - 56 -

l First, select one or more objects to resize.
l Using any of the resize handles (squares at the corners or edges of your selection), click andmove the handle to resize.
If multiple objects are selected, they will all be resized together.

Zoom in and out of the Workspace

You can use the zoom tools to zoom in and out of the Workspace, in order to see more of your document (for precise editing
and placement) or less (to see a broader picture). The zoom factor can be any value from 10 to 1000 percent (%).

To set a specific zoom level:

l In the PlanetPress Design Ribbon, go to the View tab.
l In the Zoom group, click in the Current zoom factor box and enter the new zoom.
The Workspace will zoom at the top-left corner, not in the center.

To zoom in or out using the Zoom toolbar:

l In the PlanetPress Design Ribbon, go to the View tab.
l In the Zoom group, click Zoom In or Zoom Out.
The Workspace will zoom at the top-left corner, not in the center.

To zoom in or out using the Zoom tool pointer:

1. In the PlanetPress Design Ribbon, go to theHome tab.
2. In the Tools group, click on Zoom Tool.
3. To zoom in, click anywhere in the Workspace.
4. To zoom out, right-click anywhere in the Workspace.

The Workspace will zoom in (or out) at the location where your mouse is located.

To zoom in our out using the mouse scroll wheel (when available):

1. Place your mouse in the Workspace
2. Hold down the CTRL key on your keyboard.
3. To zoom in, scroll themouse wheel up (away from you).
4. To zoom out, scroll themouse wheel down (towards you).

The Workspace will zoom in (or out) at the location where your mouse is located.

Pan the Workspace

The Hand tool can be used to move the Workspace left, right, up and down, in order to see a different area of the Workspace.
This is especially useful when you are zoomed in close on your page and simply want to move either way slightly.

To pan the Workspace using the Hand Tool:

1. In the PlanetPress Design Ribbon, go to theHome tab.
2. In the Tools group, click onHand Tool.
3. Click and hold your mouse anywhere in the Workspace, andmove it in any direction to move the Workspace.

To pan the Workspace up and down using the mouse scroll wheel:

1. Place your mouse in the Workspace
2. To scroll up, scroll themouse wheel up (away from you).
3. To scroll down, scroll themouse wheel down (towards you).

To pan the Workspace left and right using the mouse scroll wheel:

The PlanetPress Design Program

©2010 Objectif Lune Inc - 57 -

1. Place your mouse in the Workspace
2. Hold down the SHIFT key on your keyboard.
3. To scroll right, scroll themouse wheel up (away from you).
4. To scroll left, scroll themouse wheel down (towards you).

Use Guides

Guides are vertical or horizontal reference lines that you place on a page to help you accurately align and position elements.
You can set a guide for an individual page or for all pages of a document. Guides cannot print and thus never appear on the out-
put of a document.

You can select the Snap to guides option in the User Options dialog to have the edge of an object or group automatically snap
to a guide when it approaches a guide. See "Miscellaneous Preferences" (page 72).

To create a guide:

l Click in the top ruler (to create a vertical guide) or the left ruler (to create a horizontal guide) at the point at which you
want to create the guide.
A dark blue triangle appears in the ruler, and the guide appears in the document. By default the guide appears only on
the document page on which you create it. If you want to have it appear on all document pages, see To edit the prop-
erties of a guide:.

Document page with one vertical and one horizontal guide

To reposition a guide:

l In the ruler, click and drag the blue triangle of the guide to the new position.

To edit the properties of a guide:

1. In the ruler, double-click the blue triangle of the guide you want to edit.
The Guide dialog box appears.

2. Edit the properties of the guide.
Position: Enter the ruler position for the guide. Units are as set in the User Options dialog.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 58 -

Display on all pages: Select to have this guide display on all pages in the document. Clear to have the guide display
only on the page onwhich you created it.

3. Click OK to exit the Guide dialog box.
PlanetPress Design updates the guide to reflect the new settings.

To delete a guide:

l Click and drag the black triangle of the guide inside the Page area, and release.
PlanetPress Design deletes the guide.

Right-Click Menu in the Workspace

You can use the right-click menu in the workspace to add, remove, move and edit objects on your page.

The right-click menu contains the followingmenu actions:

l Cut: Cuts the object under the mouse location and places it in the clipboard. Has no effect if right-clicking on the page
itself or outside of the page.

l Copy: Places a copy of the object under the mouse location in the clipboard. Has no effect if right-clicking on the page
itself or outside of the page.

l Paste: Removes the object located in the clipboard and places it on the page at the current mouse location. Has no
effect if the clipboard does not contain an object.

l Delete: Deletes the object under the mouse location. Has no effect if right-clicking on the page itself or outside of the
page.

l Rename: Changes the display name of the object under the mouse location. If right-clicking on the page, will rename
the page. This is equivalent to changing the name of the object in its Basic Attributes properties.

l Align: Aligns multiple selected objects, either horizontally or vertically. Has no effect when selecting a single object or
the page itself.

l Order: Changes the top-down order of the object, so it is either "on top" or "behind" other objects. If right-clicking on
the page, will change the order of the page itself.

l Group: Groups multiple selected objects together. Has no effect when selecting a single object or the page itself.
l Ungroup: Removes the object under the mouse location from any group in which it is located. Has no effect on objects
not in a group. If right-clicking on the page, will remove the page from any group in which it is located in the Document
Structure.

l Add: Displays a menu of any object or element you can add to your document, including objects, pages, conditions,
variables and functions. This menu has the same effect as using the Home tab of the PlanetPress Design Ribbon to add
these objects and document elements.

l Properties: Displays the properties of the object under the mouse location. If right-clicking on the page, will display
the properties of the page.

Detailed Directions
This section includes the following procedures:

l "Set the Basic Attributes of an Object or Group" (page n)
l "Set the Manipulation Properties of an Object or Group" (page n)
l "Select Objects and/or Groups" (page 60)
l "Lock and Unlock Objects and Groups" (page 60)
l "Reposition Objects and/or Groups" (page 61)
l "Resize Objects and/or Groups" (page 61)
l "View or Edit the Properties of an Object" (page 123)

The PlanetPress Design Program

©2010 Objectif Lune Inc - 59 -

../../../../../Content/1493.html
../../../../../Content/1493.html
../../../../../Content/1493.html
../../../../../Content/1493.html
../../../../../Content/1493.html
../../../../../Content/1493.html
../../../../../Content/1493.html
../../../../../Content/1493.html
../../../../../Content/1493.html
../../../../../Content/1493.html
../../../../../Content/1493.html
../../../../../Content/1494.html
../../../../../Content/1494.html
../../../../../Content/1494.html
../../../../../Content/1494.html
../../../../../Content/1494.html
../../../../../Content/1494.html
../../../../../Content/1494.html
../../../../../Content/1494.html
../../../../../Content/1494.html
../../../../../Content/1494.html
../../../../../Content/1494.html

l "Delete Objects and/or Groups" (page 62)
l "Align Objects and/or Groups" (page 63)
l "Rotate Objects and/or Groups" (page 63)
l "Duplicate Objects and/or Groups" (page 63)
l "Snap or Unsnap Objects and/or Groups" (page 63)
l "Group and Ungroup Objects and/or Groups" (page 55)
l "Edit the Layering Order of Objects" (page n)
l "Copy Values of Properties between Objects and/or Groups" (page 66)
l "Convert an Object to PlanetPress Talk" (page 215)
l "Debug an Object or Group" (page 60)

Debug an Object or Group

You can use the Messages area in either the Program window or the Object Preview to help you debug an object. The Plan-
etPress Talk Editor also offers a number of features for debugging any PlanetPress Talk code you enter in a document.

Select Objects and/or Groups

To select all objects and groups at the same level in the Structure area hierarchy:

1. In the Structure area or in the Page area, click on one of the objects or groups that occupies the level in the Structure
area hierarchy whose objects and groups you want to select.

2. ChooseHome | Clipboard | Select All.

To select one or more objects and/or groups in the Structure area:

1. In the Structure area, if necessary, expand the page containing the objects and/or groups you want to select.
2. Click an object or group, and thenCTRL+click each subsequent object or group you want to include in the selection.
SHIFT+click to select all objects between the currently selected object or group and the last object or group selected.
CTRL+click an object or group a second time to remove it from the selection.

To select one or more objects or groups in the Page area:

l In the Page area, click the object or group you want to select.

Lock and Unlock Objects and Groups

To lock an individual object/group:

l Select the object or group, and, in the Object Inspector, set the Selectable property to False. You can set it to False
either by selecting False in its list or by double-clicking its value to toggle between True and False.

To unlock an individual object/group:

l Select the object or group, and, in the Object Inspector, set the Selectable property to True. You can set it to True
either by selecting True in its list or by double-clicking its value to toggle between True and False.

To lock one or more objects/groups in a single operation:

1. If necessary, in the Structure area, select the page containing the object(s) and/or group(s) whose Selectable property
you want to clear.

2. Do either of the following:
l To lock only a selected set of objects/groups: Verify that all the objects you want to lock are selected,
then choose Page Layout | Lock/Unlock | Lock Selected Objects.

l To lock all objects/groups: Choose Page Layout | Lock/Unlock | Lock All Objects on Page.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 60 -

../../../../../Content/1507.html
../../../../../Content/1507.html
../../../../../Content/1507.html
../../../../../Content/1507.html
../../../../../Content/1507.html
../../../../../Content/1507.html
../../../../../Content/1507.html
../../../../../Content/1507.html

To unlock one or more objects/groups in a single operation:

1. If necessary, in the Structure area, select the page containing the object(s) and/or group(s) you want to unlock.
2. Do either of the following:

l To unlock only a selected set of objects/groups: In the Structure area, select each object you want to
unlock, then choose Page Layout | Lock/Unlock | Unlock Selected Objects.

l To unlock all objects/groups: Choose Page Layout | Lock/Unlock |Unlock All Objects on Page.

Reposition Objects and/or Groups

To reposition objects and/or groups:

1. Select the objects and/or groups you want to reposition.
A red rectangle appears around the selected objects and groups. It contains eight resize handles, one on each corner,
and one in the middle of each edge of the rectangle.

2. Press CTRL+ARROW to move the objects and/or groups. You set the magnitude of the move that occurs with each
press of the ARROW key in the User Options dialog. If you are repositioning an object/group within a group, after you
select it in the Structure area youmust click it in the Page area to use the CTRL+ARROW shortcut.

Resize Objects and/or Groups

The following describes how to resize text objects, picture objects, and data selection objects.

Text Objects

If you resize a text object that uses a background box, it is important to understand how the background
box resizes with respect to the text in the object. First, the margins and indents remain constant when you
resize a text object. Thus the top edge of the text is always the same distance from the top edge of the
background box, and the left edge of the text is always the same distance from the left edge of the
background box. What changes are the right and bottom edges of the text relative to the right and bottom
edges of the background box. The change that occurs depends on whether word wrap is on or off, and
whether the Dynamic height box is selected in the Basic attributes of the text object.

Word wrap: Dynamic height: Resize behavior:

on cleared

Background box resizes horizontally to maintain the relationship
between the right indent and the right edge of the background box. It
resizes vertically without regard for the bottom edge of the text. Thus
in this case text may extend below the bottom edge of the background
box.

on selected
PlanetPress Design dynamically adjusts the height of the background
box to accommodate all of the text. In this case you cannot manually
adjust the height of the text object; you can only resize the width.

off cleared
Background box resizes without regard for either the right or bottom
edges of the text. Text may extend beyond either or both of the right
and bottom edges of the background box.

Picture Objects

The PlanetPress Design Program

©2010 Objectif Lune Inc - 61 -

The ability to resize a picture object, and the effect of the resize on the image that object references and
on the height and width of the picture object, depends on the Fit setting selected for the image.
If you selected a Fit setting of Constant resolution, you cannot resize the picture object.
In the case of any of the other Fit settings (Constant height, Constant width, and Best fit), PlanetPress
Design carries out the resize in accordance with the Fit setting. For example, if you selected Constant
height, when you resize the picture object, PlanetPress Design scales the image such that its height
reflects the new height of the picture object. It then adjusts the width of the picture object to the new
width of the image. Note that when you resize a dynamic image, you are resizing a single image. If the
dynamic image references more than one image, and the images are different sizes, you should consider
the effect the resize has on all of the images referenced by the dynamic image.

Data Selection Objects

If you defined the data selection in a data selection object using PlanetPress Talk expressions, you cannot
resize the object along any of the edges defined by those expressions.
You cannot resize a data selection object that contains a Contiguous data selection in database emulation,
along the horizontal axis. A Contiguous data selection in a database emulation cannot spanmore than one
field.
To resize one or more objects and/or groups:

1. Select the object(s) and/or group(s) you want to resize.
2. Press SHIFT+DOWN ARROW or SHIFT+UP ARROW to respectively increase or decrease the size of the

object or group along its bottom edge. You set the magnitude of the resize that occurs with each press
of the ARROW key in the Preferences dialog.

Delete Objects and/or Groups

To delete one or more objects and/or groups:

1. Select the objects and/or groups you want to delete.
2. ChooseHome | Clipboard | Delete.

If no elements in the document reference any of the selected objects/groups, PlanetPress Design performs the dele-
tion.
If any elements in the document reference any of the selected objects/groups, PlanetPress Design prompts you to
define how youwant to handle the deletion of each of the referenced objects/groups. More precisely, for each ref-
erenced object/group, it displays the Object Deletion dialog box. You use that dialog box to set the deletion options and
perform the deletion.

To use the Object Deletion dialog box:

1. Adjust the options to reflect how youwant PlanetPress Design to handle the deletion request. The name of the
object/group you selected for deletion appears in the title bar of the Object Deletion dialog box, and the list of elements
that reference it appear on the right of the dialog box.
Replace reference by: Select to delete the object/group and to replace all references to it with a reference to
another of the objects/groups in the document.
Objects available: Select the object/group you want to use as the replacement reference. When you delete the
object/group, PlanetPress Design replaces all references to the deleted object/group with a reference to the
object/group you select here. You can use the Objects button to create a new object to add to this list.
Objects button: Use to create a new object. Click and choose the object you want to create. PlanetPress Design
creates the new object and selects it in the Objects available list.
Delete: Select to delete the object/group, and all document elements that reference it. All document elements that ref-

The PlanetPress Design Program

©2010 Objectif Lune Inc - 62 -

2. Click OK.

Align Objects and/or Groups

To align objects:

1. Select the reference object or group and then each of the objects and/or groups you want to align with it.
2. Use one of the following to align the objects and/or groups:

Alignment toolbar
Click the appropriate horizontal and/or vertical alignment in the Alignment toolbar.

Alignment dialog box
Choose Edit | Align to display the Alignment dialog box. In the Alignment dialog box, select a horizontal and vertical
alignment option and click OK.

Rotate Objects and/or Groups

You rotate an object or group in PlanetPress Design by adjusting the Angle property in the Basic attributes properties of the
object/group.

Duplicate Objects and/or Groups

To duplicate one or more objects and/or groups:

1. Select the objects and/or groups you want to duplicate.
2. Choose Page Layout | Duplicate |Duplicate to have PlanetPress Design duplicate the selected objects and/or

groups using the displacement and data page offsets set in the User Options dialog box.

Snap or Unsnap Objects and/or Groups

To snap one object or group to another using the properties dialog boxes:

1. Determine the snapping point you want to use for each object and/or group, and whether or not you require an offset.
In other words, determine the relationship you want to establish between the two.

2. In the Structure area, examine the relationship between the two and if necessary, edit their positions in the Structure
area.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 63 -

3. If, in the object/group of the two that is lower in the Structure area hierarchy, the Snap to previous object property
is already selected and the proper offset set, proceed to step 9.

4. In the Structure area or the Page area, double-click that object or group to display the properties dialog box for the
object/group that is lower in the Structure area hierarchy. This is the object/group PlanetPress Designmoves when it
performs the snap.

5. In the properties dialog box, click Snapping points.

6. Select Snap to previous object and click the snapping point you want this object/group to use when it snaps to an
object/group that precedes it in the Structure area. A dot in the center of the snapping point indicates it is selected.

A. Selected snapping point
7. If necessary, set offsets for the snapping point.
Horizontal offset: Enter a horizontal offset for the snapping point.
Vertical offset: Enter a vertical offset for the snapping point.

8. In the properties dialog box, click OK.
If the Set snapping point property is already set in the object/group of the two that is higher in the Structure area
hierarchy, you have completed this procedure. Otherwise, proceed to step 9.

9. In the Structure area or the Page area, double-click that object or group to display the properties dialog box for the sec-
ond object/group. This object/group is the one higher in the Structure area hierarchy.

10. In the properties dialog box, click Snapping points.
11. Select Set snapping point and click the snapping point you want this object/group to use for all objects that snap to

it.
12. In the properties dialog box, click OK.

To snap one object or group to another using the Object Inspector:

1. Determine the snapping point you want to use for each object and/or group, and whether or not you require an offset.
In other words, determine the relationship you want to establish between the two.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 64 -

2. In the Structure area, examine the relationship between the two and if necessary, edit their positions in the Structure
area.

3. If, in the object/group of the two that is lower in the Structure area hierarchy, the Snap to previous object property
is already selected and the proper offset set, proceed to step 6.

4. Select the object/group that is lower in the Structure area hierarchy. This is the object/group PlanetPress Design
moves when it performs the snap.
The Object Inspector displays the properties of that object/group.

5. In theObject Inspector, set the following snapping points properties. If you have set the Object Inspector to use
groups, all of these properties appear in the Snapping points group.

l Set Snap to previous object to True. If an object/group that precedes it in the Structure area has its Set
snapping point property set, PlanetPress Design snaps this object/group to it.

l Set Snapping point before to the snapping point you want this object/group to use when it snaps to an
object/group that precedes it in the Structure area (Top left, Topmiddle, Top right, for example).

l Set Snapping point horizontal offset to the horizontal offset you want to use for the snapping point. This is
useful when you want a horizontal offset between this object/group and the one to which you are snapping it.
Units are as set in the User Options dialog box.

l Set Snapping point vertical offset to the vertical offset you want to use for the snapping point. This is use-
ful when you want a vertical offset between this object/group and the one to which you are snapping it.
If, in the object/group of the two that is higher in the Structure area hierarchy, the Set snapping point prop-
erty is already selected, you have completed this procedure. Otherwise, proceed to step 6.

6. Select the object/group that is higher in the Structure area hierarchy.
7. In theObject Inspector, set the following snapping points properties for this object/group:

l Set Snapping point after to the snapping point you want this object/group to use for all objects/groups that
snap to it.

l Set Snapping point after to True.

To unsnap one object or group from another using the properties dialog box:

1. In the Structure area or the Page area, double-click that object or group to display the properties dialog box for the
object/group (of the two snapped together) that is lower in the Structure area hierarchy. This is the object/group Plan-
etPress Designmoved when it performed the snap.

2. In the properties dialog box, click Snapping points.
3. Clear Set snapping point before.
4. In the properties dialog box, click OK.

If the object/group you just unsnapped was not the only one snapped to the other object/group, you have completed
this procedure. Otherwise, proceed to step 5 to clear the Set snapping point property of the second of the two
objects/groups.

5. In the Structure area or the Page area, double-click that object or group to display the properties dialog box for the sec-
ond object/group. Of the two objects that were snapped together, it is the one higher in the Structure area hierarchy.

6. In the properties dialog box, click Snapping points.
7. Clear Set snapping point.
8. In the properties dialog box, click OK.

To unsnap one object or group from another using the Object Inspector:

1. Select the object/group that is lower in the Structure area hierarchy. This is the object/group PlanetPress Design
moved when it performed the snap.

2. In theObject Inspector, set the Snap to previous objectproperty to False.
If the object/group you just unsnapped was not the only one snapped to the other object/group, you have completed
this procedure. Otherwise, proceed to step 3 to clear the Set snapping point property of the second of the two
objects/groups.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 65 -

3. Select the object/group that is higher in the Structure area hierarchy.
4. In theObject Inspector, set the Set snapping point afterproperty to False.

Copy Values of Properties between Objects and/or Groups

To copy values of properties between objects:

1. Select the reference object or group. This is the object/group that contains the properties whose values you want to
copy.

2. In the Structure area or the Page area, CTRL+click each object and/or group to which you want to copy the property
value.

3. In theObject Inspector, click the property whose value you want to copy.
4. If necessary, edit the value of the property.
5. Repeat step 3 through step 4 for each property whose value you want to copy.
6. Click anywhere outside the Object Inspector to enter the last edit youmade.

To copy values using the cut and paste features:

1. Select an object in the document.
2. Choose Edit | Copy.
3. Select the second object.
4. ChooseObject | PasteProperty.
5. Select the desired properties and click OK.

Adding image resources to your document

1. Do any of the following:
l To add a single static image In the Structure area, click on the image resource and drag it into the Page
area. Alternatively, if the image resource is already selected and its image is visible in the Object Inspector,
click the image in the Object Inspector and drag it into the Page area.

l To add a single static image that references a page of a multi-page PDF In the Structure area,
click on the multi-page PDF image resource, and then, in the Object Inspector, in the Page box, navigate to the
page of the PDF you want to use as the static image. Finally, in the Object Inspector, click on the image and drag
it into the Page area.

l To add one or more static images In the Structure area, select the image resources and then click and
drag them into the Page area. You can do any of the following to select image resources in the Structure area.
Click on the first image resource, thenCTRL+click each additional image resource, or SHIFT+click to select all
image resources between the one you click and the last one selected. You can also click and drag a marquee
around the image resources. To remove an item from the selection, CTRL+click it a second time.

l To add a static image using a clipped region: With a PDF sample data file loaded in the Data pane,
select the region to clip and create an image object with, then right-click and drag the selected region to the
selected page. Release the right mouse button and choose Insert Clipped Region to insert the selected PDF
region.

2. Release the image resource(s) in the Page area.
PlanetPress Design creates a new picture object for each image resource you dragged into the Page area. Each new pic-
ture object appears in the Page area and its name appears in the Structure area hierarchy. The height and width of the
picture object reflect the height and width of the image resource.

3. If necessary, adjust the properties of each new picture object, as described in step 3 through step 11 of To add a static
image:.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 66 -

Messages Area
The Messages area displays messages from the PlanetPress Talk Converter, and is useful when you add PlanetPress Talk
objects, or objects that include PlanetPress Talk statements to your document. Any errors the PlanetPress Talk Converter
encounters in your code, it displays in the Messages area. These include converter errors, run error messages, and any debug-
ging strings you instructed your code to output using the PlanetPress Talk outputdebugstring() command.

PlanetPress Design also uses the Messages area to report any problems it had carrying out certain operations and how it
resolved those problems (for example, opening a document that references unavailable fonts, or importing a PlanetPress
Design 3 document that used the same name for two different elements).

The type of message appears to the right of the message itself, and you can set a distinct color for converter errors, for run
errors, and for debugging strings. This makes it easier to quickly distinguish one message type from another. Notificationmes-
sages always appear in black.

You can double-click a message to have PlanetPress Design display the source of the error.

PlanetPress Design clears the Messages area automatically when you open an existing document, or import an FSL form or
PlanetPress Design 3 document. You can also clear the area manually.

To find the source of an error:

l In the Messages area of the PlanetPress Design Program window, double-click the error.

To clear some or all of the messages in the Messages area:

l Right-click in the Messages area and choose either Clear all messages or a givenmessage category (Converter
Error, Run Error, OutputDebugString, or Notification).

To save the contents of the Messages area to a file:

1. Right-click in the Messages area and choose Save PlanetPress Talk Messages.
2. In the Save PlanetPress Talk Messages dialog, navigate to the folder in which you want to save the file, enter a

file name for the saved file, and click Save.

Adding External Resources

You can drag and drop one or more files fromWindows directly into any of the following areas of the PlanetPress Design Pro-
gram window: the Structure area, the Data Pane, the Page area, or the Object Inspector (when the Object Inspector is dis-
playing an image resource).

You can drag and drop any of the following file types. PlanetPress Design determines the type of file from the file name exten-
sion, and accepts specific file formats for each file type.

File type: PlanetPress Design accepts files with file name extension:
PlanetPress Design document (versions 3 and up)PP3, PP4, PP5, PP6 and PP7
Image BMP, EPS, JPEG or JPG, PDF, PNG, TIF or TIFF
Attachment PRN, PS
Sample data file CSV, DAT, DB, DBF, MDB, PDF, TXT, XML

If you drag and drop a PlanetPress Design6 document, PlanetPress Design opens that document. If you drag and drop a Plan-
etPress Design document from an earlier version, PlanetPress Design imports that document.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 67 -

For all other file types, the type of file (image, attachment, or sample data file) and the area of the program window in which
you drop it determine what PlanetPress Design does with the file. Whether you drag and drop a single file or multiple files can
also have an impact on how PlanetPress Design treats the file or files. The procedure here describes the behavior of each area
of the PlanetPress Design Program window when you drag and drop image, attachment, or sample data files into it.

To drag and drop files into PlanetPress Design:

1. Select the file that you want to drag and drop into PlanetPress Design, and then drag it over the appropriate area of the
program window.

2. When pointer is over an area where a drop is permitted, release the mouse button.
dragging Image Files

l Into the Structure area:PlanetPress Design creates an image resource for each image file.
l Into the Page area: If you droppedmultiple image files, PlanetPress Design creates an image resource for
each image file. If you dropped a single image file, PlanetPress Design also creates a picture object containing
that image on the current page. If you dropped a single multi-page PDF, PlanetPress Design creates a single
image resource for the PDF, a new document page for each page of the PDF, and, on each new document page,
a picture object that contains a page of the PDF.

l Into the Data pane:PlanetPress Design creates an image resource for each image file.
l Into the Object inspector: If you droppedmultiple image files, PlanetPress Design creates an image
resource for each image file. If you dropped a single image file, PlanetPress Design replaces the image resource
currently displaying in the Object Inspector with the one you dragged and dropped.
dragging attachments

l Into the Structure or Page area or into the Data pane: PlanetPress Design creates an attachment
resource for each attachment file.
dragging sample Data files

l Into the Structure or Page area:PlanetPress Design replaces the sample data file currently associated
with the document with the one you dropped in the Structure or Page area, and it updates the Data Pane to
reflect the contents of the new sample data file. Note that if you drop several sample data files in the Structure
or Page area, PlanetPress Design adds each in the order in which it receives them, each subsequent file replac-
ing the previous one as the sample data file. The last one it adds is the one that becomes the sample data file
associated with the document. There is no way to control the order in which PlanetPress Design receives mul-
tiple sample data files. If the sample data file you drag and drop does not have a filename extension PlanetPress
Design recognizes, PlanetPress Design opens the Data Selector and displays the contents of the file using a line
printer emulation. You can then select a different emulation if necessary.

l Into the Data pane: PlanetPress Design replaces the sample data file currently associated with the doc-
ument with the one you dropped in the Data Pane, and it updates the Data Pane to reflect the contents of the
new sample data file. Note that if you drop several sample data files in the Data Pane, PlanetPress Design adds
each in the order in which it receives them, each subsequent file replacing the previous one as the sample data
file. The last one it adds is the one that becomes the sample data file associated with the document. There is no
way to control the order in which PlanetPress Design receives multiple sample data files. If the sample data file
you drag and drop does not have a filename extension PlanetPress Design recognizes, PlanetPress Design
opens the Data Selector and displays the contents of the file using a line printer emulation. You can then select a
different emulation if necessary.

PlanetPress Design Preferences
The PlanetPress Design program lets you configure a variety of options to customize how the application looks, and what
default values are used when creating a new document and importing images.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 68 -

The preferences are located in the PlanetPress Design Preferences window, accessible through the Preferences button in the
PlanetPress Design button. Those preferences are:

l Behavior
l "Notification Messages Preferences" (page 69)
l "Image Resources Preferences" (page 70)
l "Color Preferences" (page 71)
l "Object Duplication Preferences" (page 71)
l "Miscellaneous Preferences" (page 72)

l Editor
l "Editor Preferences" (page 73)
l "Display Preferences" (page 74)
l "Color Preferences" (page 75)

l Appearance
l General Preferences
l "Object Inspector Preferences" (page 75)
l "Document Structure Area Preferences" (page 76)
l "Rulers Preferences" (page 76)
l "Form Pages Preferences" (page 77)
l "Compiler Messages Preferences" (page 77)

l Document default values
l "Document and Pages Preferences" (page 77)
l "Image Resources Preferences" (page 78)

Notification Messages Preferences

To set the Notification Messages options:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expandBehavior, and click Notification messages.
Invalid Undo/Redo action warning: When enabled, issues a message when an Undo or Redo operation is not
possible.
Text object’s tab support warning for right to left text: When enabled, issues a message when tabulation
with right to left text is not supported in text fields.
Text object’s PlanetPress Talk before/after paragraph support warning for right to left text: When
enabled, issues a message when PlanetPress Talk before/after paragraph with right to left text is not supported in text
fields.
Text object’s UTF8 style warning: When enabled, issues a message when a UTF8 style is not supported in text
fields.
Text object’s indent support warning for right to left text: When enabled, issues a message when indent
support with right to left text is not supported in text fields.
PDF version warning: When enabled, issues a message when PDF version is greater than 1.5 (Adobe®Acrobat®
6) and identifies PDF files with which PlanetPress Designmay have compatibility issues, such as PDF’s that contain
transparent objects. PlanetPress Design supports PDF 1.3 (Adobe®Acrobat® 4), 1.4 (Adobe®Acrobat® 5) and 1.5
(Adobe®Acrobat® 6) formats without transparent objects. PlanetPress Design does not support PDF 1.6 format
(Adobe®Acrobat® 7).
Send to Host notification of success: When enabled, a notificationmessage appears indicating the document
transfer is successful. If an error occurs, a notificationmessage appears whether or not this option is enabled.

3. Set the Notification Messages options.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 69 -

Invalid name: Select to have PlanetPress Design display an error message when you enter an invalid name for an
element. Clear to prevent the display of the error message.
Invalid added resources: Select to have PlanetPress Design display a message reporting whether it added all
selected resources successfully when you add resources to a document.
Save before closing: Select to have PlanetPress Design prompt for confirmation to save an unsaved document
before closing it. This option applies only to documents that have been saved at least once during a session.
New version of attachments: Select to have PlanetPress Designmonitor all attachment resources and prompt for
confirmation to update its copy of an attachment resource when the original file changes. If the original attachment
resource file changes between sessions, PlanetPress prompts for confirmation to update the document’s copy the next
time you open the document.
New version of data file: Select to have PlanetPress Designmonitor the sample data file and prompt for con-
firmation to update its copy when the original data file change. PlanetPress prompts for confirmation either when you
return to PlanetPress after making the changes to the data file, or when the focus changes to an element that ref-
erences the data.
New version of picture resource: Select to have PlanetPress Designmonitor all image resources and prompt for
confirmation to update its copy of an image resource when the original file changes. If the original image resource file
changes between sessions, PlanetPress prompts for confirmation to update the document’s copy the next time you
open the document. Note that if you edit an image resource from PlanetPress Design, the edits apply only to the copy of
the image internal to the document, and have no effect on the original, external image file.
Invalid PPD notification: Select to have PlanetPress Design display an error message when you attempt to add a
PostScript Printer Description (PPD) file that is either not a valid PPD, or is a PPD that does not use Level 2 PostScript or
higher.
Document name too long for host: Select to have PlanetPress Design issue a warning when you try using file
names that containmore characters than the host computer can support.
PostScript Language Level 3 warning: Select to have PlanetPress Design display a warning when you select
Line art in the Image quality box. The warning reminds you that Line art works only with PostScript Language Level 3
printers.
ASCII emulation warning: Select to have PlanetPress Design warn you if your document uses an ASCII emulation
and the settings of the Optimized PostScript Stream option and the Read in binary mode optionmay cause dis-
crepancies between the visual appearance of the preview and the visual appearance of the document in the Page area
of the PlanetPress Design Program window. This warningmay occur for both hard copy and on-screen previews.
Invalid Undo/Redo action warning: When enabled, issues a message when an Undo or Redo operation is not
possible.
Double-byte text tab support warning: When enabled, issues a message when tabulation with double-byte
fonts is not supported in text fields.
PDF version warning: When enabled, issues a message when PDF version is different and identifies PDF files with
which PlanetPress Designmay have compatibility issues, such as PDF versions 1.4 and 1.5 formats. PlanetPress Design
supports only PDF 1.3 format (Adobe®Acrobat® 4) and PDF 1.4 format without transparent objects. PlanetPress
Design does not support PDF 1.5 format (Acrobat 6). PDF 1.4 (Acrobat 5) format files that contain transparent objects
are not supported.
Send to Host notification of success: When enabled, a notificationmessage appears indicating the document
transfer is successful. If an error occurs, a notificationmessage appears whether or not this option is enabled.

4. Click OK.

Image Resources Preferences

To set the Image resources options:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expandBehavior, and click Image resources.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 70 -

3. Specify the cache size PlanetPress Design uses for image resources.
Picture cache size: Specify the size of the cache, in megabytes, that PlanetPress Design uses for image resources.
The minimum andmaximum values you can enter are 64 megabytes and 1000megabytes respectively. The image
resource cache is an amount of RAM set aside to hold image resources that the document uses. The cache improves
performance by providing faster access to images as you work.
Image editor (bitmap): Specify the image editing application you want to use to edit bitmapped image resources
(image resources in GIF, TIFF, PNG or BMP format) in PlanetPress Design. Enter the path name to the application, or
click the Browse button to the right of the box to browse and select the application. If you do not define an application,
PlanetPress Design launches the default image editor defined inWindows. Note that for image resources in either PDF
or EPS format, PlanetPress Design launches the default editor defined for those formats inWindows.

4. Specify the image editor you want to use to edit bitmapped image resources.
5. Click OK.

Color Preferences

To set the Color options:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expandBehavior, and click Color.
3. Adjust the Color type option.
Color type: Select the color model you want PlanetPress Design to use when it displays the numerical value of a color.
This is also the model the Color Picker displays by default when you open it.
Color management active: Select to enable color management in PlanetPress Design. You can select Color man-
agement active only if you selected a color profile in both Monitor profile and Printer profile. When you work with color
in PlanetPress Design, PlanetPress Design assumes the color is in the color space of the selected printer profile. To rep-
resent the color on-screen, it converts the color from the color space of the selected printer profile to the color space of
the selectedmonitor profile. This ensures the on-screen color closely represents the one the printer prints.
Monitor profile: Select the device color profile for the monitor of the computer on which you are running PlanetPress
Design. The profiles available are the ICC-compliant monitor profiles PlanetPress Design finds on the system. This
option has an effect only when you select Color management active.
Printer profile: Select the device color profile for the printer on which you intend to execute the document.The pro-
files available are the ICC-compliant printer profiles PlanetPress Design finds on the system. This option has an effect
only when you select Color management active.

4. Adjust the color management options.
5. Click OK.

Color profiles are not specific to PlanetPress Design or your document. They are installed on your operating system
and are generally downloadable from your hardware manufacturer's website when they are not provided with the
hardware's drivers.

Object Duplication Preferences

To set the Object Duplication options:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expandBehavior, and click Object duplication.
3. Adjust the Object Duplication options.
Duplicate style: Select where you want PlanetPress Design to place the copy of any object, group, or selection of
objects and/or groups you duplicate. Select Pack vertically to have PlanetPress Design align the copy along the Y axis,
under and flush with the most recent copy. Select Pack horizontally to have PlanetPress Design align the copy along the
X axis, to the right of and flush with the most recent copy. Select Relative displacement to have PlanetPress Design

The PlanetPress Design Program

©2010 Objectif Lune Inc - 71 -

align the copy using the specified horizontal and vertical offset values. If you select this option, youmust enter values
for the vertical and horizontal displacements.
The menu items Edit | Duplicate and Pack Horizontally and Edit | Duplicate and Pack Vertically,override
this setting.
Vertical relative displacement value: Enter the displacement for the copy along the Y axis. Units are as set in the
User Options dialog. This option is available only when you select Relative displacement as the duplicate style.
Horizontal relative displacement value: Enter the displacement for the copy along the X axis. Units are as set in
the User Options dialog. This option is available only when you select Relative displacement as the duplicate style.
Data SELECTION Offsets
Row/child record: Set the number of lines you want to advance in the data page with each duplication of an object
or group. In the case of a database emulation, this is the number of records you want to advance in the record set with
each duplication of an object or group. This permits each copy to display a distinct selection of data. Note that this offset
does not work with objects that use custom data selections.
Column: Set the number of columns you want to advance in the data page with each duplication of an object or group.
This permits each copy to display a distinct selection of data. Note that this offset does not work with objects that use
custom data selections. This offset has no effect in database emulation.

4. Click OK.

Miscellaneous Preferences

The Miscellaneous options include zoom factors, the unit of measure, the object selectionmode, a snap to guides option, and
options that determine object dialog behavior.

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expandBehavior, and clickMiscellaneous.
3. Adjust the object selectionmode.
Object selection mode: Use to determine where youmust position the pointer on an object or group in order to
select it. This is particularly important when you are selecting overlapping objects and/or groups. Select bounding box
to select an object or group when the pointer is anywhere inside or along the perimeter of the bounding box of the
object. Select Pixel to select an object or group only when the pointer is over the perimeter of the object.

4. Adjust how objects and groups behave with respect to guidelines.
Snap to guidelines: Select to have objects and groups automatically snap to the nearest guide (or guides) when you
move or resize those objects and groups on the page. More precisely, when youmove or resize an existing object or
group, as the edge of the object or group approaches a guide, the edge jumps to lie flush with that guide. When you
select this option, existing objects and groups in the document remain in their current position. Only if you subsequently
move or resize them, will they snap to the guides.

5. Adjust the zoom factors. PlanetPress Design uses these values to determine the new zoomwhen you zoom in or out on
the document page.
Zoom factor: Set the zoom factor PlanetPress Design uses when you zoom in or out on the document page using the
Zoom tool in theObjects toolbar, the Zoom in and Zoom out tools in the Zoom toolbar, and the plus (+) andminus (-)
keys on the numeric keypad. Values can range from 10 to 1000.
Fine zoom factor: Set the fine zoom factor PlanetPress Design uses when you zoom in using SHIFT+ the plus key
(+) on the numeric keypad, or zoom out using SHIFT+ the minus key (-) on the numeric keypad.

6. Adjust the unit of measure you want to use in PlanetPress Design.
Unit of measure: Set the unit of measure. This determines the units PlanetPress Design uses for the rulers and for
all measurements outside of PlanetPress Talk. Units can be centimeters or inches.

7. Adjust the nudge factor.
Nudge factor: Set the magnitude of the resize that occurs when you resize an object or group using keyboard short-
cuts. Units are as set in the unit of measure.

8. Adjust the dialog box options.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 72 -

Remember last dialog box position: Select to have PlanetPress Design remember the last screen position of each
type of dialog box, and, if the dialog box is resizable, the last size of the dialog box. Resizable dialog boxes include the
Text/Box properties dialog box and the Data Selector.
Remember last dialog box page: Use this to control the area that is displayed when you open a dialog box. Select
to have PlanetPress display the area that was visible when you last closed a dialog box of that type.

9. Click OK.

Editor Preferences

To set the Editor options:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expand PressTalk Editor, and click Editor.
Auto indent mode: Select to automatically position the insertion pointer under the first non-blank character of the
preceding line when you press ENTER.
Insert mode: Select to use Insert mode and clear to use Overwrite mode. When you enter text in Insert mode, the
existing text shifts to accommodate it. In Overwrite mode, the text you enter overwrites the existing text. You can also
press INSERT to toggle between Insert and Overwrite mode.
Use tab character: Select to use the tab character instead of spaces to represent tabs in the program file. Clear to
use spaces to represent the tabs. Youmust clear the Smart tab option to use this option.
Smart tab: Select to use smart tabs. A smart tab advances with reference to the preceding line. More precisely, it
advances to align with the first non-blank character it encounters on the preceding line, from its current position for-
ward. Youmust clear the Use tab character option to use Smart tabs.
Optimal fill: Select to optimize the indent of every auto-indented line by minimizing the number of space and/or tab
characters it uses. Youmust select both Auto indent mode and Use tab character to use this option.
Backspace unindents: Select to move the insertion pointer to the previous indentation level when you press BACK-
SPACE.
Cursor through tabs: Select to move one by one through the spaces of tabs using the left or right arrow keys. Clear
to have the arrow keys treat the tab as a single character. Youmust select Use tab character to use this option.
Group undo: Select to set the undo feature of the Editor to undo the last group of editing commands entered. An edit-
ing command is defined as a mouse click, a press on ENTER, or a press on any other key. A group of editing commands
is a sequence of a single type of editing command. Clear to set the undo feature to undo only the last command
entered.
Cursor beyond EOF: Select to make it possible to position the pointer beyond the end of the last line of code in the
program. This is useful if you prefer to enter code by clicking the pointer at any point in the Editor, rather than by man-
ually entering carriage returns or lines of code to advance to that point. For example, youmight know you need a for()
loop near the middle of your code. If you select Cursor beyond EOF, you can click in the middle of the Editor and enter
the first line of the for() loop, without having to enter carriage returns to arrive at that point. Clear to prevent being able
to position the pointer beyond the end of the last line entered to date in the Editor.
Cursor beyond EOL: Select to make it possible to position the pointer beyond the last character entered to date on a
line of code. This is useful if you prefer to enter code by clicking the pointer at any point on the line, rather than by man-
ually entering characters or spaces to advance to that point. Clear to restrict the places on the line where you can posi-
tion the pointer, to only the characters entered to date on that line.
Keep trailing spaces: Select to preserve any trailing spaces that occur at the end of a line.
Persistent blocks: Select to have any text you enter immediately after selecting a block of code appended to that
block of code as part of the selection. When you select this option, you can also use the arrow keys to move within the
code without affecting the selected code. Youmust select the Enable selection option to use the Persistent blocks
option.
Overwrite blocks: Select to have any text you enter immediately after selecting a block of code replace that block of
code. Youmust clear Persistent blocks and select Enable selection for this option to have an effect.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 73 -

Enable selection: Select to permit the creation of selections in the Code area. You can create a selection by clicking
and dragging the pointer over a portion of code or by double-clicking to highlight the word or line that appears under
the pointer. You can cut, copy, paste, and print selections. If you also select Enable dragging, you can drag selections to
reposition them in the code.
Enable dragging: Select to permit dragging and dropping a selection to reposition it in the program. This option
works only if you also select Enable selection.
Enable search highlight: Select to highlight the search termmatch found in the code when you perform a search.
Clear to prevent the highlighting. In both cases, the pointer appears just after the last character of the search term
match.
Double click line: Select to highlight the complete line of code when you double-click that line. Clear to highlight only
the word that appears under the pointer.
Find text at cursor: Use to set the behavior of the Find dialog box. Select to automatically copy the word under the
pointer into the Text to find box when you open the Find dialog box. Clear to prevent the copy. If no previous search
terms appear in the Text to find box, the Editor performs the copy regardless of whether this option is selected or
cleared.
Block indent: Enter the number of spaces to jump for each block indent. The default is 2 and the maximum is 16. It is
common to make the Block indent agree with the tab stops you enter in the Tab stops box. You perform a block indent
by selecting a region of code and then pressingCTRL+SHIFT+I (to indent the code to the right) or CTRL+SHIFT+U
(to move the code to the left).
Tab stops: Use either to set the number of spaces to advance when you enter a tab character or to set a series of tab
stops. Enter a single integer to set the number of spaces to advance with each tab. Enter a sequence of two or more
integers, each separated by a space, to specify tab stops. The sequence must be in ascending order.

3. Click OK.

Display Preferences

To set the PlanetPress Talk Editor Display options:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expand PressTalk Editor, and click Display.
3. Adjust the Display options.

Display options
Editor font: Use to select the font the Editor uses to display the program code. Select the Use monospace fonts only
option to restrict the fonts available to fixed width fonts.
Size: Use to select the font size the Editor uses to display the program code.
Use monospace fonts only: Select to display only fixed width fonts in the Editor font list.
Sample: Displays a preview of the font selected in the Editor font list, at the size selected in the Size list.
Margin and gutter
Right margin: Select to display a vertical gray bar as a right margin indicator. Use the Right margin position list to set
the position of this indicator. This indicator is an on-screen visual reference only. It does not print and does not enforce
word wrap on lines that exceed the number of characters set for it.
Right margin position: Enter the position of the right margin indicator, in number of characters, relative to the left
margin.
Gutter: Select to have the Editor display a gutter between the Commands and Code areas. Use the Gutter width
option to set the width of the gutter. Select the Line numbers on gutter option to display line numbers in this area.
Gutter width: Enter the width, in pixels, of the gutter. Use the list to select a previously entered gutter width.
Line numbers on page: Select to display code line numbers at the left edge of the Code area.
Line numbers on gutter: Select to display code line numbers in the gutter between the Commands and Code
areas. Selecting this option has effect only if you selected the Gutter option.

4. Click OK.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 74 -

Color Preferences

To set PlanetPress Talk Editor Color options:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expand PressTalk Editor, and click Color.
Element list: Displays the list of code elements. Use to select the element whose color and/or style attributes you
want to adjust. Select None to set the color for all elements that do not appear in the list. To set a color and style attrib-
ute for an element, select that element in the Element list, then use the Mapping, Background, and Foreground lists,
and the Attributes check boxes to set the color and style attributes for that element. Repeat for each element whose
color and style you want to adjust.
Mapping: Use to select a color palette. The color palette determines the colors available in the Foreground and Back-
ground color lists.
Foreground: Use to select the foreground color for the selected element.
Background: Use to select the background color for the selected element.
Attributes: Use to set the style attributes for the selected element. You can select any combination of bold, italic, and
underlined.
PlanetPress Talk label color: Select the label color for boxes that accept PlanetPress Talk code. The label color
you select for these boxes serves to distinguish them from those which do not accept PlanetPress Talk code.
PlanetPress Talk background color: Select the background color for boxes that accept PlanetPress Talk code.
The background color you select for these boxes serves to distinguish them from those which do not accept PlanetPress
Talk code.

3. Click OK.

Ribbon Preferences

The Ribbon Preferences window can be used to change the color scheme used by PlanetPress Design between three preset
themes: Blue, Silver and Black.

Click on any of the themes to select it. You will need to click OK for the change to become apparent.

Object Inspector Preferences

To set the Object Inspector options:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expandAppearance, and click Object Inspector.
3. Adjust the Object Inspector options.
Colors: Use to set the colors of individual Object Inspector components. To set a color, in the Colors list, click the com-
ponent whose color you want to change.
Vertical line 3D: Select to display the vertical line between property names and their values using a three-dimen-
sional effect.
Use groups: Select to organize the display of properties into groups. Clear to display properties in alphabetical order.
When the Object Inspector displays properties in groups, it displays an expand/collapse button to the left of the name
of the group that you use to expand or collapse the group.
Sunken active property: Select to use a recessed effect to display the currently selected property.
Border active property: Select to display a border around the currently selected property.
Show lines: Select to display lines between elements.
Line Style: Select a style for the lines.

4. To reset the Object Inspector options to their default values, click Reset to Default.
5. Click OK.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 75 -

Document Structure Area Preferences

You use these options to modify the appearance of the Document Structure area of the PlanetPress Design Program window.
The first procedure describes how to set these options and includes a description of each option. The second describes how to
reset the options to their default values.

To set the Document Structure Area options:

1. From the PlanetPress Design Button, choose Preferences.
The Preferences dialog box appears.

2. If necessary, expandAppearance, and click Document Structure to display the Document Structure Area
options.

3. Adjust the Document Structure area options as necessary.
Colors: Use to set the colors of individual Structure area components. To set a color, in the Colors list, click the com-
ponent whose color you want to change, and then choose a color from the list below the Colors list. The Structure area
updates immediately to reflect the change.
Line style: Select a line style for tree lines and grid lines. Use Show tree lines and Show grid lines to show or hide the
lines.
Selection rectangle: Select a style for the selection rectangle that appears when you click and drag inside the Struc-
ture area to select one or more elements.
Button style: Select a style for the Structure area expand/collapse buttons.
Show tree lines: Select to display lines that represent the hierarchical relationship between elements. Use the Line
style list to select a style for the lines.
Show grid lines: Select to display lines between elements. Use the Line style list to select a style for the lines.
Hot track: Select to have the Structure area underline an element when you pass the mouse over it.

4. Click OK.
PlanetPress Design exits the User Options dialog box and updates to reflect the new settings.

To reset the Structure area to its default appearance:

1. Color, option, planetPress talk editor, Set, user, user options
The User Options dialog box appears.

2. If necessary, expandAppearance, and click Document structure to display the Document Structure Area
options.

3. Click Reset to Default.
4. Click OK.

PlanetPress Design exits the User Options dialog box and resets the Structure area to its default appearance.

Rulers Preferences

To configure the appearance of the rulers:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expandAppearance, and click Rulers.
3. Adjust the Rulers options.
Colors: Use to set the colors of individual ruler components.
Flat style: Select to display the rulers without a bevelled edge.
Show rulers all around: Select to display a ruler along each edge of the page area. Clear to display a ruler only
along the left and top edges of the page area.
Show minus signs: Select to display minus signs in front of negative ruler values.
Show hairlines: Select to display hairlines in the ruler that indicate the current position of the pointer on the page.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 76 -

4. To reset the rulers to their default appearance, click Reset to Default.
5. Click OK.

Form Pages Preferences

To set the Document Page area options:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expandAppearance, and click Document pages.
3. Adjust the border option for document pages.
Show imageable area: Select to display a border around the printable area of the page. This helps ensure you do
not inadvertently place an object or part of an object in an area of the page that does not print. The PPD you select
determines the printable area of the page. Not all printers can print to the edge of the page.

4. Adjust the colors for overlays.
Overlay/underlay color: Select the color for overlay pages. The overlay page appears in this color in the Page
area.
Overlay/underlay border color: Select the color for the border around overlay pages. The border around the over-
lay page appears in this color in the Page area.

5. Adjust the colors for imposed pages.
Imposed page color: Select the color for virtual pages. The virtual page appears in this color in the Page area.
Imposed page border color: Select the color for the border around virtual pages. The border around the virtual
page appears in this color in the Page area.

6. Click OK.

Compiler Messages Preferences

To set Converter Messages options:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expandAppearance, and click Compiler messages.
3. Adjust the color you want to use for each type of message.
Compile error: Select the color for any compilation error messages that appear in the Messages area of the Program
window or of the Object Preview.
Run error: Select the color for any run error messages that appear in the Messages area of the Program window or of
the Object Preview.
Warning: Select the color for any warningmessages that appear in the Messages area of the Program window or of
the Object Preview.
Output Debug String: Select the color for any output debug stringmessages that appear in the Messages area of
the Program window or of the Object Preview. Consult the PlanetPress Talk Language Reference for help with the out-
putdebugstring() command that produces these messages.

4. Set the behavior of the Messages area when a new message arrives.
Show Messages area on new message: Select to have PlanetPress Designmake the Messages area, if it is cur-
rently hidden, visible when a new message arrives. Note that if you select this option, and the undocked Messages area
appears over the page in the Page area, you cannot close the Messages area if any of the objects or groups on the page
issues a converter message when it executes. Each time you attempt to close it, PlanetPress Design redraws the page,
executing each of the objects or groups on the page; the compiler messages that result from the execution cause the
Messages area to become visible again. In this case youmust move the Messages area outside the page to close it.

5. Click OK.

Document and Pages Preferences

To set the Document and pages options:

The PlanetPress Design Program

©2010 Objectif Lune Inc - 77 -

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expandDocument default values, and click Document and pages.
3. Adjust the default PPD and form cache default values.
Default printer: Select the PPD file that appears by default in the Designed for property box in the Document prop-
erties dialog box.

4. Adjust the default paper size and orientation for the pages of the document.
Default paper size: Select the page size that appears by default in the page size box in the page properties dialog
box.
Default page orientation: Select the paper size that appears by default in the Paper orientation box in the Page
properties dialog box.

5. Adjust the default options for the Style properties dialog box.
Default font type: Select the type of font that appears by default in the Style properties dialog box when you create
a new style. Double-byte or CID-keyed fonts are required for Asian text and data. Also bear in mind that you should
use Unicode fonts (UTF8) for Arabic text and data. PostScript fonts are recommended to improve printer performance
and reduce file size. The type you select determines the contents and availability of the Default font name list. Note that
using double-byte TrueType fonts for data only works if the Optimized PostScript Stream printing option is turned
selected.
Default font name: Select the name of the font that appears by default in the Style properties dialog box when you
create a new style.
Default single byte font encoding: Select the encoding table that appears by default in the Encoding list in the
Style properties dialog box.

6. Adjust the default options for the Compilation options dialog box.
Default max form item: Enter the value that appears by default in the Max page item box in the Document prop-
erties dialog box.
Default max form cache: Enter the value that appears by default in the Max page item box in the Document prop-
erties dialog box.
PostScript level: Select the PostScript level for the converted document (recall that a variable content document is a
PostScript program). Select 2 to use PostScript Level 2, 3 to use PostScript Level 3, and PPD if you want PlanetPress
Design to determine the level from the PPD selected for the document.

7. Click OK.

Image Resources Preferences

To set the Image resources options:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expandDefault values and click Pictures.
3. Adjust the options that appear by default in the Picture properties dialog box.
Color (DPI): Select the resolution that appears by default in the Color resolution property of picture objects.
Grayscale (DPI): Select the resolution that appears by default in the Grayscale resolution property of picture
objects.
Monochrome (DPI): Select the resolution that appears by default in the Monochrome resolution property of picture
objects.

4. Adjust the options that appear by default in the Document properties dialog box.
Convert to monochrome: Select the option that appears by default in the Convert to monochrome box in the Doc-
ument properties dialog box.
Scanline orientation: Select the option that appears by default in the Scanline orientation box in the Document prop-
erties dialog box.
Picture quality: Select the option that appears by default in the Image quality box in the Document properties dialog
box.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 78 -

Picture compression ratio: Select the value that appears by default in the Picture compression ratio box in the Doc-
ument properties dialog box. The value that appears here when you start PlanetPress Design for the very first time indi-
cates a 70% compression of image resources.

5. Click OK.

PDF Text Extraction Tolerance Factors

When extracting text from a PDF (for example, through a data selection), a lot more happens in the background than what can
be seen on the surface. Reading a PDF file for text will generally return text fragments, separated by a certain amount of
space. Sometimes the text will be shifted up or down, spacing will be different, etc. In some cases, every letter is considered
to be a different fragment.

Text formatting features such as kerning, bold, exponential, etc, may cause these fragments to be considered as separate
even if, to the naked eye, they obviously belong together.

The PDF Text Extraction Tolerance Factors is used to modify the behavior of data selections made from PDF data files from
within PlanetPress Workflow. Each factor available in this window will determine if two fragments of text in the PDF should be
part of the same data selection or not.

The default values are generally correct for the greatest majority of PDF data files. Only change these values if you
understand what they are for.

Delta Width

Defines the tolerance for the distance between two text fragments, either positive (space between fragments) or negative
(kerning text where letters overlap). When this value is at 0, the two fragments will need to be exactly one beside the other
with no space or overlap between them.

When this value is at 1, a very large space or overlap will be accepted. This may case "false positives" and separate words
and text blocks may be considered as a single word if the value is too high.

Accepted values range from 0 to 1. The default value is 0.3, recommended values are between 0.05 and 0.30.

Delta Height

Defines the tolerance for the height and position difference between two target fragments. The higher the number, the more
difference between the fragment's height (the tallest font character's height) will be accepted and the more vertical distance
between fragments are accepted. Exponents, for example, are higher and lower.

When this value is 0, no vertical shift is accepted between two fragments. When the value is 1, the second text fragment can
be shifted by as much as the height of the first fragment.

Accepted values range from 0 to 1. The default value is 0.15, recommended values are between 0.00 and 0.50.

Font Delta Height

Defines the tolerance for the difference in average height of fonts in the two target fragments. The higher the number, the
more difference in average font heights will be accepted. The average font height is bigger in text written in uppercase than
text written in lowercase.

At 0, the font size must be exactly the same between two fragments. At 1, a greater variance in font size is accepted.

Accepted values range from 0 to 1. The default value is 0.65, recommended values are between 0.60 and 1.00.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 79 -

Gap

Defines how spaces between two fragments are processed. If the space between two fragments is too small, the text extrac-
tion will sometimes eliminate that space and count the two fragments as a single word. To resolve this, the Gap setting can be
changed. The lower this value, the higher the chance of a space being added between two characters. A value too low may
add spaces where they do not belong.

Accepted values range from 0 to 0.5. The default value is 0.3, recommended values are between 0.25 and 0.40.

Data Selector Display Preferences

The Data Selector Preferences are accessible through the "Sector Options" tab in the "Data" tab of the Data Selector. It con-
trols how text-based data files (such as Line Printer, ASCII and Channel Skip) are displayed in the data selector.

To adjust the content and appearance of the Data Pane for all emulations except XML and PDF:

1. In the Data Selector, click the Selector Options tab.
2. Change the options that modify the appearance and behavior of the Data Pane:

l View size: Use to adjust the size of each cell in the Data Pane, and the amount of visible data that is visible.
l Show used cells: Select this to display in green all cells that contain data. When you select this option, and
your document uses any emulation other than database, you use either the All pages or Pages to analyze option
to specify the number of data pages to which you want to apply the Show used cells option.

l All pages: Select to apply the Show used cells option to all pages in the sample data file. This option is not avail-
able in database emulation.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 80 -

l Pages to analyze: Use this box to limit the number of data pages to which PlanetPress Design applies the
Show used cells option. Enter the number of pages to which you want PlanetPress Design to apply the option, or
use the spin buttons to adjust the value. This option is not available in database emulation.

l Show selected cells: Select this to display in gray all cells that your document currently references.
l Highlight data: Select to have the Data Selector highlight only those cells (or fields) that contain data from the
sample data file.

l Show position hint: Select to have PlanetPress Design display information about the current mouse position
in the Data Pane, under and to the right of the pointer as youmove it in the Data Pane. If the mouse is over a cur-
rent data selection, or is dragging to create a data selection, PlanetPress Design displays the line and column
numbers that define the selection, or, in the case of a database emulation, the positions within the record set of
the first and last records in the selection. If the mouse is not over a data selection, PlanetPress Design displays
the line and column coordinates of the current mouse position), or, in the case of a database emulation, the posi-
tion of the record within the record set.

3. If necessary, adjust the font the Data Selector uses to display data in the Data Panel for all emulations except XML and
PDF.

4. Click OK.

To select the color the Show used cells option will use:

l Click on the Select Color button .

To set the font the Data Selector uses for all emulations except XML and PDF:

1. In theData Selector, click the Selector Options tab.
2. Click Select Font.
3. In the Font dialog box, set the font you want PlanetPress Design to use to display the sample data file in the Data Pane.

l Font: Select the font you want to use to display the sample data file in the Data Pane.
l Font style: Select a weight for the font.
l Size: Select the point size for the font.
l Sample: Displays a preview of the font selected in the Font box.
l Script: Select the system-level encoding table you want to use for the font selected in the Font box. The encod-
ing tables available here are those available on the system onwhich you are running PlanetPress Design, and
are distinct from those available when you create a style. While you can edit the encoding table a style uses, you
cannot edit the system-level encoding table. If you see discrepancies between the glyphs that represent your
sample data file in the Data Pane and those that appear in the data selections on the document page, the source
of the discrepancy may be the encoding tables.

4. Click OK.

Dock and Undock Areas of the Program Window

To undock an area:

l Double-click the title bar of a docked area or group (tabbed or stacked areas). In the case of a group, you can undock a
single area in the group by double-clicking its tab.

To dock a floating area:

l Double-click the title bar of a docked area or group (tabbed or stacked areas). PlanetPress Design docks the area in its
most recent docked position.

To show an area within a tabbed group:

The PlanetPress Design Program

©2010 Objectif Lune Inc - 81 -

l Click the tab of the area you want to show. If the tab is not visible, use the navigation buttons located to the right of the
tabs.

To expand or restore an area within a stacked group:

l Click the area’s expand () or restore () button.

To reset all areas to their default docking positions:

l Press CTRL when you start PlanetPress Design. Note that this also resets the toolbars to their default position.

Minimize and Customize the Ribbon

Tominimize the Ribbon:

1. Right-click anywhere on the Ribbon and chooseMinimize the Ribbon.

To customize the Ribbon:

1. From the PlanetPress Design Button, choose Preferences.
2. If necessary, expandAppearance, and click Ribbon.
3. Select your Ribbon Color Scheme.

Show or Hide Areas of the Program Window

To show or hide a Program window area:

l Choose View and then the area you want to show or hide. PlanetPress Design updates the Program window to reflect
the requested show/hide.

Resize the Program Window Area

To resize a Program window area:

l Move the pointer to the edge of an area you want to resize to display the resize pointer and click and drag to resize the
area.

The PlanetPress Design Program

©2010 Objectif Lune Inc - 82 -

Data in PlanetPress Design
This chapter explains how to work with Data, Sample Data Files, Data Selections and Emulation within your PlanetPress
Design documents.

Sample Data File
A Sample Data file is a file that, while it follows the same structure as the one you will use when actually processing your doc-
ument, only contains part of the actual data. It is used to create your document while having an example of the data file, and
can even be fake, computer-generated data in some cases.

The following are the two criteria for a reliable sample data file:

1. It includes all possible variations on the data that the documentmay encounter when it executes.
Things to check for variation include field lengths, the location of decimal points in numeric data, and whether or not a
field always contains data.

2. It exactly represents the input data at the moment that data arrives at the printer or a PlanetPress Suite Workflow Tool
process. A difference of a single character can result in a document that does not produce accurate results. If your sam-
ple data file does not meet this criteria, you end up creating a document that executes with a different input data struc-
ture than the one for which you designed it.

The way a sample data file is displayed and how its data pages are separated depends on the emulation selected when open-
ing the sample data file with the Data Selector.

Data in PlanetPress Design

©2010 Objectif Lune Inc - 83 -

©2010 Objectif Lune Inc - 84 -

Capturing Data
To create your document, you need a reliable sample of the variable data you intend to use with the document.

This section describes what a sample data file is and the two criteria that determine its reliability. It also provides general pro-
cedures for capturing a reliable sample data file. Consult the Trigger and Data Capture Guide for platform-specific data
capture procedures.

The data capture tool lets you capture real data to be used as sample data. It can capture data sent to a Windows printer
queue or a Serial, LPD or Telnet connection. The captured data can then be saved to a file and used immediately by Plan-
etPress Design to design or troubleshoot a document. Youmust correctly configure the output queue on the server if you use
the data capture tool. Also, if you want to use the data capture tool, youmust correctly set a proper queue on the server to
sent an LPR to the IP address of the PC which is running PlanetPress Design as well as for the data capture tool. This rule is
true for all possible channels.

Capture Sample Data Using the Data Capture Tool

Use this procedure to momentarily capture data sent to an input for the purpose of generating a sample data file, as well as to
capture data for a document you install on a printer or in PlanetPress Suite Workflow Tool

To capture sample data using the Data Capture tool:

1. In the PlanetPress Design Ribbon, go to the Tools tab, then click Capture Data.
2. From the dropdown list, select one of the following data inputs ports: LPD, Serial, Telnet, or Windows Queue.
3. Set the options for the capture based on the selected input.
4. Click Capture to actually capture the port.

When PlanetPress Design is ready to receive the data on the selected port, a message box is displayed.
5. Send your job to the appropriate input.
6. To stop the capture, click Stop.
7. To see the log files, click theOpen Log button. To view the captured data, double-click the corresponding log file.

Log files are located inC:\Documents and Settings\[User account name]\Application Data\PlanetPress Suite 7\Plan-
etPress Design\DataCap. They are named according to the capture date.

8. Click OK.

LPD Input

Retrieves data using LPD/LPR. LPD/LPR is a printer protocol that uses TCP/IP to establish connections
between printers and workstations on a network. PlanetPress Design provides the LPD service for
Windows to receive print jobs through a TCP/IP network without requiring a Window’s driver.

General tab

l LPD queue name: Enter the queue name for the LPD server. This is the queue name you use when sending
jobs through an LPR client.

LPD Input Options tab

l Log all Winsock and network messages: Select to have PlanetPress Design keep a log of all Winsock and
other network messages that occur through the LPD service. These are messages related to jobs being sent

©2010 Objectif Lune Inc - 85 -

from other systems through LPR, and being received by PlanetPress Design via LPD. Since these messages
can accumulate, you have the option of not logging them. Logs are kept in a Log folder relative to your
install folder. They are named lpddate.log, where date is the current date in the yyyymmdd numerical
format.

l No source port range restriction (recommended): Select to remove any restrictions on the port of the
LPR client computer that PlanetPress accepts data files from. Clear to have PlanetPress only accept data
files sent from ports ranging between 721 and 731 on the LPR client computer.

l Strict RFC 1179 control file: Select to disable control file extensions the LPD service implements for some
flavors of UNIX and LPR. This enforces the basic Line Printer Daemon protocol.

l Enable BSD compatibility mode: Select to have the LPD service emulate a BSD UNIX server. Although RFC
1179 is supposed to describe the BSD LPD/LPR protocol, and the LPD input in PlanetPress Design is
RFC1179-compliant, there are some incompatibilities between the RFC and the BSD implementation. This
option compensates for some of these incompatibilities. If you are not sure about the source of your
output, clear this option.

l Time-out: Set the time in seconds the PlanetPress Design process waits for the transfer of bytes in the data
file before ending the transfer of this file. On a time-out, partially received data files are not passed to the
rest of the process; the LPD input resets and is ready to receive further data files.

Serial Input

Retrieves data using a serial input service to PlanetPress Design for processing data input files. Only one
port is used at a time by PlanetPress Design, and as such, only one configuration for the serial connection
is allowed. The Serial service can be independently controlled, and its logs checked in real-time as it
processes files, using the PlanetPress Suite Service Console.

l Serial port: Select the port of the computer where the Serial input is connected to (COM1 through COM8).
l Baud rate: Select the baud rate of the Serial input.
l Data bits: Select the number of data bits defining the incoming data file on this serial port. The majority
of serial ports use between five and eight data bits. Binary data is typically transmitted as eight bits, while,
text-based data is transmitted as seven bits or eight bits.

l Parity: Select the type of parity used for error detection. The parity transfers through the serial connection
as a single bit. It is used to verify that each set of data bits transfers correctly. It is then stripped away before
the data file passes through the rest of the PlanetPress Design process. Select None to ignore all parity bits;
no error detection occurs.

l Stop bits: Since most serial ports operate asynchronously, the transmitted byte must be identified by start
and stop bits.

l Time-out: Set the time in seconds the PlanetPress Design process waits for the transfer of bytes in the data
file before ending the transfer of this file. On a time-out, partially received data files are not passed to the
rest of the process; the Serial input resets, ready to receive further data files.

l Job delimiters: Enter the strings that tell PlanetPress Design the data file being retrieved through the
Serial input is complete. Each line in the Job delimiters text box is a different delimiter. You can enter as
many delimiters as you want, one per line.

l Log: Select to keep a log of errors and other information related to the Serial input. Since these messages
can accumulate, you have the option of not logging them and are kept in a Log folder relative to your install
folder. They are named serdate.log, where date is the current date in the yyyymmdd numerical format.

Telnet Input

The Telnet program runs on your computer and connects your PC to a server on the network. You can then
enter commands through the Telnet program and they will be executed as if you were entering them

©2010 Objectif Lune Inc - 86 -

directly on the server console. This enables you to control the server and communicate with other servers
on the network.

General tab

l Port: Enter the port number the Telnet input uses to receive data. The default telnet port is 9100.
l Description: This field displays the description of the port number, as given by Windows. It is not editable.

Telnet Options tab

l Log all Winsock and network messages: Select to have PlanetPress keep a log of all Winsock and other
network messages that occur from the Telnet input. These messages are related to files sent from other
systems using a telnet connection. Since these messages can accumulate, you have the option of not
logging them, and are kept in a Log folder relative to your install folder. They are named teldate.log, where
date is the current date in yyyymmdd numerical format.

l Job delimiters: Enter the strings that tell PlanetPress Design the data file being retrieved through the
Serial input is complete. Each line in the Job delimiters text box is a different delimiter. You can enter as
many delimiters as you want, one per line.

Windows Queue Input

The Windows Queue Input (also calledWinQueue input for short) is used to capture print jobs sent to a Windows printer
queue on your system.

In order to capture a job with a WinQueue input however, the printer must be in a paused state, configured in either EMF or
RAW format, and spoolingmust be disabled. While it is possible for PlanetPress to enable those options automatically, it is
much easier to create a printer that uses the Objectif Lune Printer Driver (see "Objectif Lune Printer Driver (PS)" (page 681)),
since these options are by default.

Available capture options:

l Printer queue: Select the Windows printer queue where PlanetPress Design obtains the input data file.
The drop-down list includes printers installed on the local host computer.

l New...: Click this button to create a new Windows Printer Queue using the new Objectif Lune Printer Driver
(PS). For more on this driver, see "Objectif Lune Printer Driver (PS)" (page 681).

l Advanced: Click this button to toggle showing/hiding the Windows Queue advanced options:
l Spool Print Jobs in EMF Format (Advanced Printing Features): Select to create EMF files for Win-
dows Print Converter action tasks (see Windows Print Converter Action Task Properties in the PlanetPress Work-
flow Tools User Guide (English Only)). Note that this optionmust not be selected when capturing generic text
type data.

l Spool Print Jobs in RAW Format: Select to generate PostScript data files when the Create PDF (with
Metadata) checkbox is unchecked.

l Create PDF(with Metadatea): Check box to insure metadata file creation when capturing data from the
selected queue. This option will generate a PDF data file when checked. Note that this option is only available
with PlanetPress Office or PlanetPress Production.

l Optimize resulting PDF: Check box to optimize the PDF created by the capture. Optimizing the PDF will
remove duplicate resources such as images and fonts, reducing the size of the PDF greatly if a large number of
duplicate resources are in the document.

©2010 Objectif Lune Inc - 87 -

http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-reference-guide/2604.html
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-reference-guide/2604.html
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-reference-guide/2604.html
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-reference-guide/2604.html
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-reference-guide/2604.html
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-reference-guide/2604.html

The Data Selector
The Data Selector is the tool you use to choose your sample data andmetadata files, to select the appropriate emulation,
make data selections, and to stabilize your data.

The Data Selector is divided in two tabs: Data and Metadata. The Data tab contains the Data Options, which let you select your
emulation, and the Selector Options, which lets you personalize the data selector's display options (see "Data Selector Display
Preferences" (page 80))

Depending on the chosen emulation and data file, the options in the data selector, the Sample data file section and the Data
Pane itself may change to accommodate your choice. The Line Printer, Ascii, Channel Skip and User-Defined emulations will
display the default options (see the "Emulation" (page 90) section) and a grid-like display of each character on each line. The
following emulations however, will be slightly different.

Database Emulation

l The Database emulation changes the Browse button () for the Database Emulation Configuration button (),
which displays the Database Emulation Configuration (see "Database Emulation" (page 93)).

l Once a database has been opened and query entered, the Data Pane displays the results of the SQL Query in a grid for-
mat, which each line representing a single returned row from the database. Each column represents a field returned by
the query, with its field name as a row header.

XML Emulation

©2010 Objectif Lune Inc - 88 -

l XML data is represented in a tree structure which corresponds to the data in the XML file. Each node of the XML can be
expanded to see the nodes under it. See "XML Emulation" (page 96).

PDF Emulation

l If you use a PDF emulation, the Data Pane displays the data as you would see it in any PDF reader.
l A new zoom dropdown list is displayed to let you set the zoom in percentage or fit the PDF to the window or the width
of the window.

l A new status bar, displaying the (Left, Top) and (Right, Bottom) coordinate pairs, is shown under the Data Pane.

Metadata tab

TheMetadata tab allows users to either generate the metadata file for their active sample data file, or to associate an exist-
ingmetadata file to their document.

The Sample Metadata Filename is the path to the metadata file describing the current sample data file. Buttons on the
right can be used to loadmetadata from a file or to save the current metadata to a file.

The Generated PressTalk Expression is a PlanetPress Talk command corresponding to the current attribute or field being
selected. Its value is editable, which allows the user to customize the string returned by the metadata selector.

The Search options defines how to retrieve the value of a givenmetadata element (attribute or field) when it is not present
at the current metadata level. The possible search options are:

©2010 Objectif Lune Inc - 89 -

l Search from a specific location only.
l Search from level X to Job, where X can be any metadata level (Job, Group, Document, Datapage, Page). With this
search option, if the selectedmetadata element does not exist at the specified level, then it will be searched for, start-
ing at the lowest metadata level as specified in the search option, then one level up until the element is found.

The Raise an error if the field does not exist option allows to control what to do when a givenmetadata element is not
found, regardless of the search option.

TheData page box lets the user choose which data page metadata elements to be displayed.

TheMetadata level is a treeview allowing users to select the metadata level from which to display or select metadata ele-
ments.

The Attributes list displays all metadata attributes describing the current metadata level, as selected in theMetadata Level
treeview, for the current data page, as selected in the Data Page control.

The Production information list displays all metadata fields describing the current metadata level, as selected in theMeta-
data Level treeview, for the current data page, as selected in the Data page box.

Data Page
A data page is the amount of data that your data file, through your emulation, is passing through a single document. This can
mean one or more lines of a CSV file, a PDF page, or a certain number of lines of a text file.

A data page can ignored and print no page at all, or it can be used to generate multiple pages when printing. Unless you are
using an N-Up object however, you cannot use multiple data pages to generate a single physical page.

To configure what appears in a data page, you use the Data Selector to specify emulation parameters.

Emulation
The emulation defines how your document receives and processes its input data. It is basically a method with which Plan-
etPress Design will read the data and display it on screen. The way data selections are made and data pages are created
depends on the emulation, so it is always set at the beginning of your document creation, as you select your data file(s).

While you can have multiple sample data files in your document, all of them have to use the same emulation, since
data selections and data pages rely on the emulation to work properly.

Various emulation specific options can be set for most emulations, with the exception of the line printer and database emu-
lations. All emulations, except the database and XML emulations, also let you perform operations on the data to stabilize it,
such as add and remove characters or lines.

The sample data file you associate with the document, the emulation you select and the PPD you associate with the document
define how your document handles its input data, and consequently determine the accuracy of the output the document
produces with the data stream it receives at runtime. If you alter any of these settings, you should verify the change does not
compromise the output accuracy of the output.

This section explains what an emulation is, the different types of emulations available in PlanetPress Design, and how to fine-
tune the emulation to your input data.

©2010 Objectif Lune Inc - 90 -

Text-Based Emulation Properties

Text-Based emulations display your data in plain text in the data selector and the Data Pane, one line at a time, up to the limit
you specify in the emulation properties (by default, 66 lines). This is especially useful for legacy systems (such as AS/400
computers) that send data as text meant for older line printers using pre-printed forms. The emulation options are used to
make sure your data is stable.

Stabilizing data is the process of defining the size of the data page and where the first data page occurs in the data stream. A
stable data page is critical to obtain accurate results. When you stabilize your data, you also need to consider the internal struc-
ture of each data page. The internal structure of each data page must also be stable to make the data selections you use in
your document reliable. Ideally, a given piece of data occupies the same position across all data pages, or provides some sta-
ble characteristic that makes it possible to locate it on every data page.

The following properties are available for the text-based emulations (Line Printer, ASCII, Channel Skip and CSV) to help sta-
bilize the data:

l Add/remove characters: Enter the number of characters to add to, or remove from, the head of the data stream,
or use the spin buttons to increment or decrement the value. Positive values add characters while negative values
remove characters. Further note that if you remove characters in a CSV emulation, you should ensure that you do not
inadvertently remove field or text delimiters.

l Add/remove lines: Enter the number of lines to add to, or remove from, the head of the data stream, or use the spin
buttons to increment or decrement the value. Positive values add lines while negative values remove lines.

l Lines per page: Enter the number of lines each data page contains, or use the spin buttons to increment or dec-
rement the value. A higher value means more lines will be displayed on each data page. Note that increasing the value
for this setting increases the amount of RAM used by the application andmay exceed the system’s capacity. Since
the Show used cells option also uses up someRAM, consider removing this option (see "Data Selector Display Pref-
erences" (page 80)) to reduce system load.

l Pages in buffer: Enter the number of data pages you want the data page buffer to contain, or use the spin buttons to
increment or decrement the value. Puttingmore pages in the buffer multiples the lines shown and is only useful in spe-
cific cases. You should also consider using the N-Up Object if you want to display multiple data pages.

l Cut on FF character: Select to have the document start a new data page when it encounters a form feed character
in the data stream. If you select Cut on FF character, you have two conditions that signal the end of a data page: the
form feed character and the number of lines set in the Lines per page box. Note that the Cut on FF character takes
precedence on the lines per page option.

l Read in binary mode: Select this option to force the printer to read the incoming data in binary mode. Use this
option with the ASCII emulation to fix problems related to line spacing caused by LFCR character pairs found within the
data. Use it with the ASCII emulation and with the Tab on carriage return option to fix problems related to data for-
matting caused by isolated CR characters found within the data. This option can only be used with the ASCII and User
defined emulations. Note that you cannot select this option if the document is to be installed on a printer that cannot run
in binary mode.

l Data encoding: Select the appropriate encoding for the sample data file. Youmay look at the data in the Data pane
(non-English characters especially, if any) to see how the your selection affects the data.

Line Printer Emulation

Line printer emulation tells the document to treat the input data as data destined for a line printer.

In this emulation, a form feed signals the end of a data page. If no form feed occurs in the data stream, the emulation adds
lines to the data page buffer until the buffer is full.

Line printer emulation offers the best overall performance of all the emulations.

Line Printer Emulation options

©2010 Objectif Lune Inc - 91 -

The line printer emulation does not have any options other than the general text-based emulation options (see "Text-Based
Emulation Properties" (page 91))

ASCII Emulation

ASCII emulation tells the document to treat the input data as a stream of ASCII characters. The document reads the data
stream one character at a time, constructs a line, and adds that line to the data page buffer.

In this emulation, you can define how the document handles carriage returns that are not followed by line feeds and how it han-
dles tabs. You can also define whether you want the document to remove any Hewlett Packard Printer Control Language (HP
PCL) escape sequences it encounters.

If you use an ASCII emulation, you need to know if your printer supports binary mode as this is the recommendedmode for
ASCII emulation. On printers that support binary mode, you can switch the printer to binary mode using the printer keypad or
by sending the appropriate PostScript code to the printer.

In binary mode, the printer reads the end of line characters (carriage return [CR], line feed [LF], and carriage return followed
by a line feed [CRLF]) as they appear in the data stream and does not perform any substitution. A printer that does not support
binary mode or is not running in binary mode replaces any CR, LF, or CRLF that appears at the end of a line of data with a LF.

A form feed signals the end of a data page in ASCII emulation. If no form feed occurs in the data stream, the emulation adds
data to the data page buffer until the buffer is full.

ASCII emulation options

l Tab on carriage return:Select this option to fix formatting problems caused by isolated CR characters found within
the data. When this option is selected, isolated CR characters are spaces, as defined in theNumber of spaces in
the tab box below. Note that this option is available only when the Read in binary mode option is selected.

l Number of spaces in the tab: Enter the number of spaces you want the application to use when an isolated
carriage return character is found within the data. This number typically corresponds to the maximum column
number. If your data is formatted so as to occupy a maximum of 120 characters on each line, enter a value of
120 in this box, so when an isolated CR character is found, the data following the CR character will appear start-
ing from column 121. Note that this option is available only when the Tab on carriage return option is
selected

l Number of spaces per tab: Enter the number of spaces you want to use when actual TAB characters are found
within the data.

l Remove HP PCL escapes: Select if you want all Hewlett Packard Printer Control Language escape sequences to be
removed from the data.

Comma Separated Value (CSV) Emulation

CSV emulation tells the document to read the input data one line at a time and to treat each line as a database record. It also
specifies the field delimiter the document uses to distinguish the different fields of a record. The document reads the data
stream one line at a time and puts each field of the database record on a separate line in the data page buffer.

In CSV emulation, the emulation adds lines to the data page buffer until the buffer is full. You can force a new data page for
each record when you set up the emulation.

Note that a double text delimiter within a field is not considered a normal character when not using the Optimized PostScript
Stream option or when printing using a Windows printer driver.

©2010 Objectif Lune Inc - 92 -

CSV emulation options

l Text delimiter: Enter the character used to mark the beginning and end of each field within the data. Text delimiters
are required if the character entered in theDelimiter box is present within the data itself. If the fields are separated
using commas, and if the data itself contains commas, for example, then individual fields may be split into multiple
ones. Using text delimiters ensures that actual commas within the data will not be interpreted as delimiters. If back-
slashes (\) are used in the data as text delimiters, enter double backslashes (\\) in this box. You can also specify ASCII
characters using octal values preceded by a single backslash (for example, \041 for an exclamationmark).

l Force one record per page: Select to prevent splitting records across pages. If this option is not selected, when a
document is printed, it may happen that the last record at the bottom of a page may be split between two pages.

l Field delimiter: Enter the character used to separate each field within the data. If backslashes (\) are used in the
data as delimiters, enter double backslashes (\\) in this box. You can also specify ASCII characters using octal values
preceded by a single backslash (for example, \041 for an exclamationmark).

l Set tab as field delimiter: Select if tabs used to separate each field within the data. Selecting this option overrides
any value entered in the Field delimiter box.

Channel Skip Emulation

Channel skip emulation is a variant of line printer emulation. It tells the document to read the data stream one line at a time,
and to treat the first character of each line as a code that indicates how to position the line of data in the data page buffer.

By default, in channel skip emulation, the integer 1 signals the end of a data page. You can change this default when you set up
the emulation.

Note that if a given value is used for multiple channels, the result may be different at design time, or when the document is pre-
viewed or printed.

Also note that Split on FormFeed (FF) is not supported with the Channel Skip emulation in Optimized PostScript Streammode
or when printing using a Windows driver.

Channel skip emulation options

l Skip page: Enter the code used within the data to mark the beginning of each page (the number 1 in standard channel
skip emulation). Note that if the standard code is used within the data as the skip page code, it is likely that the other
codes are also standard, and that you only need to make minor changes to the other codes, if any.

l No line feed: Enter the code used within the data to indicate that the next line feed character should be ignored. This
causes the next line to print over the current line, and is a technique impact printers use to print a line, or elements of a
line, in bold or with underlining.

l Skip [x] lines: Enter the code used within the data to indicate that the corresponding number of lines must be
skipped.

l Char and Skip to line: Enter the code used within the data to mark a jump to a different line in the Char box, and
enter the corresponding line number in the Skip to line box.

l Char andGo to column: Enter the code used within the data to mark a jump to a different column in the Char box,
and enter the corresponding column number in the Go to column box.

Database Emulation

This emulation differs from other emulations in regards to PlanetPress Suite applications. With other emulations, data is
pushed either to PlanetPress Design documents residing on printers or to PlanetPress Suite Workflow Tool processes running
on servers. But in the case of the database emulation, data must be pulled from the data source.

Like with every other emulation, it is possible to send a Design Document set up to use the database emulation to a printer.
But contrary to documents that use the other emulations, you cannot send a raw data file to the document and expect the

©2010 Objectif Lune Inc - 93 -

document and data to merge and print automatically. In this case someone or somethingmust query the database and extract
the data that will populate the Design Document.

We can imagine two basic scenarios. In the first one, we can imagine someone in a print shop who needs to use data from a
database to print a bunch of personalized letters using PlanetPress Design. That person opens a Design document and uses
the Data Selector to select a database. By making a connection to the database, its structure can be accessed and it becomes
possible to determine how data is to be pulled into PlanetPress Design. The process actually pulls data into PlanetPress Design
and lets the print shop employee visualize and print the data on the personalized letters.

The second scenario involves PlanetPress Suite Workflow Tool. In this case, PlanetPress Database action task takes the place
of the print shop employee and performs the database query automatically. The task generates a PlanetPress Design com-
patible data file that it passes to the following task, be it another action task, or any output task.

Bear the following inmind:

l The person or plugin performing the query must have full access to the database.
l The data is extracted at the time of the query. A new query must be performed whenever the data needs to be
updated.

l Any changes to the structure of the database may have an impact on automated data querying tasks.
l Youmust have the proper ODBC driver installed to use this emulation.

Database emulation supports SQL ANSI 92 or higher, and supports the following data types: string, integer, floating point, all
date formats, and text-only MEMO. It does not support any binary data types such as Binary Large Object (BLOB), images,
sound files, and MEMO data that includes binary data.

Database emulation requires version 2.5 or higher of Microsoft Data Access Components (MDAC), including JET 4.0, and you
can save database emulation configurations to a file.

To set up a database emulation:

1. Choose Tools |Open Active Data.
2. In theData Selector, locate the Emulation box and selectDatabase.
3. Click theDatabase Emulation Configuration button.
4. Associate a database.

Microsoft Access Database or dBase file
Database: Enter the path of the Microsoft Access database or dBase file, or click the Browse button to the right of the
box to navigate to, the database file. Recall that a Microsoft Access database file bears the extension .mdb, and a
dBase file bears the extension .dbf. If the file is a dBase file, youmust specify the folder that contains the .dbf file. The
folder in this case is considered to be the database, and the individual .dbf file a table in the database. Once you enter
the path, the Table/query name box updates to reflect the tables and queries available in the selected database.
ODBC Data Source
ODBC Data Source: Click to connect to an ODBC Data Source. Use the Select Data Source dialog box that appears to
select an existing Data Source or set up a new one. When you exit the Select Data Source dialog box, the Database box
updates to display the connection string it uses to connect to the database, and the Table/query name box updates to
reflect the tables and queries available in the selected database.

5. Click Edit SQL to create the SQL query by hand to define the SQL query that retrieves the data your document
requires.

6. Set the properties that define a record set.
Condition: Select the condition that signals the end of a record set. Three possibilities exist: create a new record set
for each record, create a new record set after every x records, or create a new record set when the value of a specific
field changes.
Sort on condition field: Select this if the condition you set is to create a new record set when the value of a specific
field changes, and you want to sort the records before applying that condition.

©2010 Objectif Lune Inc - 94 -

Maximum records per record set: Set either the number of records in each record set, or the maximum number
of records in a record set. An individual record set can contain a maximum of 4000 records.

7. Set the number of records you want to include in the sample data file. The number of records you set should provide a
reliable sample to ensure your document executes properly with any of the data it may encounter at runtime.
All: Select to include all records in the database in the sample data file.
Records: Select to define the range of records you want to include in the sample data file. Use the box that

To enter an SQL query:

1. In the Database Connection dialog box, click Edit SQL.
2. If necessary, click Show Tables to display, in the Tables area, a list of the tables available in the database.
3. In the SQL Query Entry area, enter the SQL query. The following two sample queries both retrieve all the fields in

the Orders table. The second sorts the resulting records on the Date field.

SELECT * FROM [Orders]
SELECT * FROM [Orders] ORDER BY [Date]

4. Click Test SQL to verify the query you entered is a valid SQL query.
5. Define whether you want PlanetPress Design to automatically enclose table names and field names in square brackets.
Alternate syntax(not recommended): Select to prevent PlanetPress Design from automatically enclosing the
names of any database tables and fields that appear in the SQL query in square brackets when it exits the advanced
SQL Statement dialog box.

6. Client side cursor: Select to download result sets to client computer running the SQL query.
7. Click OK to return to theDatabase Connection dialog box.

Export or Import a Database Emulation Configuration

You use the export and import procedures when you intend to use the same configuration in several documents. You also
export a database emulation configuration when you intend to execute the document in PlanetPress Workflow Tools, and want
to simplify the process of configuring the database plug-in.

The exported configuration file is in XML format and bears the file name extension .cfg.

To export a database emulation configuration:

1. Open the document that uses the database emulation configuration you want to export.
2. Choose Tools |Open Active Data.
3. In theData Selector, click theDatabase Emulation Configuration button to display the Database Connection

dialog box.
4. In theDatabase Connection dialog box, set the password option.Include password on export: Select to

include the password required to access the database, in the exported database emulation configuration.
5. In theDatabase Connection dialog box, click Export.
6. In the Export Database Configuration dialog box, navigate to the folder in which you want to save the configuration,

enter a name for the exported file, and click Save.
PlanetPress Design exports the configuration and returns the focus to the Database Connection dialog. If you selected
Include password on export, the exported configuration file contains the password required to access the database.

7. Click OK to exit the Database Connection dialog.
8. Click OK.

To import a database emulation configuration:

1. Open the document in which you want to import a database emulation configuration.
2. Choose Tools |Open Active Data.

©2010 Objectif Lune Inc - 95 -

3. In theData Selector, click theDatabase Emulation Configuration button to display the Database Connection
dialog box.

4. In theDatabase Connection dialog box, click Import.
5. In the Open dialog box, navigate to the folder containing the configuration file you want to import, select the con-

figuration file, and click Open.
6. If necessary, adjust the database emulation configuration options in the Database Connection dialog.
7. Click OK.
8. Click OK.

XML Emulation

XML data emulations allow you to capture data emanating from web databases, E-mail fulfillment, ecommerce, and general
XML database engines. In XML emulation, the data elements in markup language format are organized in a folder view with a
root node and sub-level nodes. Depending on the document configuration, a data page can be associated with a sublevel ele-
ment contained in an XML data file much in the way a data page can be associated with an individual record in a CSV emu-
lation. When you set-up an XML emulation, you define whether to separate the data by the root or the second level element.

Note that when XML data is merged with PlanetPress Design documents on a printer DOCTYPE and ENTITY tags are ignored.

Also note that characters referenced using the ϧ syntax are limited to values ranging from 000 (�) to 256
(Ā).

XML emulation options

l Root element (entire file): Select this option to associate all the data within the XML file with a single data page.
l Second Element: Select this option to associate each second level element within the data file with with a different
data pages.

PDF Emulation

PDF Emulations allow you to capture data from fully composed documents in a PDF format.

PDF Emulation slightly differs from other PlanetPress Suite emulations: with other emulations, data is read either one line at a
time or one character at a time, while PDF emulation processes the input data from the PDF file in such a fashion that every
PDF page becomes a full data page. Each PDF page is thus graphically represented in the PlanetPress Design Data Pane as one
data page.

Note that protected PDF and PDF of versions above 1.7 are not supported by PlanetPress Suite 7.

The PDF Emulation does not have any options - that is, there is nothing to set up when opening a PDF data file. PlanetPress
Design simply reads each PDF file as a unique data page.

User-Defined Emulation

In user-defined emulation, you use PlanetPress Talk commands to define how youwant the document to treat the input data.
You use this emulation when the structure of your input data prevents you from using any of the other emulations. Youmust
ensure the emulation you create handles any variations in the data properly and under all circumstances.

In user-defined emulation, the document reads the data stream one line at a time. After it reads a line, it places all the char-
acters in that line in a string variable. You use PlanetPress Talk commands to specify how the document handles the contents
of this variable.

Note that when a user-defined emulation is used, whenever you request a data page that is passed the last data page, the last
data page will be displayed.

©2010 Objectif Lune Inc - 96 -

Create a User-Defined Emulation

Since User-Defined emulations are based on PlanetPress Talk commands, please see the chapter on PlanetPress Talk for
more information no creating user-defined emulations.

Associate a Sample Data File with a Document

This procedure describes how to associate a sample data file with your document using either the Data Selector or the Data
Pane of the Program window. Note that this does not apply to Database Emulations, which are configured using a database
connection (see Database Emulation)

To associate a sample data file with your document, do any of the following:

l In the Data Selector, click the Browse button to the right of the Sample data file box to browse and select a sample
data file.

l In the Data Selector, in the Sample data file box, enter the path of the new sample data file and either press ENTER, or
click outside the Sample data file box.

l InWindows Explorer, select the sample data file, and drag and drop it into any of the following areas of the PlanetPress
Design Program window: the Structure area, the Page area, the Data Pane, or, if the Object Inspector is displaying an
image resource, the Object Inspector.

PlanetPress Designmakes a copy of the sample data file and stores it within the document. The Sample data file box displays
the path of the sample data file and the first data page of the sample data file appears in the Data Pane. It also automatically
selects an emulation that corresponds to the file name extension of the sample data file you select, using the following table:

File name extension: Emulation:
csv CSV
dat, txt Line printer
db, dbf,mdb Database
pdf PDF

You can set the User Options to have PlanetPress Designmonitor the original sample data file and prompt for confirmation to
update its internal copy if it detects changes in the original. See "Notification Messages Preferences" (page 69).

Metadata
Simply put, metadata is data about data or, in other words, information tagged to data. Metadata includes information about
the data file itself, the document, page properties, page counts and custom user fields.

Applications or plug-ins created in PlanetPress Suite 6 and using Metadata will need to be updated for use in version 7.
No backward compatibility mode is available.

When a user-defined emulation is used withmetadata, results and behavior are unknown and unsupported. For
instance, refreshing the metadata file may cause the document to crash and/or corrupt. For this reason, it is strongly
advised to create backup copies of your documents beforehand.

Metadata structure

Metadata in PlanetPress Suite Version 7 introduces the following concepts for adding information to a job:

©2010 Objectif Lune Inc - 97 -

l Page: 1 side of a physical paper sheet.
l Datapage: 1 atomic unit of content that produces zero, one or more pages.
l Document: group of 1 or more ordered datapages intended to the same recipient from the same source (ex:
invoice).

l Group: a logical and ordered group of documents (ex: all invoices for a specific customer number; all documents
going to the same address, etc.)

l Job: file that contains 1 or more groups.

WhenMetadata is produced for a given job, a hierarchical (i.e. tree-like) structure is created, composed of the above ele-
ments in the following order: Job->Group(s)->Document(s)->Datapage(s)->Page(s). Any operation that modifies the data
with regards to this structure (ex: remove pages, alter the data, etc.) makes the metadata obsolete and so it must be rec-
reated or refreshed.

As an example, consider the typical case of a PlanetPress Design document which uses a Line Printer datafile of transactional
data in order to generate PDF invoices for a series of clients. By using the Metadata tools available in PlanetPress Suite version
7, we can add the following information to the datafile:

l The job contains only invoices for clients located in Montreal.
l Since more than one invoice can go to the same recipient, invoices are grouped by customer.
l Each invoice is a document resulting from the execution of a PlanetPress Design document over one or more datap-
ages, which results in zero or more physical pages being output.

A single JOB can be composed of GROUPS of DOCUMENTS, which themselves are composed of physical PAGES produced by
executing a PlanetPress Design document on one or more DATAPAGES.

Metadata Elements

©2010 Objectif Lune Inc - 98 -

Eachmetadata node (i.e. Job, Group, Document, etc.) is described with a series of elements, that is, system-defined attributes
or user-defined fields holding static or dynamic information about the node they are attached to. Each element has a name and
a value. More specifically, here is a definition of these 2 types of elements:

Attribute: A read-only, system-defined element which holds a certain information about a certain node from the Metadata
structure. This information can be static (e.g. the size of a physical page) or evaluated on-the-fly (e.g. the number of doc-
uments in a group). Attributes are non-repetitive (i.e. name is unique) and does not persist throughmetadata recreation.

Field: A read-write, user-defined element which hold custom information about a certain node from the metadata structure.
Fields are repetitive (i.e. the same field may appear multiple times) and persist throughmetadata recreation.

In addition to attributes and fields, each node of type group, document or datapage have a boolean property called selected
that indicates whether or not to produce the pages under that node. By default, this property is set to true for all nodes.

Metadata Attributes Reference

Here is a description of the Metadata attributes. The attributes are categorized as either Production, Finishing or Index/Count.

Production attributes describe the production of the job and/or metadata (e.g. path and name of the datafile, date at which
metadata was created, etc.)

Finishing attributes describe the finishing intent (e.g. page dimensions, page orientation, duplex mode, etc.). Note that the
presence of some finishing attributes depends on the PlanetPress Design document and target device used when producing
the job.

Index/Count attributes are not part of the original metadata file. They are evaluated live based on the content of the metadata.

In the following table, the last 5 columns indicate at which level the corresponding attribute is available.

Attribute Description Category JobGroupDocument Datapage Page
DataEncoding (optional) Name of the character encoding. Production X X X

DataFile
(optional) Path and name of the data file used by the PlanetPress
Design Document.

Production X X X

Date Date the metadata was created in ISO format. Production X X X

Time Time the metadata was created in ISO format. Production X X X

Title Title of the source document. Production X X X

Producer Name of the sofware that created the metadata. Production X X X

Creator Name of the software that created the source of the metadata. Production X X X

TargetDevice
Name of the device for which the metadata and associated data is
intended.

Production X X X

Dimension
Two floats separated by a colon indicating the media size in typo-
graphical points (ex: 612:792).

Finishing X X X X X

Orientation
"Rotate0", "Rotate90", "Rotate180" or "Rotate270", indicating
respectively portrait, landscape, rotated portrait and rotated land-
scape.

Finishing X X X X X

Side
"Front" or "Back"; indicate whether the page is on the front or the
back of the paper sheet. This attribute is a "best effort" and is
device-dependent.

Finishing X

Duplex
"None", "DuplexTumble" or "DuplexNoTumble"; indicate a change
of the duplex status.

Finishing X X X X X

©2010 Objectif Lune Inc - 99 -

InputSlot Device-dependent identifier of the media source. Finishing X X X X X
OutputBin Device-dependent identifier of the media destination. Finishing X X X X X
Weight Device-dependent weight of the media. Finishing X X X X X
MediaColor Device-depedent color of the media. Finishing X X X X X
MediaType Device-dependent type of the media. Finishing X X X X X

Index
Index/Count

X X X X

IndexInDocument
Returns the Absolute index of the node within all the node under the
parent Document.

Index/Count
X X

IndexInGroup
Returns the Absolute index of the node within all the node under the
parent Group.

Index/Count
X X X

IndexInJob
Returns the Absolute index of the node within all the node under the
parent Job.

Index/Count
X X X X

Count
Index/Count

X X X X

DocumentCount
Index/Count

X

DatapageCount
Index/Count

X X

PageCount
Index/Count

X X X

SelectedCount
Index/Count

X X X X

SelectedDocumentCount
Index/Count

X

SelectedDatapageCount
Index/Count

X X

SelectedPageCount
Index/Count

X X X

SelectedIndexInDocument
Returns the Absolute index of the node within all the selected node
under the parent Document.

Index/Count
X X

SelectedIndexInGroup
Returns the Absolute index of the node within all the selected node
under the parent Group.

Index/Count
X X X

SelectedIndexInJob
Returns the Absolute index of the node within all the selected node
under the parent Job.

Index/Count
X X X X

NumCopies
Indicates how many times the job is set to execute, as set when
printing using a Windows driver.

Index/Count
X

Author
Name of the user who printed the job initially, as available in the
spool file, and as the first job info of the Windows capture input.

Production X

Metadata Tools

PlanetPress Suite version 7 includes a complete set of metadata-related functionality, which can be referred to as Metadata
Tools. These tools can be used to generate metadata, retrieve or define metadata elements, and build the metadata structure.

PlanetPress Design Metadata Tools

Using PlanetPress Design version 7, one can:

©2010 Objectif Lune Inc - 100 -

l Generate metadata for any given sample datafile.
l Graphically retrieve the value of a metadata attribute or field for use in any design object.
l Define documents and groups using any condition.
l Define custommetadata fields.
l Manipulate Metadata with PlanetPress Talk commands.

Following is a description of the PlanetPress Design Metadata tools which allows to perform the above tasks.

Metadata Generation using Data Capture with PlanetPress Printer

The Objectif Lune Printer Driver (PS) allows end-users to print directly to PlanetPress Design from any Windows application,
by using the familiar File|Print option. At the other end, PlanetPress Design can capture the incoming stream and convert it
internally into a PDF file along with its metadata. By default, capturing a document input using a PlanetPress Printer will gen-
erate a PDF along with its metadata.

Metadata Generation and Refresh without using PlanetPress Printer

It is possible to generate or refreshmetadata for any given sample datafile by using the Refresh Metadata option available
when right-clicking on the Metadata Fields folder found in the Document Structure Window. For example, metadata can be gen-
erated this way for a Line Printer sample datafile captured using an LPD Queue Input.

Metadata Selector

PlanetPress Design's Data Selector window is accessible by double clicking inside the Sample Data window or by clicking on
the Open Active Data button available in the ribbon. The Data Selector is equipped with a new tab labeled Metadata.

Firstly, two buttons at the top right corner of this tab allows to load or save a metadata file generated for the current sample
datafile.

Secondly, the metadata tab graphically displays all elements (i.e. attributes and fields) available at the current level (i.e.
Page, Datapage, Document, etc.). More importantly, these elements are graphically selectable, like any other part of the sam-
ple datafile when using the 'Select Data' option inside a Text object, for example.

©2010 Objectif Lune Inc - 101 -

The Metadata Selector allows to view and select metadata elements.

Metadata in Document Properties

Metadata tab in the properties of a PlanetPress Design document allows to easily define documents or groups.

Metadata Fields

©2010 Objectif Lune Inc - 102 -

Metadata Fields in the properties of a PlanetPress Design document allows to easily define documents or groups.

©2010 Objectif Lune Inc - 103 -

©2010 Objectif Lune Inc - 104 -

Setting Up a Document
Once you have a sample data file to work with, you are ready to start creating your document in PlanetPress. This chapter
describes how to set up a document, the first step in document creation.

Set Up a Document

You can view or edit the properties of a document using either the Object Inspector or the Document properties dialog box.

To view or edit properties using the Object Inspector:

1. In the Structure area, select the document icon.
2. In the Object Inspector, make any necessary modifications to the properties.

To view or edit properties using the Document properties dialog box:

1. Double-click on theDocument node to display the Document properties dialog box.
2. Use the Document properties dialog box to edit the document properties, if necessary.
3. In theDocument properties dialog box, click OK.

The properties of a document are as follows:

Basic Attributes

l Description: Enter a short text description of the document.
l PlanetPress Talk ID: Enter a name under which the document is known in PlanetPress Talk commands. This also
servers as the document's name if it is sent to a printer drive and used in Printer-Centric mode. The name you choose
should be both descriptive and unique, cannot begin with a number, and can contain only the following ASCII char-
acters: underscore (_), upper and lower case letters of the alphabet, all digits 0 through 9.If you use an underscore in
the name, it should not appear as either the first or last character of the name as this may cause internal conflicts in the
software. Names are case-insensitive andmust be unique; no two elements in a document can have the same name.
Names can be a maximum of 50 characters in length. Finally, PlanetPress Talk variable and command names are
reserved words; you cannot use any of these reserved words as a name.

l Designed For: Select a PPD for the document. The contents of the PPD subfolder in the PlanetPress program folder
determine the contents of this list. In PlanetPress Design, you can now open PPD files as well as other attachments
emanating fromMacintosh and UNIX workstations.The PPD that appears by default here is the one selected in the
Default printer box in the User Options dialog box. The Default printer is an optimized PPD. Rather than send a request
for a setting to the printer, it first queries the printer to see if that setting is already in effect. The Alternate default
printer PPD does not query the printer before it sends a request for a setting.

l Printer Password: Enter the password for the printer on which you intend to install the document. A password value
of 0 means there is no password for the printer. You can determine whether a printer requires a password by printing a
PlanetPress Design printer status page.

l Printer Working Path: Enter the path of the folder on the printer in which you want to install the document. This is
necessary only if you plan to install the document in a specific folder on the printer’s hard drive or in a specific folder in
its flashmemory.

l Digit Substitution: Choose to display numbers in either Arabic, Hindi or Farsi characters.
l Notes: Enter any notes you want to insert at the head of the document. Notes do not print as part of the output of the
document.

l Sign: Click to append the current date and time, the name of the owner of this copy of PlanetPress Design, and the
name of the company to which this copy is licensed.

Paper Handling

Setting Up a Document

©2010 Objectif Lune Inc - 105 -

l Default Page Size: Select the default paper format the document uses. Inmost cases, you never need to set this
option, unless the same job, or multi-jobs require using various paper sizes. In a small number of printers however,
when you are executing a document in which several consecutive pages use the same paper format, youmay need to
set this option. When the document subsequently executes each page, it compares the current paper format with the
one set for the page, and only issues a paper format command if the two formats are different.The formats available
depend on the PPD selected in the Designed for box of the Document properties dialog box. If you select Default, no
command is issued to the printer regarding the paper format and the document uses the printer setting in effect at
execution time.

l Selection Type: Set the default input paper tray to use for this document. The trays available depend on the PPD you
selected for the document. The selection youmake here determines the contents of the Paper source area. Select Input
tray to specify a specific input tray, and select match paper size to have the printer automatically use the tray that con-
tains the paper format defined for this page. Select manual feed to use the printer’s manual feed, and select media
selection to set specific media characteristics. You can select an input tray, paper size, and paper orientation for each
document page. If the printer supports it, you can also select duplex mode. Note that the documentmust be able to rec-
ognize the output printer during the job to perform load balancing. You can set the output printer name using a variable
for either the printer output or the Windows printer output. You can add start/end document commands to support sub-
set job handling. You can activate Run-locally+GDI with speed limits (specified as categories or absolute speed) and
either block or enable the use of multi-processor systems.

l Input Tray: Select the input tray you want to use in this box. This option is available only when you select
Input tray in the Selection type box.

l Media Type: Select the paper type for the page. This option is available only when you select media selection
in the Selection type box.

l Media Color: Select the paper color for the page. This option is available only when you select media selection
in the Selection type box.

l Media Weight: Select the paper weight for the page. This option is available only when you select media selec-
tion in the Selection type box.

l Output Tray: Set the output paper tray you want to use for this document. The options available depend on the PPD
selected for the document in the document properties dialog box.

l Paper Orientation: Select the orientation you want to page to be in on the printer. The selection is made between
Portrait, Landscape, and rotated versions of both (using a 180° rotation)

l Duplexing: Select the duplexing options for the document. The duplexing options available depend on the PPD you
selected for the document. Note that duplexing options apply only to normal pages since these are the only pages that
can print. If you want to print simplex and duplex in the same document, and your printer supports switching between
simplex and duplex in the same job, you can set the duplexing options on a page-by-page basis using the duplexing
option in the page properties dialog box. If your printer does not support switching between simplex and duplex in the
same job, you can simulate the switch by setting the duplexing option here and printing a blank page on the back of
each page that you want to print simplex. If you select default, no command is issued to the printer regarding duplexing
for this document, and the document uses the printer setting in effect at execution time.

Advanced Paper Handling

l Paper handling before the document: Display, define, and/or edit the paper handling operations you want the
printer to execute before it executes the document. The printer executes the operations sequentially, from top to bot-
tom. Right-click in this area and use the menu to manipulate the data.

l Paper handling after the document: Display, define, and/or edit the paper handling operations you want the
printer to execute after it executes the document.You can also delete an item by selecting it and pressingDELETE. You
canmanipulate or move data to the Paper handling before the document area by clicking it and dragging it to the new
location. Double-click an item to display and, if necessary, edit the condition associated with it.

Compilation Options

Setting Up a Document

©2010 Objectif Lune Inc - 106 -

For help creating documents that use Fiery® FreeForm™ or Freeform 2 features, see "FreeForm Caching" (page 110) or
"FreeForm 2 Caching" (page 111). For help creating a document in VPS or VDX format, refer to "VPS Caching" (page 112).

l Caching method: Select the cachingmethod you want to use.
l SelectNone to prevent the RIP from using any caching.
l SelectGeneric to use the standard caching provided by PostScript Level 2.
l Select FreeForm and use the options that appear to either make the current document a FreeFormmaster doc-
ument, or make the current document a document that calls a FreeFormmaster document.

l Select FreeForm 2 and use the options that appear to make the current document a FreeForm 2master doc-
ument. To make the current document call a FreeForm 2master document, select individual pages and use the
options that appear in the Page properties dialog box.

l SelectVPS to cache all virtual and cachable pages. Note that VPS always creates booklets.
l SelectVDX to cache only those pages of type virtual that are defined as cachable.

l Use Form Versioning at printer level: Use this option to set a version number for the document.
l Form Version: You use a version number to tell a document to check its version number before executing, and only
execute if it is the most recent version.

l Search Database Name: This legacy option is unused and disabled. It is removed in later versions of PlanetPress.
l PostScript Level: Select the PostScript Level for the converted document. This should correspond to the highest
level your printer supports.

l Do not use Virtual Memory for EPS/PDF pages: Check if your PostScript Level 2 printer prints errors when 2 or
more EPS or PDF files are present on your page. This is only useful in some older PostScript Level 2 printers.

l Caching Options group (only appears with FreeForm and FreeForm 2 cachingmethods)
l This Document is a Master: Select to create a FreeForm or FreeForm 2master document.
l Form number: Enter a FreeForm document reference number. If the document you are creating is a FreeForm

master document, it will be assigned the number entered in this box. If the document you are creating is not amaster
document, it will be associated with the FreeFormmaster document identified by the number entered in this box.

l Master ID: Enter the FreeForm 2master document name. When you create a FreeForm 2master document, you
must name it. This makes it possible for multiple FreeForm 2master documents to be cached on a given printer and for
any FreeForm 2 document to specifically call any cached FreeForm 2master document.

l Maximum Data Line Length: Define the number of columns in a data page. Enter the value, or use the spin but-
tons to increment or decrement the value. The maximum value for this option is 65,535 characters. The default value is
also 256 characters. You should tune this value to the longest line in your input data. Setting a maximum data line
length that greatly exceeds the length of the longest line in your input data may increase execution time depending on
the printer manufacturer. Also, the 65,535 value affects imaging, faxing, archiving, and caching VDX functionality. Opti-
mized PostScript Stream is not affected by this value.

l Behavior
l Use end of job keyword: Use this option when you want to execute several documents by sending a single
job that contains all the triggers and input data for those documents. Note that this is only functional in Printer-
Centric runmode and will not work in any other outputs.

l End of Job Keyword: Enter the keyword for the end of job.
l Skip blank data pages: Select to have the document ignore any empty data pages it encounters at runtime.
Clear to have the document execute with any empty data pages it encounters.

l PostScript Printer Form Cache
l Set Form Cache: Select to set the size of the printer form cache and/or the size of the largest item the cache
can contain.

l Max Form Item: Set the size (in bytes) of the largest single EPS, PDF, or bitmapped image that the form
cache can contain. You use the size of the largest andmost frequently used image in your document to deter-
mine an appropriate value for this option.

l Max Form Cache: Set the size (in bytes) of the PostScript printer form cache. You base the setting for this
option on the number of images in your documents, their sizes, and how frequently each image repeats in a doc-
ument.

Setting Up a Document

©2010 Objectif Lune Inc - 107 -

Resource Options

l Resource location: Select the runtime location for the resource files associated with the document when the doc-
ument executes on a printer. Select Inmemory to copy the resource files into RAM at runtime. Select On file system to
copy the resource files onto the printer’s hard drive at runtime; this option is recommended for documents that occupy
large amounts of space.

l Picture Resolutions
l Color (DPI): Enter the resolution for the color bitmapped images the document references. This resolution
applies to all color bitmapped image resources in the document. In the case of dynamic images that reference
color bitmapped images external to the document, the resolution in effect at the time you install and/or convert
the document is the one that applies to all of the external color bitmapped images (the document applies this res-
olution at runtime, when it retrieves each of the external images).

l Grayscale (DPI): Enter the resolution for grayscale bitmapped images the document references.
l Monochrome (DPI): Enter the resolution for monochrome bitmapped images the document references.

l PlanetPress Capture (see also "Capture Field Object" (page 166))
l Pattern Sequence: A batch identification, useful for extending the number of possible patterns.
l Anoto statement position: The position of the notice "Paper featuring Anoto functionality" which appears
when adding a PlanetPress Capture field to your document. This notice is legally mandatory and will always
appear on your page.

l Horizontal offset: Enter a value if you wish to move the notice away from the left or right border (depending
on the location of the notice)

l Vertical offset: Enter a value if you wish to move the notice away from the top or bottom border (depending
on the location of the notice)

l Include trace code: Check to print the trace code (identification) of the pattern used on the page. This is use-
ful for debugging and error handling.

l Compilation Options
l Convert images to monochrome: Select when you want PlanetPress Design to automatically convert
every color bitmapped image resource to grayscale when it converts the document. Select Always to have Plan-
etPress Design always perform the conversion. Select Never to prevent PlanetPress Design from ever per-
forming the conversion. Select PPD to have PlanetPress Design perform the conversion only when the PostScript
Printer Description (PPD) file associated with the document does not support color. This option applies only for
this document. The Convert images to grayscale option in the User Options dialog box determines the option
that appears here by default when you create the document.

l Image scanline orientation: See "Scanline Orientation" (page n) and "Adjust the Scanline Orientation of
Images" (page n).

l Picture quality compression level : Specify, in percentage, the compression level of pictures in your doc-
ument. A higher number means less compression, thus a larger picture size and better quality.

l Picture Quality: Line Art is more useful for illustrations and text that can be converted to line art. Photo is
more useful for images such as photos, landscapes, etc.

Binding

l Use binding: Select to make bindingmargins for the document available.
l Odd pages

l Horizontal: Set the bindingmargin you want to leave along the left edge of each odd-numbered page. This
value is relative to the left edge of the physical page, and units are as set in the User Options dialog box.

l Vertical: Set the bindingmargin you want to leave along the bottom edge of each odd-numbered page. This
value is relative to the bottom edge of the physical page.

l Even pages
l Horizontal: Set the bindingmargin you want to leave along the right edge of each even-numbered page. This
value is relative to the right edge of the physical page.

Setting Up a Document

©2010 Objectif Lune Inc - 108 -

../../../../../Content/1628.html
../../../../../Content/1628.html
../../../../../Content/1628.html
../../../../../Content/1628.html
../../../../../Content/1464.html
../../../../../Content/1464.html
../../../../../Content/1464.html
../../../../../Content/1464.html
../../../../../Content/1464.html
../../../../../Content/1464.html
../../../../../Content/1464.html
../../../../../Content/1464.html

l Vertical: Set the bindingmargin you want to leave along the top edge of each even-numbered page. This value
is relative to the top edge of the physical page.

Attachments (see also Add PostScript Attachment Resources)

l Attachments run before form: These attachments will execute before the document.
l Attachments run after form: These attachments will execute at the end, after the document.

Job Infos (aka jobinfo or jobinfos)

l Info #: The job info number.
l Value: Enter a static text value that you want to associate with the corresponding job info reference number. This
value is typically overridden, if a job info value is passed by PlanetPress Suite Workflow Tool.

l Ignore PlanetPress Suite Workflow Tool job info values: Enable this option to prevent values passed by Plan-
etPress Suite Workflow Tool from overriding the values you have entered. This option is typically used for debugging
purposes and is disabled by default.

Scan code settings

l Setting file: A scan code settings files from a Pitney Bowes system. Click Browse to locate the file on your hard drive.

Metadata

l Group Marker: Defines the boundaries of the Group level in the metadata.
l Marker: Determines if there is no marker, if the condition defines the beginning (Begin) or end (End) of the
Group level.

l Condition: When this condition is true, a new boundary is created in the metadata.
l Document Marker: Defines the boundaries of the Document level in the metadata.

l Marker: Determines if there is no marker, if the condition defines the beginning (Begin) or end (End) of the
Group level.

l Condition: When this condition is true, a new boundary is created in the metadata.
l This document requires a metadata file: Check to stop execution of this document if no metadata is found. This
is especially useful when sending the document to a PlanetPress Workflow process.

l Minimize metadata size: Reduces the size of the createdmetadata file by doing some optimisation. Empty paper
handling attributes are removed and planetpress document attributes that are common to all documents are moved to
the Group level (or Job level if there is only one Group) and deleted in the document level. This does not affect custom
metadata fields.

PlanetPress Talk after: Enter PlanetPress Talk code that you want to execute after the document executes.

Cacheable Execution Options
PlanetPress Suite offers compatibility with some of the major cachingmethods available on the market. This page explains
each cachingmethod and how it is used.

None

This cachingmethod really isn't one. In essence, using this option will remove any sort of caching from the document when it
is printed. This means that print jobs will most likely be much larger, but in some cases they will be compatible with older
printers, especially those who do not support PostScript level 2 and 3.

Setting Up a Document

©2010 Objectif Lune Inc - 109 -

../../../../../Content/1404.html
../../../../../Content/1404.html
../../../../../Content/1404.html
../../../../../Content/1404.html

Generic

This is the default cachingmethod, and uses PostScript level 2 in order to cache images in your job. Any image that is repeated
more than once is cached and referred to throughout your job. The more an image is used, the more the job file produced by
this cachingmethod will be smaller when compared to using the None option.

VPS

This method is used on printers that use the CREO VPS as a RIP. With this cachingmethod, any page set as an Overlay or a Vir-
tual page (See Page Types) can be set with the Cacheable option. Any static object placed on this page will be cached. For
more information, see VPS Caching.

If you place any variable data on an overlay or virtual page, the Cacheable option will have no use, since each individ-
ual page will be different, thus not cached.

VDX

This method caches virtual pages, used through the N-Up object. To the contrary of other cachingmethods however,
VDX files need to be sent to the VDX RIP manually and are not "printed" by PlanetPress Suite. VDX output cannot be generated
directly by PlanetPress Design, the documentmust be sent to the PlanetPress Suite Workflow Tools and used in a process. For
more information, see VDX Caching.

FreeForm 1 and FreeForm 2

The EFI Fiery RIPs use either FreeForm 1 or FreeForm 2 cachingmethods, which are very similar except for the limitations of
the master forms used. In FreeForm 1 you are limited to 100 Master Forms that are numbered, whereas in FreeForm 2 you
can choose a name for the Master Form and the 100 limit is not present. For more information, see FreeForm Caching.

FreeForm Caching

A feature of these RIPs is that you can create a master document, and have the content of a page of that master document
appear as the background on the pages of a document when that document executes. Only one page of the master document
appears on a given page of the document.

All the pages of a FreeForm documentmust indicate the number of the FreeFormmaster document to use when printing. If a
master document contains more than one page, when a document that calls that master document executes, it cycles through
the pages of the master document. For example, if the master document contains two pages, and the document that uses the
master document outputs six pages, the first page of output contains the first page of the master document, the second page
the second page of the master document, the third the first page of the master document.

To create a FreeFormmaster document:

1. In PlanetPress Design, create the document you want to use as the master document.
2. Double-click on theDocument node to display the Document properties dialog box.
3. In the Document properties dialog box, click Compilation options.
4. In the Caching method box, select FreeForm and set the FreeForm options that appear.
This document is a master: Select to make the current document a master document.
Document number: Enter the index number for the master document. This is the number you use when you want to
reference this master document. Index numbers must be in the range 1 to 100 inclusive.

5. Click OK to exit the Document dialog box.
6. Save the document.
7. From the PlanetPress Design Button, choose Print, select the printer or printers on which you want to install the

master document, clear Optimized PostScript Stream, clear Print to file, set theNumber of copies to 1, and
click OK. Remember that the printers you select must be running FreeForm.

Setting Up a Document

©2010 Objectif Lune Inc - 110 -

To associate a FreeForm document with a FreeFormmaster document:

1. In PlanetPress Design, open the document in which you want to reference the FreeFormmaster document.
2. Double-click on theDocument node to display the Document properties dialog box.
3. In the Document properties dialog box, click Compilation options.
4. In the Caching method box, select FreeForm.
5. Set theDocument number box to the index number of the FreeFormmaster document you want the document to

use.
6. Click OK to exit the Document dialog box.
7. Save the document.

Now when you execute the document on the printer on which the FreeForm is running, each page of the document
includes the contents of the master document you specified in the document number box. Remember that in FreeForm,
if a master document has more than one page, when the document that calls the master page executes, it cycles
through the pages of the master document.

FreeForm 2 Caching

The properties of all the pages of a FreeForm 2 documentmust include the ID of the FreeForm 2master document as well as
the number of the page to use when printing.

To create a FreeForm 2master document:

1. In PlanetPress Design, create the document you want to use as the master document.
2. Double-click on theDocument node to display the Document properties dialog box.
3. In the Document properties dialog box, click Compilation options.
4. In the Caching method box, select FreeForm 2 and set the FreeForm 2 options that appear.

l This document is a master: Select to make the current document a master document.
l Master ID: Enter the name for the master document. This is the name you use when you want to reference
this master document. The name can contain a maximum of 64 characters. It cannot start with either formC or
formU, and cannot contain any of the following characters: char(0) through char(32), vertical bar (|), forward
slash (/), backward slash (\), asterisk (*), questionmark (?), double-quote ("), single quote ('), back tick (`),
colon (:), less than sign (<), greater than sign (>). You should make certain the name you enter is not that of an
existingmaster document on the printer on which you intend to install this master document. If the name is the
same, this master document overwrites the existingmaster document when you install it.

5. Click OK

From the PlanetPress Design Button, choose Print, select the printer or printers on which you want to install the master
document, clear Optimized PostScript Stream, clear Print to file, set theNumber of copies to 1, and click OK.
Remember that the printers you select must be running FreeForm 2.

To associate the pages of a FreeForm 2 document with a FreeForm 2master document:

1. In PlanetPress Design, open the FreeForm 2 document that contains the pages that you want to associate with the Free-
Form 2master document.

2. In the Structure area, select the page you want to associate with a FreeForm 2master document and double-click on it
to display the Page properties dialog box.

3. In the Page properties dialog box, click Basic attributes and set the FreeForm 2 options.
Master ID: Enter the name of the FreeForm 2master document you want this page to reference. This option appears
only if you selected FreeForm 2 in the Cachingmethod box of the Conversion options in the Document dialog box.
Page number: If the FreeForm 2master document you entered in the Master ID box is a multi-page document, enter
the page number of that document that you want this page to reference. This option appears only if you selected Free-
Form 2 in the Cachingmethod box of the Conversion options in the Document dialog box.

4. Click OK.

Setting Up a Document

©2010 Objectif Lune Inc - 111 -

5. Repeat step 2 through step 4 for each page that you want to associate with a master document.
6. Save the document.

VPS Caching

PlanetPress Suite gives you the ability to send documents in the VPS format that is compatible with CREO VPS RIPs on certain
types of printers.

In VPS documents, overlay (fixed size) and virtual (variable size) pages defined as cacheable are placed inmemory
(cached) at the beginning of the job, and are referred to throughout the document. This means those cached elements are
never repeated in the document and the job can be much smaller than a regular, non-cached job.

To create a VPS document:

1. In PlanetPress Design, create a new document.
2. Double-click on theDocument node to display the Document properties dialog box.
3. In the Document properties dialog box, click Compilation options and in the Caching method box, selectVPS.
4. Click OK to exit the Document properties dialog box.
5. Add a page to the document. See the section “Add a Document Page” in the chapter “Setting Up Pages.”
6. In the Structure area or in the Page area, select the page and double-click on it.
7. In the Page properties dialog box, click Basic attributes.
8. SelectCachable and setPage type to Overlay or Virtual.
9. Click OK to exit the Page properties dialog box.
10. Add the content to the cacheable page.
11. Repeat step 5 through step 10 for each of the cacheable pages you want to add to the document.
12. Create the normal pages of the document, either calling a cacheable overlay page or using n-up objects as necessary

to reference the content of the virtual pages. If you include an N-Up object on a page, make sure that it appears as the
first object on the page in the Structure area.

13. Save the document.

The document is now ready for the printer.

VDX Caching

You can create and print a document in VDX format using PlanetPress Design in conjunction with the PlanetPress Image action
in PlanetPress Suite Workflow Tool. It is important to understand that in this case the document itself does not execute on the
printer. Rather, the PlanetPress Image actionmerges the data with the document, and converts the result to VDX format.

To create a document in VDX format:

l In PlanetPress Design, define the document as a VDX document.
l Place any content you want the VDX format document to cache, on one or more virtual pages, and define each of those
virtual pages as cacheable. Inmost cases you cache content that is extremely large and that is usedmore than once
during document execution. Any content you intend to cache must be static. On the normal pages of the document, you
use n-up objects to reference the cacheable content. You can scale the content of an n-up object, as well as rotate an n-
up object; thus you can present the same virtual page at different sizes and angles.

l Once you complete your document, install it in PlanetPress Suite Workflow Tool.
l To execute the document and convert the result to VDX format, set up a process in PlanetPress Suite Workflow Tool
and add a PlanetPress Image action to that process.

l When the process executes, the PlanetPress Image action executes the document and converts the result to VDX for-
mat.

Setting Up a Document

©2010 Objectif Lune Inc - 112 -

This procedure describes how to set up a document in PlanetPress Design, so that the Create VDX action recognizes it and con-
verts it to VDX format correctly. For help understanding and using the PlanetPress Image action, see the PlanetPress Watch
or Server 6 User Guide Addendum.

To create a document in VDX format:

1. In PlanetPress Design, create a new document.
2. Double-click on theDocument node to display the Document properties dialog box.
3. In the Document properties dialog box, click Compilation options and in the Caching method box, selectVDX. If

you do not select VDX, the Create VDX action in PlanetPress Suite Workflow Tool does not recognize the document as
one it can convert to VDX format.

4. Click OK.
5. Add a page to the document.
6. Double-click on the Page node to display the Page properties dialog box.
7. In the Page properties dialog box, click Basic attributes.
8. Set Page type to Virtual and selectCachable.
9. Click OK.
10. Add the content to the virtual page. You can use any of the objects available in PlanetPress Design to add content to the

virtual page. However, all of the content you addmust be static.
11. Repeat step 5 through step 10 for each of the virtual pages you want to add to the document.
12. Create the normal pages of the document, using n-up objects as necessary to reference the content of the virtual

pages.
13. Save the document.

To display a virtual page on a normal page:

1. On the normal page, chooseHome | N-UpPrinting.
2. Move the pointer inside the Page area, click at the point at which you want to add the n-up object, and release to dis-

play the N-Up properties dialog box.
3. In theN-Up properties dialog box, click Basic attributes and enter the name, position, size, style, and condition

properties for the n-up object.
4. In theN-Up properties dialog box, click N-Up options and in the Page to execute n-up box, select the virtual

page you want this n-up object to display.
5. Set both the horizontal and verticalNumber of repeats to 1.
6. If necessary, use the Scale box to adjust the scale at which the n-up object displays the virtual page.
7. If necessary, click Basic attributes and adjust the Angle property to rotate the content of the n-up object.
8. Click OK to exit the N-Up properties dialog box.

PPD Setup

PPD files, or PostScript Printer Description files are used by PostScript printer drivers to print to PostScript devices. PPDs con-
tain printer-specific postscript commands that are used to control printer features, such as duplexing, stapling and sub-set sta-
pling, tray calls andmore. PPDs can be specific to a certain printer model, to a model line, or to a manufacturer. Generic all-
purpose PPDs are provided with PlanetPress Suite and contain commands that should be understood by a large number of
printers, but using the appropriate PPD is always better.

PPDs are only used when printing through Optimized PostScript Stream or Printer-Centric mode. They are completely
ignored when usingWindows Driver output.

The PPD, along with the sample data file you associate with the document and the emulation you select define how your doc-
ument handles its input data, and consequently determine the accuracy of the output the document produces with the data
stream it receives at runtime.

Setting Up a Document

©2010 Objectif Lune Inc - 113 -

Document setup also involves giving the document a name, setting default printer options for the document, associating one or
more attachments with the document if necessary, setting any bindingmargins you want the document to use, and adjusting
options that can improve the document performance at runtime.

Normally the default PPD can be used. However, if the default PPD fails, it is recommended you search for one made available
by the manufacturer. You canmodify any of the document setup settings at any point during the document creation process. If
you change or modify the PPD associated with the document, you should verify the change does not compromise the accuracy
of the output the document produces.

Add or Remove PPDs

The default PostScript Printer Description (PPD) file PlanetPress Design provides works for the vast majority of printers. It is
recommended that you use it when possible. In the event the default PPD and any of the other PPDs provided with PlanetPress
Design do not work properly with your printer, you can add PPDs to your PlanetPress Design installation. Note that PlanetPress
Design only accepts PPDs for PostScript Level 2 or higher printers.

To add a PPD from PlanetPress Design:

1. Double-click on theDocument node to display the Document properties dialog box.
2. In theDocument properties dialog box, click Basic attributes, and click the Add PPD button.
3. Use the Select PPD File dialog box to navigate to the PPD file you want to add, and click Open.

If the file is a valid PPD file for a PostScript Level 2 or higher printer, PlanetPress Design adds it to its PPD folder. If you
selected Invalid PPD notification in the User Options dialog box, PlanetPress Design reports any failure to add the PPD.
The dialog containing the error message includes a checkbox you can use to suppress the message in future. This
checkbox clears the Invalid PPD notification option in the User Options dialog box.

4. Refresh the PPD list that appears in PlanetPress Design.

To add a PPD from outside PlanetPress Design:

1. Drag the PPD youwant to add to PlanetPress Design fromWindows Explorer or your desktop to either the Document
structure or Document page areas.

2. The current document will be configured to use that PPD automatically. If you dragged several PPDs at once you will
have to select the appropriate PPD from the list available in PlanetPress Design.

To remove a PPD from PlanetPress Design:

1. Remove the PPD file from the PlanetPress DesignPPD subfolder of the Windows Common Files folder.
2. Refresh the PPD list that appears in PlanetPress Design.

Refresh the PPD Lists

To refresh the list of PPDs using the Refresh PPD List button:

1. Double-click on theDocument node to display the Document properties dialog box.
2. In theDocument properties dialog box, click Basic attributes, and then click the Refresh PPD List button.

Specify Job Infos

To specify job info variables in a PlanetPress Design document:

1. Double-click on theDocument node to display the Document properties dialog box.
2. Click Job Infos.
3. Specify any job info values. Job info values are typically passed by PlanetPress Suite Workflow Tool. Job info numbers

and the information associated with themmay vary depending on input types as well as PlanetPress Suite Workflow

Setting Up a Document

©2010 Objectif Lune Inc - 114 -

Tool configurations, with the exception of job info 0%, which is reserved for the job file name
Info #: The job info number.
Value: Enter a static text value that you want to associate with the corresponding job info reference number. If a job
info value is passed by PlanetPress Suite Workflow Tool the static text value is overridden.
Ignore PlanetPress Suite Workflow Tool job info values: Enable this option to prevent values passed by Plan-
etPress Suite Workflow Tools from overriding the values you have entered. This option is typically used for debugging
purposes and is disabled by default.

4. Click OK.

Associate Attachments with a Document

When you associate an attachment with the document, you define whether you want that attachment to execute before or
after the document executes. You can associate a condition with each attachment that determines whether the attachment
executes.

To associate attachments with a document using drag and drop:

l In the Structure area, select the attachment resources you want to associate with the document, and drag and drop
them onto the document symbol ().

To associate attachments with a document using the Document properties dialog box:

1. Double-click on theDocument node to display the Document properties dialog box.
2. In the Document properties dialog box, click Attachments.
3. Add the attachments you want to execute before and/or after the document.
Attachments to execute before document: Display, define, and/or edit the list of attachments you want to
execute before the document executes. The attachments execute sequentially, from top to bottom. Right-click in this
area and use the menu that appears to add or delete items, move items up or down in the list, or clear the list alto-
gether. You can also delete an item by selecting it and pressingDELETE. You can also move an item up or down in the
list, or move it to the Attachments run after document list, by clicking it and dragging it to the new location. Double-click
an item to display it. Note that you cannot set a condition on any attachment you execute before the document
executes, as these attachments execute before the document evaluates conditions.
Attachments to execute after document: Display, define, and/or edit the list of attachments you want to
execute after the document executes.

4. Click OK.

To add or edit an item in the attachments list:

1. Double-click on theDocument node to display the Document properties dialog box.
2. In the Document properties dialog box, click Attachments.
3. To add an attachment, right-click in the appropriate list and choose Add.
4. Use the Attachment Selection dialog box to add a new item or edit an existing one.
Attachment name: Select one of the existing attachment resources in the document. If the attachment resource
does not yet exist in the document, use the Attachment button to add it.
Attachment button: Click to display the Select attachments dialog box and select an attachment resource to add to
the document. When you exit this dialog box, PlanetPress Design adds the attachment resource to the document, and
returns you to the Attachment Selection dialog box.
Condition: Specify the condition under which this attachment executes. You can select an existing condition from the
drop-down list, or define a condition using PlanetPress Talk expression. The current value of the condition appears
below the Condition box. Clear the contents of the box if you want the attachment to always execute.

5. Click OK.

Setting Up a Document

©2010 Objectif Lune Inc - 115 -

©2010 Objectif Lune Inc - 116 -

Setting Up Pages
Each page of the document can have its own distinct characteristics.

This chapter explains what is meant by a document page, describes the difference between a page that executes and one that
outputs, introduces the features that can help you lay out your pages, and provides guidelines and procedures for working
with pages.

Page Properties

To view or edit properties using the Object Inspector:

1. In the Structure area, select the page whose properties you want to view or edit.
2. In the Object Inspector, make any necessary modifications to the properties.

To view or edit properties using the Page properties dialog box:

1. In the Structure area or in the Page area, select the page and double-click on it to display the Page properties dialog
box.

2. Use the Page properties dialog box to view and/or edit the page properties.
3. In the Page properties dialog box, click OK.

The properties of a page are as follows:

Basic attributes

l Display Name: Enter a name for the page, which will be displayed in the Document Structure Pane.
l Name: Enter a name under which the page is known in PlanetPress Talk commands. The name you choose should be
both descriptive and unique, cannot begin with a number, and can contain only the following ASCII characters: under-
score (_), upper and lower case letters of the alphabet, all digits 0 through 9.If you use an underscore in the name, it
should not appear as either the first or last character of the name as this may cause internal conflicts in the software.
Names are case-insensitive andmust be unique; no two elements in a document can have the same name. Names can
be a maximum of 50 characters in length. Finally, PlanetPress Talk variable and command names are reserved words;
you cannot use any of these reserved words as a name.

l Execution Options
l Page ejects: Select to include this page in the output after it executes. This option applies only to pages that
execute. In the Structure area, a red “X’ appears in the page symbol for a page that executes but does not out-
put.

l Cachable: Select to have the printer cache this page. This option is enabled and is applied based on the doc-
ument’s cachingmethod (see see "Set Up a Document" (page 105)) and on the page type as follows:
Document caching
method:

Result:

None Option disabled. No images are cached.
Generic (or PostScript
Level 2)

Option disabled. All images are cached.

FreeForm Option enabled. Selected virtual pages are cached (overlays are not cached).
FreeForm 2 Option disabled. See the options below.
VPS Option enabled. Selected overlays and virtual pages are cached.

VDX
Option enabled for virtual pages only. Selected virtual pages are cached (overlays
are not cached).

l Master ID: Enter the ID of the master document this page must call. This option is only displayed if FreeForm
2 is selected as the document’s cachingmethod in the document’s compilation options. See FreeForm 2 Caching.

Setting Up Pages

©2010 Objectif Lune Inc - 117 -

l Page number: Enter the number of the page within the master document identified in theMaster ID box.
This option is only displayed if FreeForm 2 is selected as the document’s cachingmethod in the document’s com-
pilation options.

l Force front: Select if you are printing your document in duplex mode, and want to force this page to always
print on the front side of the paper. You can fine-tune this by using the When box to define the condition under
which the document forces this page to print. This option is not available on virtual pages for obvious reasons.
Also note that this optionmay not work properly when generating previews.

l When: Define the condition that must resolve to True for the document to force this page to print on the
front side of the paper. You can enter the conditionmanually, select an existing global condition from the
box, or define a condition using a PlanetPress Talk expression. This option is available only when you
select Force front.

l VPS End Booklet: Only available when VPS is set as a cachingmethod in the document. Enter or select a con-
dition which will trigger when to end a booklet in the Creo VPS cachingmethod.

l Include this page when (See "Converted Document" (page 696))
l Print: Select to include this page when PlanetPress Design converts the document to produce printer output.
l Fax: Select to include this page when PlanetPress Design converts the document to produce output in Plan-
etPress Fax.

l Archive: Select to include this page when PlanetPress Design converts the document to produce output in Plan-
etPress Image.

l Page Type and Condition
l Page type: Select the type of the page: normal, overlay, or virtual. See Page Types.
l Condition: Enter the condition, if any, you want to set on the page. This determines whether or not the page
executes at runtime; the page executes only if the condition is True. You can enter the conditionmanually,
select an existing global condition from the box, or define a condition using a PlanetPress Talk expression.

Paper handling

l Page size: Select the paper format for this page. The format that appears here by default is the one set for the doc-
ument in the User Options dialog box. The formats available depend on the PPD you selected in the Document prop-
erties dialog box. In addition to the formats available in the PPD, you can also select Custom and use the Page width
and Page height boxes to define a custom paper size. A custom paper size is useful if the printer supports the paper size
you require but the PPD does not include it in its list of supported paper formats. Before you define a custom paper size
you should consult your printer documentation to verify your printer can handle the custom paper size you define.
When you select a page size you should ensure you set the appropriate input and output trays for the page.

If you are printing in 2-upmode, the Default page size box in the Document properties dialog box determines the size
of the paper on which the two pages print, and the page size you select here determines the scaling required to fit the
two pages on that paper size.

l Page width: Enter the width of the custom page size. Units are as selected in the User Options dialog box. This option
is available only when you select Custom in the Page size box.

l Page height: Enter the height of the custom page size.
l Duplexing: Select the duplexing option for the page. The default duplexing option that appears here is the one you set
for the document in the Document properties dialog box. The duplexing options available depend on the PPD you
selected in the Document properties dialog box.

l Paper orientation: Select the orientation for this page.
l Add Cut Marks: Cut Marks are small horizontal and vertical lines that appear outside the physical boundaries of a
page. They are commonly used in N-Up projects that print multiple pages on large paper. They indicate where to cut
the pages in post-processing.

l X Offset: Set the distance of the cut mark stems from the left and right edges of the page.
l Y Offset: Set the distance to the cut mark stems from the top and bottom edges of the page.
l Cut Mark Length: Set the length of the stems of the cut marks.

Setting Up Pages

©2010 Objectif Lune Inc - 118 -

Paper input/output

l Selection type: Select the type of input paper tray the printer uses for this page. The Selection type that appears
here by default is the one set for the document in the Document properties dialog box. The trays available depend on
the PPD you selected for the document. The selection youmake here determines the contents of the Paper source.
Select Input tray to specify a specific input tray; and use the Input tray box that appears in the Paper source area when
you select this option to select the tray. Select Match paper size to have the printer automatically use the tray that con-
tains the paper format defined for this page. Select Manual Feed to use the printer’s manual feed. Select Media selec-
tion to set specific media characteristics for the page, and use the Media type, Media color, and Media weight options
that appear in the Paper source area to specify these characteristics.

l Input tray: Select the input tray. This option is available only when you select Input tray as the Selection type option.
l Media type: Select the paper type. This option is available only when you select Media selection as the Selection type
option.

l Media color: Select the paper color. This option is available only when you select Media selection as the Selection
type option.

l Media weight: Select the paper weight. This option is available only when you select Media selection as the Selection
type option.Output tray: Set the output paper tray. The options available depend on the PPD selected for the doc-
ument in the Document properties dialog box.

Advanced paper handling

l Paper handling before the page: Display, define, and/or edit the paper handling operations you want the printer
to execute before it executes this page. The printer executes the operations sequentially, from top to bottom. Right-
click in this area and use the menu that appears to add or delete items, move items up or down in the list, or clear the
list altogether. You can also delete an item by selecting it and pressingDELETE. A warning appears in red for any oper-
ations not supported in the new PPD.

l Paper handling after the page: Display, define, and/or edit the paper handling operations you want the printer to
execute after it executes this page.

l To add or edit Advanced Paper Handling, see Advanced Paper Handling.

Overlays: In order to use overlays, you need to have at least one defined. See Add or Remove Overlays.

Attachments: To use attachments, see Associate Attachments with a Page.

PlanetPress Talk before: enter PlanetPress Talk code that you want to execute before the page executes

PlanetPress Talk after: enter PlanetPress Talk code that you want to execute after the page executes.

Page Types
There are three types of pages in PlanetPress Design: normal pages, overlay pages, and virtual pages.

Normal Page

A normal page is one that can print depending on the conditions you set for that page.

Overlay Page

An overlay page is one that you can place either underneath or over top of the contents of another page. A simple example of
an overlay that goes under a page is a company logo that appears as a background graphic on all pages of the document.

Setting Up Pages

©2010 Objectif Lune Inc - 119 -

An overlay page can print only if it is associated with a normal page, and only if the normal page with which it is associated
prints. You can have many overlay pages associated with a single page.

In PlanetPress Design, overlay pages are displayed in the Page area inmauve with a yellow border. Mauve and yellow are
both defaults, which you canmodify in the User Options dialog box. In the Structure area, you can distinguish overlay pages
by the horizontal lines that appear inside the page symbol.

When you rename an overlay page associated with a normal page, you break the association between both pages. To fix this,
youmust recreate the association.

Virtual Page

A virtual page is a page you want to execute n-up. N-upmeans n instances of the page print on a single sheet of paper.

The only time a virtual page executes is when an n-up object executes it. If you have a virtual page in a document, and a no n-
up object that executes that virtual page, the virtual page does not execute.

In PlanetPress Design, virtual pages are displayed in the Page area in gray with a yellow border. Gray and yellow are both
defaults, which you canmodify in the User Options dialog box. In the Structure area, you can distinguish a virtual page by its
symbol.

Execution Order of Pages

The order in which the normal pages appear in the Structure area determines the order in which the document executes them.
Normal pages are always executed from top to bottom, once per datapage, unless this order has beenmodified by the use of a
RunPage (see Creating and using Runpages), or a Repeat object (See Line Repeat and Data Overflow).

You can change the execution order of the pages by changing the order in which they appear in the Structure area.

Advanced Paper Handling
Advanced Paper Handling (APH) commands are used to conditionally control specific options on your printer. APH is only sup-
posed when using Printer-Centric and Optimized PostScript runmodes, and will not function when usingWindows Driver Out-
put.

The APH commands available to you are determined by the PPD that is selected in your document's properties (see Set Up a
Document under Basic Settings).

To add or edit an advanced paper handling operation:

1. Open the page's properties (see Set Up a Page), and click on the Advanced Paper Handling section.
2. To add an operation, right-click and choose Add in the appropriate paper handling area. To edit an existing operation,

double-click it.
3. In the Paper Handling dialog box, enter a new paper handling operation or edit the existing one.

l Section: Select the name of a paper handling property. This determines the contents of the Selection box. The
PPD you selected in the Designed for box of the Document properties dialog box determines the contents of the
Section box.

l Selection: Select the value you want to associate with the paper handling property selected in the Section box.
l Condition: Specify the condition under which this operation executes. You can select an existing condition
from the drop-down list, or define a condition using a PlanetPress Talk expression. The current value of the con-
dition appears below the Condition box. Clear the contents of the box if you want the operation to always
execute.

Setting Up Pages

©2010 Objectif Lune Inc - 120 -

4. Click OK.

Associate Attachments with a Page

When you associate an attachment with a page, you define whether you want that attachment to execute before or after the
page executes. You can associate a condition with each attachment that determines whether the attachment executes.

To associate attachments with a page using drag and drop:

l In the Structure area, select the attachment resources you want to associate with the page, and, staying in the Struc-
ture area, drag and drop them onto the page with which you want to associate them.
A symbol for each of the dropped attachments appears on the right of the page in the Page area.

To associate attachments with a page using the Page properties dialog box:

1. In the Structure area, select the attachment resources you want to associate with the page, and, staying in the Struc-
ture area, drag and drop them onto the page with which you want to associate them.

2. In the Page properties dialog box, click Attachments.
3. Add the attachments you want to execute before and/or after the page.
Attachments run before page: Display, define, and/or edit the list of attachments you want to execute before the
page executes. The attachments execute sequentially, from top to bottom. Right-click in this area and use the menu
that appears to add or delete items, move items up or down in the list, or clear the list altogether. You can also delete
an item by selecting it and pressingDELETE.
Attachments run after page: Display, define, and/or edit the list of attachments you want to execute after the
page executes.

4. Click OK.

Add or Remove Overlays

To add or remove overlays:

1. In the Structure area or in the Page area, select the page and double-click on it to display the Page properties dialog
box for the page to which you want to add, or from which you want to remove, overlays.

2. In the Page properties dialog box, click Overlays, and select the overlay pages you want to add to this page, and/or
clear the overlay pages you want to remove from the page. You can also adjust the order in which you want to layer
the overlays.
Underlays: Select the overlay pages you want to place under this page, and clear any overlays you do not want to
place under the page. All overlay pages in the document appear in this list. PlanetPress Design layers the selected
pages under this page, in the order in which they occur in the list (topmost page in the list becomes the bottommost
layer). You can drag and drop the items in the list to control the order in which PlanetPress Design layers the overlays.
Overlays: Select the overlay pages you want to place on top of this page, and clear any overlays you do not want to
place on top of the page.

3. Click OK.
Any overlays you add to a normal page are displayed as part of that page in the Page area, however, you cannot edit
the content of an overlay from the normal page.

Setting Up Pages

©2010 Objectif Lune Inc - 121 -

©2010 Objectif Lune Inc - 122 -

PlanetPress Design Objects
Objects are the pieces of your document that are inserted in your page, such as text boxes, barcodes, images and data selec-
tions. This chapter explains each object and its unique properties.

The following objects are available to you in PlanetPress Design:

l "Text and Box Object" (page 130)
l "Data Selection Object" (page 140)
l "Picture Object" (page 150)
l "N-Up Object" (page 149)
l "Postal Address Object" (page 146)
l "PlanetPress Talk Object" (page 147)
l Pitney Bowes Scan Code
l "Shape Object" (page 149)
l "Barcode Object" (page 152)
l "Business Graphic Object" (page 164)
l Capture Field Object

While some properties are common to all objects, they each have their unique properties, which will be described in this chap-
ter.

View or Edit the Properties of an Object
To view or edit properties using the Object Inspector Pane:

1. Select the object.
2. In the Object Inspector Pane, make any necessary modifications to the properties.

To view or edit properties using the properties dialog box:

1. Double-click the object.
2. Edit the Properties for the object.
3. Click OK.

CommonObject Properties

The following properties are common to all objects in PlanetPress Design:

Basic Attributes

l Display Name: Enter a name for the object. Although PlanetPress Design supplies a default name, it is recommended
you choose a name that reflects the content or purpose of the object.

l Name: Enter a name by which the object can be referred to through PlanetPress Talk. The name you choose should be
both descriptive and unique, cannot begin with a number, and can contain only the following ASCII characters: under-
score (_), upper and lower case letters of the alphabet, all digits 0 through 9.If you use an underscore in the name, it
should not appear as either the first or last character of the name as this may cause internal conflicts in the software.
Names are case-insensitive andmust be unique; no two elements in a document can have the same name. Names can
be a maximum of 50 characters in length. Finally, PlanetPress Talk variable and command names are reserved words;
you cannot use any of these reserved words as a name.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 123 -

l Position and size Note that you can also click and drag on the object after you add it to the document to adjust its
position and/or size. Also note that the unit of measure used is the one set in the PlanetPress Design User Options
dialog box (see Miscellaneous Preferences)

l Left: Set the distance to offset the left edge of the object from the left edge of the page. If the object is within a
group, this is the distance to offset the left edge of the object from the left edge of the group that contains it.

l Top: Set the distance to offset the top edge of the object from the top edge of the document page.
l Width: Set the width of the object. The width of the contents of an n-up object depends on the scaling of each
of the repeated pages, the number of repeats of each page, and the horizontal space between each repeat; the
Width box does not update to reflect these settings.

l Height: Set the height of the object. The Repeat properties of an n-up object use the height as it appears in the
Height box.

The following apply to both the Width and Height settings:
l Data selection, barcode and picture objects automatically adjust height and width, so you should
not define themmanually.

l If the &width or &height variable is defined in the PlanetPress Talk Before code of an object, the
setting in its basic attributes will be ignored.

l The maximumwidth and height of any object is 32 inches (80 centimeters).
l When you adjust the width of a group, PlanetPress Design scales the width of each element in
the group, such that the new width of the group accommodates all the elements and preserves
their spatial relationships.

l Dynamic height: This option is available only in text objects, and only whenword wrap is on in the text
object. You use it when you define a background box for the text object. It determines whether the background
box, whenword wrap is on, adjusts to fit the word-wrapped text. Select to have the height of the background
box adjust to accommodate all of the word-wrapped text. Clear to leave the size of the background box fixed
and independent of the word-wrapped text. You define the default setting for this option in the User Options
dialog box. If you select this option, you cannot adjust the object height.

l Angle: Set the angle of rotation. The pivot point for the rotation is the lower-left corner of the object. Note that
if you use PlanetPress Talk code to define the angle of rotation, PlanetPress Design automatically locks the
object to prevent an inadvertent change to this value due to selecting, moving, or resizing the object using the
mouse or keyboard shortcuts.

l Style and Condition
l Style: Select the style for the object. This is the style all text in the object uses by default. It is also the style any
PlanetPress Talk code you enter in the PlanetPress Talk properties of the object uses by default. The default
style is the style that appears by default in this box. Note that the style for a group does not override any styles
referenced by individual objects/groups within that group.

l Size: Select or type the point size for the font the style uses.
l Bold: Click to turn the Bold property for the style on or off.
l Italic: Click to turn the Italic property for the style on or off.
l Underline: Click to turn the Underline property for the style on or off.
l Color button: Click to select a color for the style using the Color Picker.
l Color box: Displays the current color for the style.
l Ratio: Enter the percentage by which you want to shrink or stretch the font spacing in the style.
l Condition: Select the condition you want to associate with the object. You can select or enter the name of an
existing global condition. You can also enter a PlanetPress Talk expression that defines the condition. The
expressionmust evaluate to a Boolean value.

Repeat

The options available here depend on the Repeat Mode selected. For more information, see Line Repeat and Data Overflow.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 124 -

No Repeat: No option to configure, the object does not repeat.

Static Repeat:

l Horizontally
l Number of repeats: Enter the number of times you want to repeat the object or group along the horizontal
axis.

l Space between each repeat: Enter the amount of space to leave between each repeat of the object or
group, along the horizontal axis.

l Vertical
l Number of repeats: Enter the number of times you want to repeat the object or group along the vertical axis.
l Space between each repeat: Enter the amount of space to leave between each repeat of the object or group,
along the vertical axis.

l Expand to make a grid: Select this checkbox to have PlanetPress Design use the values you enter in the Number of
repeat boxes to create a table rather than a single row and/or column. The number of horizontal repeats, plus one for
the source object, becomes the number of rows in the table. The number of vertical repeats, plus one for the source
object, becomes the number of columns in the table. The total number of cells in the table is equal to the number of
rows times the number of columns.

Line Repeat (not available for PDF data files):

l From line: Enter the line on which the repeat starts.
l To line: Enter the line at which the repeat stops. The value "0" means it will repeat until the end of the current data
page.

You can also click the Use Data Selector button to select the line range.

l Repeat choice: Select the axis or axes along which PlanetPress Design repeats the source object or group.
l SelectHorizontal to create the repeats along the horizontal axis, starting to the right of the source object or group and
progressing towards the right.

l SelectVertical to create the repeats along the vertical axis (a column), starting below the source object or group, and
progressing towards the bottom of the document page.

l SelectBoth, horizontal first to create the repeats along both the horizontal and vertical axis, starting with repeats
along the horizontal axis first (a table, constructed row by row).

l SelectBoth, vertical first to create the repeats along both the horizontal and vertical axis, starting with repeats
along the vertical axisfirst. Use the Iterations per row/column box to set the number of repeats in each column.

l Horizontal displacement: Enter the amount of space between each repeat of the source object or group, along the
horizontal axis.

l Vertical displacement: Enter the amount of space between each repeat of the source object or group, along the ver-
tical axis.

l Iterations per row/column: Enter the number of repeats in each row (if you selected Both horizontal first in
Repeat choice) or in each column (if you selected Both vertical first in Repeat choice). This option is available only when
you select either Both horizontal first, or Both vertical first in Repeat choice.

l Use the Iterations per row/column box to set the number of repeats in each row.
l Iteration condition: Set a condition on the current line of data. This is effective only within the line range defined in
the From/to line property. It determines whether the data selections of the element that PlanetPress Design is currently
processing and that reference that line or record appear in the output. If a data selection does not appear in the output
(the condition resolves to False), PlanetPress Design inserts a blank space for it in the element. If the source object or
group contains a data selection object, and you do not want a blank space to appear when the condition you set here
resolves to False, you can set a line condition in that data selection object to remove the blank space. Any condition set
on the source object or group takes precedence over this condition. In other words, if a condition set on the source

PlanetPress Design Objects

©2010 Objectif Lune Inc - 125 -

object or group resolves to False, the object or group is not displayed, regardless of whether the condition here
resolves to True or False.

l Condition to Exit and Overflow: Use this condition to manage data overflow. Set it the to number of iterations
after which this object should stop processing data from the current data page. When this condition becomes true, Plan-
etPress Design executes the remaining objects in the page and repeats the page until all the remaining data has been
processed.

Line Repeat (XML):

When using an XML Data file, the Line Repeat options change slightly. The "From line" and "To line" disappear, replaced by the
following options:

l XPath: Displays the current path to the XML element you are repeating on. Empty until the data selector has been
used to select an XML value.

l From iteration: Enter the iteration of the XML element on which the repeat starts.
l To iteration: Enter the iteration at which the repeat stops. The value "0" means it will repeat until the last
XML Element.

l Use Data Selector: Click to open the data selector and choose which element to repeat on.
l Do not overflow if last record reached: Select this option to prevent an overflow from occurring if you have
reached the last record.

Snapping Points

l Snap to previous object: Check to snap the object to the closest snapping point set in a previous object.
l Snapping point selection: Select one of the 9 positions to select where this object will snap to with the other
object's snapping point.

l Horizontal offset: Enter the horizontal distance you want to appear between this object's snapping point and
the snapping point of the object it snaps to.

l Vertical offset: Enter the vertical distance you want to appear between this object's snapping point and the
snapping point of the object it snaps to.

l Set snapping point: Check to set this object as a snapping point for the next object(s) that have the Snap to pre-
vious object option set.

Manipulation

l Scalable orientation: Define the axes along which you can resize the object/group when you click and drag the han-
dles on its bounding box or select it and use keyboard shortcuts to resize it. This does not prevent changes to the Height
andWidth properties of the object/group using either the Object Inspector or the object’s/group’s properties dialog
box.

l SelectHorizontal only to restrict resizing the object/group along the X axis.
l SelectVertical only to restrict resizing the object/group along the Y axis. Select Horizontal Vertical to permit
resizing along both the X and Y axes.

l SelectNone to prevent resizing along either the X or Y axis. If you use PlanetPress Talk code to define the
Angle, Height, Width, Top, or Left properties of an object/group, PlanetPress Design automatically sets Scalable
orientation to None, to prevent an inadvertent change to the PlanetPress Talk code due to a resize of the
object/group using the mouse or keyboard shortcuts.

l Movable orientation: Define the axes along which you canmove the object/group when you click and drag it in the
Page area or select it and use keyboard shortcuts to move it. This does not prevent changes to the Left and Top prop-
erties of the object/group using either the Object Inspector or the object’s/group’s properties dialog box.

l SelectHorizontal only to restrict moving the object/group along the X axis.
l SelectVertical only to restrict moving the object/group along the Y axis.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 126 -

l SelectBoth to permit moving along both the X and Y axes.
l This object can be selected on the page: Select to permit selection of the object/group with the mouse in the
Page area. Clear to lock the object/group. When you lock an object/group, you cannot select it using the mouse in the
Page area, or resize or move it using the mouse or keyboard shortcuts. This option applies only to selecting, moving
and resizing the object/group in the Page area and does not affect selecting the object in the Structure area, or using
the Object Inspector to resize or move the object/group. Note that when you clear this option, PlanetPress Design auto-
matically sets both Scalable orientation and Movable orientation to None to also prevent moving and resizing the object
or group using the mouse or keyboard shortcuts. You can also use the items in the Tools menu to lock and unlock
objects/groups.

PlanetPress Talk Before and PlanetPress Talk After

Both the PlanetPress Talk Before and PlanetPress Talk After options are discussed in the PlanetPress Talk Chapter. See Plan-
etPressTalk Before and After.

Preview options

At the bottom of the object property window, two options are available to control the Object Preview window (see Use the
Object Preview):

l Show/Hide Object Preview: This button controls whether or not the object preview appears.
l Data page selector: Controls which data page to use for the preview. Enter a data page, or use the up/down arrows
to navigate through the pages.

Line Repeat and Data Overflow
The Repeat properties of an object or group are useful when you want to create a row, column, diagonal, or table from that sin-
gle object or group. PlanetPress Design repeats the object or group to create the structure you specify. The Repeat properties
can speed up the document design process and in some cases make the documentmore efficient to execute by optimizing the
PostScript code for the resulting structure as a whole.

There are two types of repeats: static and line. In a static repeat, data selections remain static; the data selections in each
repeat are identical to those in the source object or group. In a line repeat, data selections change with each repeat.

A line repeat is meaningful only with an object whose data selection exists on a single line. When PlanetPress Design performs
the repeat, it advances to the next line of the data page after each repeat of the object. The data selection thus changes with
each repeat. In the case of a group, each of the data selections referenced by objects in the groupmust exist on a single line
(or in the case of a database emulation or XML file, in a single record). Note that when using Line repeat with a Repeat choice
of Vertical only with a Vertical displacement, an initial displacement will be performed before the first item.

Note that in both cases, the specific line number you define in the Data properties of the object or objects is not important. You
determine the start and end lines for the repeats when you set up the line repeat. When you do this, PlanetPress Design auto-
matically sets the values of the From line and To line boxes in the Data properties of each object to¤t.line. This
ensures the data selection changes with each repeat. If you use a Custom data selection, youmust manually adjust the ref-
erences to the line (or record) to¤t.line; if you do notmake this adjustment, the Custom data selection remains the
same for all repeats.

The start and end lines you define in the Repeat properties also determines the total number of repeats. In the Repeat prop-
erties you also define the layout you want to create, the horizontal and/or vertical order in which you want the data selection

PlanetPress Design Objects

©2010 Objectif Lune Inc - 127 -

changes to occur. An Iteration condition can also be applied to determine whether the data selections that reference the cur-
rent line or record that are being processed appear in the output.

When is a Line Repeat useful?

A line repeat is useful when all of the following are true:

l The input data contains two or more contiguous lines or records with the same structure.
l In your document, you want to reference the data on those lines or records by proceeding consecutively, one line or
record at a time.

l You cannot accomplish your goal only by creating data selections that cover the line range.
l The input data contains more text than a PlanetPress Design document page can accommodate, due to layout or paper
size constraints.

When PlanetPress Design is processing an object with repeat properties and this condition becomes true, it stops repeating the
object, performs the remaining objects on the document page and then performs the whole page once again, only this time
using the surplus data. When all the data included in the current data page has been printed, PlanetPress Design stops repeat-
ing that page and goes on to the other pages that may be included in the document.

The fact that the same page is repeated to accommodate the surplus data does not mean that the initial page and the addi-
tional pages have to have the same appearance. The status of the condition to exit and overflow may be used to turn on
objects that were turned off on the first page and vice versa. Note that all these objects must belong to the same group.

List of available variables when overflowing:

Variable Name Type
Available
on

Description

¤t.overflowcount integer
Object &
Page

Indicates the overflow page number. Is always 0 on the first page and non-over-
flowing pages. Is the same before and after the object, wherever it is placed on the
page or document order.

¤t.overflowing boolean
Object &
Page

A true/false variable indicated if you are in an overflow loop. Is always false before
the first overflow loop, true for all objects and pages during iteration, and false
after the object after the last overflow loop.

¤t.iteration integer
Object
only

The current iteration of the whole object, reset only when the overflow is finished
on all pages. Useful for determining the total number of objects repeated in all
pages.

&iterationcount integer
Object
only

The current iteration on this page, reset on ever new overflow page. Most common
use is to determine the maximum number of objects on the page in the overflow
condition, e.g. =&iterationcount >= 15

Snapping Points

Snapping point are points on an object or group that you use to connect one object or group to another such that changes to
the size or position of one affects all those snapped to it. As a simple example, consider the second page of a form letter in
which the last paragraph (a text object) is followed by a signature (a picture object). The last paragraph can vary in length but
the signature must always appear in the same position relative to the last line of the paragraph. You can accomplish this by
connecting the text object to the picture object using snapping points.

If you snap an object to the bottom of a text object whose contents vary in length, and you want that object to always
remain in the same position relative to the last line of text in the text object, be sure you select Dynamic height in the
Basic attributes of the text object. Recall that the Dynamic height option is available only whenWord wrap is on.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 128 -

An object or group has nine snapping point sites on its bounding box: one on each corner, one in the middle of each edge, and
one in the center of the object.

You can set a snapping point at any of the nine snapping point sites. When you snap two objects/groups together, PlanetPress
Design positions the relevant snapping point of each object/group such that the two points lie one on top of the other.

You can also set a horizontal and/or vertical offset for a snapping point. You can do this to control the spacing between the two
objects/groups.

When using snapping points with objects that may dynamically change width or height, you should only use Top-Left
or Bottom-Left snapping points, as other snapping points may not work properly.

Here are some key points to remember when using snapping points:

l The order in which snapping points are evaluated is top-to-bottom, as seen in the Document Structure Pane for the
page. Any object that has the Snap to previous object option set will snap to the first object it encounter before it. If no
object before it has the Set snapping point option set, it will snap to the top-left corner of the page it is located on.

l Youmay snap any number of objects to a single snapping point on an object, and youmay also snap groups of objects
together.

l Objects will not snap if they are not on the same page.
l Objects called using the PlanetPress Talk $element command and that have snapping points set will follow snapping
behaviors as if they were originally part of the page. The order in which snapping points are evaluated is the same as if
you replaced the PlanetPress Talk object with each individual object called by it.

Object Preview Window

The Object Preview window lets you see objects before they are actually created. The object preview window has its ownMes-
sage area displaying PlanetPress Talk error messages.

You use it to preview the effect of property settings, and to help determine the appropriate setting for a given property. As you
change the property settings of an object or a group, the Object Preview updates to display the result of the modifications. It
can also display messages from the PlanetPress Talk Converter that can help you debug the object or group.

To show or hide the Object Preview:

l In the properties dialog box of any object, click the Show/Hide Object Preview button. Note that by default, the
Object Preview will always appear when you open an object's properties, even when you hide it. Its position is also
reset. You can change this behavior in the PlanetPress Design User Preference (see Miscellaneous Preferences).

The following options are available in the Object Preview window toolbar:

l Zoom in: Zoom in by 25% zoom.
l Zoom level: Set the zoom level in percentage. The default zoom level in the Object Preview is 75%. The zoom value
can be any value from 10 to 1000.

l Zoom out: Zoom out by 25% zoom.
l Fit in window: Adjusts the zoom level so the object appears in its entirety in the preview window.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 129 -

l Fit object width in window: Adjusts the zoom level so the width of the object fits the width of the preview, ignor-
ing the object's height.

l Show Messages: Click to make the message area appear or disappear.

You can reposition the contents of the Object Preview by clicking and dragging the preview around, or by using the scrollbars.

Text and Box Object
Text and Box objects are essentially the same object. The Box object is offered as a separate menu in the ribbon for con-
venience - it gives you automatic starting options for borders that appear around the text object. On the other hand, the Text
object will not show any borders by default.

The following properties tab apply to the Text and Box options:

Borders

Borders are applied either through the Settings pre-defined border settings, or manually. To define the borders manually, start
by choosing the color, width and style of the border you want to apply, then click on the appropriate button to add the border
you want. To remove a border, click on the - None - line style then click on the border button you want to remove.

l Custom Line Settings

l Top, Bottom, Left, Right sides: Click one of these to select a side of the background box and apply the cur-
rent line settings to it.

l Upper left, upper right, lower right, lower left corners: Click to switch between a right-angled and
rounded corner, or to apply the current line settings to a rounded corner. If you want to apply the current line set-
tings to a rounded corner that is not currently visible, click that corner. If the rounded corner is currently visible,
click the corner twice: the first click switches to the right-angled corner style, the second switches back to the
rounded corner style and applies the settings to that style.

l Left, Right diagonal: Click to apply the line settings to a diagonal that bisects the background box.
l Vertical, Horizontal line: Click to apply the line settings to a line that bisects the background box.

l Radius: Set the radius of the circle to use to create round corners. The maximum value is one half of the smaller of the
Width and Height values set for the object. Units are as set in the User Options dialog box. This setting applies to all
rounded corners in the background box. If you resize the text object such that the value of the radius exceeds the max-
imum allowed, PlanetPress Design automatically adjusts the value of the radius to the maximum. In the latter this case
PlanetPress Design does not update the value of the radius in the Object Inspector or the Text properties dialog box;
you can update the value by entering a new value that exceeds the current maximum value.

l Line width: Enter the width of the line to use in the border. Units are points.
l Line style: Select the style for the line.
l Line color box: View the current color for the line.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 130 -

l Color button: Click to select a color for the line using the Color Picker.
l Settings: These are pre-defined border settings you can use:

l None: Select to make the border of the background box invisible.
l Box: Select to use a rectangle as the border of the background box.
l Shadow: Select to use a rectangle with a drop shadow as the border of the background box.
l Round: Select to use a rectangle with rounded corners as the border of the background box. Use the Radius
box to define the curve that occurs at each corner.

Color

l Fill: Click to fill the object with a specific color or gradient. This enables the properties in the Fill group
l Color box: View the current fill color for the background box.
l Color button: Click to select the fill color for the background box using the Color Picker.
l Gradient fill
l Gradient fill: Select to use a gradient fill for the background box. The start color for the gradient is the fill
color. Use the controls in this area to set the end color for the gradient, the number of gradations the gradient
uses, and the direction of the gradient. Gradients are not available if the background box you select for the
text/box object has one or more rounded corners.

l Color box: View the end color for the gradient.
l Color button: Click to select the end color for the gradient using the Color Picker.
l Steps: Enter the number of gradations you want to use in the gradient, or use the spin buttons to set the
value. The number of gradations determines how obvious the transition is between the Fill color and the
Gradient fill color. The maximum number of gradations is 100.

l Gradient direction: Select the direction for the gradient.
l Reverse: Select to reverse the start and end colors for the gradient.

l Shadow: Select to display a drop shadow with the background box.
l Color box: View the current color for the drop shadow.
l Color button: Click Color to select a color for the shadow using the Color Picker.
l Width: Enter the width for the drop shadow. Units are typographical points.
l Scale ratio: Enter the percentage by which you want to scale the text object to create the drop shadow.
l X shift, Y shift: Select the X and Y offsets respectively for the center of the drop shadow. The coordinates
(0,0) align the center of the drop shadow with the center of the text object. Positive X values move the shadow
to the right of the center of the text object, and negative X values move it to the left of the center of the text
object. Positive Y values move the shadow below the center of the text object, and negative Y values move it
above the center of the text object.

Text

This is the primary settings tab for the Text and box object. It contains different sections that help youmanipulate the text in
the object itself.

Menu:

l Format
l Font...: Opens the Font selector, which is essentially the same as the Style Toolbar as well as the Style Selector
(See Apply a Style to Text in a Text Object)

l Margin...: Opens the Margins dialog which lets you set the Left and Topmargins for the text object.
l Word Wrap: Enables or disables WordWrap in the text object. Applies to all the contents of the text object.
l Skip Empty Variable Paragraphs: Enables or disables skipping any line where variables do not have any
content. Does not apply to empty lines with no variables on them.

l Text in box: This option is only available whenWordWrap is turned off. Click to display a list of possible align-
ments available for the text in the box. 9 positions are available.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 131 -

l Tabs...: Opens the Tabs dialog. See Set Tabs.
l Paragraph...: Opens the Alignment dialog. See Adjust Alignment and Lines Per Unit settings.
l PlanetPress Talk Before Paragraph...: Opens the PlanetPress Talk Editor to add PlanetPress Talk code
before the currently selected paragraph.

l PlanetPress Talk After Paragraph...: Opens the PlanetPress Talk Editor to add PlanetPress Talk code after
the currently selected paragraph. See PlanetPressTalk Before and After

l Edit
l Undo: Undo the last command. Note that not all actions can be undone.
l Redo: Redo the last command that was undone. Note that not all actions can be redone.
l Cut: Cut the currently selected text. If no text is selected, has no effect.
l Copy: Copies the currently selected text. If no text is selected, has no effect.
l Paste: Pastes any text that is in the Windows clipboard where the cursor is located. If text is selected, the
pasted text replaces the selected text.

l Select All: Selects all the contents of the text box.
l View

l Control Characters: Click to show or hide control characters such as line returns, tabs and spaces.
l Vertical Ruler: Click to show or hide the vertical ruler on the left of the text box.
l Horizontal Ruler: Click to show or hide the horizontal ruler on top of the text box.
l Background Color of Editor...: Click to show a dialog that lets you select what color is used as a background
for the text editor. Note that this does not affect the color or background of your actual textbox, but may
improve readability of your text within the editor, for example if your text has a very light color.

l Variables
l Select Data: Click to show the data selector. When you choose a data location in the data selector and click
OK, one variable per line is created, and they are added in the text box.

l Local Variables: Click to display a list of variables that are local to this text box. Those variables are not acces-
sible by any other object.

l Global Variables: Click to display a list of variables that are global to your form. To change the value of these
variables, you have to edit the global variable from the Document Structure Area.

l Variables...: Displays a dialog that shows you all local and global variables.See Use Variables in a Text Object.
l Tools

l Spell Check Options...: Opens the Spell Check Options dialog. See Spell Check Text in a Text Object
l Spell Check...: Open the spell checker. See Spell Check Text in a Text Object
l Thesaurus...: Opens the Thesaurus window. See Use the Thesaurus.
l Word Wrap Options:

l Normal (word-based): Click to select the word-basedWordWrap option. This option will only wrap
when a space is present in the text and will not separate characters within words (or character strings,
whatever they may be).

l Forced (character-based): Click to select the character-basedWordWrap option. This option will
always wrap even if there is no space in the text. In this case it generates a line return to do word wrap.
Note that this is not a "smart" wrap, and it will not add dashes or correctly separate words. Instead is
simply wraps when the number of characters is reached on the line.

Apply a Style to Text in a Text Object

To apply a style to text in a text object:

1. Do any of the following to define the region of text to which you want to apply the style:
l To apply a style to existing text, highlight that text.
l To apply the style to text you enter from this point forward, click in the Text area at the point at which you want
the style to become active.

2. Choose Format | Font and use the Font dialog box, to select an existing style and, if necessary, modify its properties.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 132 -

Note that the modifications youmake to the style properties are local to this instance of the style and do not affect those
defined for the style.
Style box: Select the existing style you want to use for the text. If you type a style name that does not exist, Plan-
etPress Design updates the selection to the style that most closely matches the name entered, or if no existing style
name is a possible match, reverts to the previous selected style.
Font size: Enter the point size you want to use for the text.
Font ratio: Enter a percentage by which you want to shrink or stretch the font spacing.
Color list: Click and select a color for the text from the list of colors that appears.
Color box: View the current color for the style.
Color button: Click to select a color for the style using the Color Picker.
Bold: Click to toggle the bold property on and off.
Italic: Click to toggle the italic property on and off.
Underline: Click to toggle the underline property for the currently selected style on and off. Note that spaces may not
appear underlined in PlanetPress Design, but that they will be when the document is used to generate output.
Outline: Click to toggle the outline property for the current selected style on and off.

To create a new style from within a text object:

1. Use either the toolbar or the dialog box to display the Style properties dialog box.
Toolbar
In the Style toolbar, click the new style tool ().

A. New style tool
Font Dialog
Choose Format | Font and click the New Style button.

A. New Style button in the Font dialog box
2. In the Style properties dialog box, define the new style.

Set Tabs

To set default tabs:

1. In the Format toolbar, click the tab tool to display the Tabs dialog box.
2. In the Tabs dialog box, set the default tabs using the Default tab stop box.
Default tab stop: Enter the space to leave between each default tab. This is also the initial ruler position for the first
default tab. You can also use the spin buttons to adjust the value. Units are as set in the User Options dialog box.

3. Click OK.

To clear the default tabs:

PlanetPress Design Objects

©2010 Objectif Lune Inc - 133 -

1. Click the tab tool to display the Tabs dialog box.
2. In the Tabs dialog box, set the value in theDefault tab stop box to zero.
3. Click OK.

To set tabs for individual paragraphs using the tab tool:

1. Do any of the following to define the region of text for which you want to set tabs:
l To set tabs for a single paragraph, click anywhere in that paragraph.
l To set tabs for one or more contiguous paragraphs, click and drag to highlight those paragraphs.
l To set tabs for text you enter from this point forward, click at the new paragraph position.

2. Locate the tab tool to the left of the horizontal ruler.
3. Click the tab tool until it displays the alignment type of the tab you want to set.

Left alignment tab
Right alignment tab

Center alignment tab
Decimal alignment tab

4. Click in the ruler at the position at which you want to set the tab. If you want to set more than one tab of this type, click
in the ruler at the appropriate position for each additional tab.

5. Repeat step 3 through step 4 for any additional tabs you want to set.

To set tabs for individual paragraphs using the Tabs dialog box:

1. Do either of the following to define the region of text for which you want to set tabs:
l To set tabs for a paragraph, click anywhere in that paragraph. Note that you cannot set tabs for more than one
paragraph at a time using the Tabs dialog box.

l To set tabs for text you enter from this point forward, click at the new paragraph position.
2. In the Format toolbar, click the tab tool to display the Tabs dialog box.
3. Set the properties of the tab.
Tab stop: Enter the ruler position for the tab, or use the spin buttons to adjust the value.
Alignment: Select the alignment type for the tab you want to set: Left, Right, Center, or Decimal.

4. Click Insert.
PlanetPress Design sets the new tab. The new tab appears in the Current tabs list, preceded by the tabmarker rep-
resenting its type. PlanetPress Design orders tabs in the Current tabs list in ascending order, within each alignment
type.

5. Repeat step 3 through step 4 for each new tab you want to set.
6. Click Close.

To reposition a tab:

l In the Text area, right-click on the tab, then drag it to the new position and release.

To delete tabs from individual paragraphs:

1. Click anywhere in the paragraph containing the tab or tabs you want to delete.
2. Do either of the following:

l In the horizontal ruler, click the tabmarker for the tab you want to delete. Repeat for each tab you want to
delete.

l In the Format toolbar, click the tab tool to display the Tabs dialog box. Click Delete All to delete all tabs set in
the defined region of text. Click OK to close the Tabs dialog box.

Adjust Alignment and Lines Per Unit settings

To adjust the text justification:

PlanetPress Design Objects

©2010 Objectif Lune Inc - 134 -

1. Verify that word wrap is on. The justification tools are available only whenword wrap is on.
2. Do any of the following to define the region of text to which you want to apply a new text justification setting:

l To change the justification for a single paragraph, click anywhere in that paragraph.
l To change the justification for one or more contiguous paragraphs, click and drag to highlight those paragraphs.
l To change the justification for text you enter from this point forward, click at the new paragraph position.

3. Locate the Text Justification toolbar.
4. Click the appropriate justification tool.

Left justify the text.
Right justify the text.

Center justify the text.

Left and right justify the text.

To adjust the lines per unit:

1. Do any of the following to define the region of text to which you want to apply a new lines per unit (LPU) setting:
l To change the LPU for a single paragraph, click anywhere in that paragraph.
l To change the LPU for one or more contiguous paragraphs, click and drag to highlight those paragraphs.
l To change the LPU for text you enter from this point forward, click at the new paragraph position.

2. Locate the Lines per unit box in the toolbar.
3. Do any of the following:

l Select an LPU value from the drop-down list.
l Enter a new integer value in the Lines per unit box.
l SelectAutomatic to have PlanetPress Design automatically adjust the LPU to accommodate the largest font
size in the paragraph. If you subsequently modify the font size of any of the styles the paragraph uses, Plan-
etPress Design automatically adjusts the LPU to reflect the modification. Automatic is the default value for the
LPU setting.

Spell Check Text in a Text Object

You can spell check a selection of, or all of, the text you enter in the Text area of a text object. The options you set for a spell
check remain in effect across all text objects. The spell checker does not check variable

To spell check text:

1. If necessary, verify the dictionaries and the other options set for the spell check are correct.
2. Do either of the following:

l If you want to spell check all text, click anywhere in the text. The spell check proceeds forward from that point
to the end of the text, then starts at the beginning of the text and proceeds forward to that point.

l If you want to spell check only a region of text, highlight that region in the Text area.
3. In the menu bar of the Text properties, choose Tools | Spelling.
4. When the Spelling dialog box appears, define how youwant to handle the spelling error.

l Spelling Error
l Not found: Displays the misspelled word the spell check encountered.
l Replace with: Enter the word with which you want to replace the misspelled word.
l Suggestions: Displays a list of suggested replacements for the misspelled word.

l Actions
l Ignore: Click to have the spell check ignore this spelling error and continue with the spell check.
l Ignore All: Click to have the spell check ignore all instances of this spelling error in the current spell
check.

l Change: Click to have the spell check replace the misspelled word with the contents of the Replace with
box.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 135 -

l Change All: Click to have the spell check replace all instances of this misspelled word in the current
spell check with the contents of the Replace with box.

l Add: Click to have the spell check add the word to the AddedWords of the custom dictionary selected for
this spell check.

l Auto-Correct: Click to have the spell check add this misspelled word and the contents of the Replace
with box to the Auto Correct Pairs of the custom dictionary selected for this spell check.

l Undo: Click to undo the most recent action.
l Options: Click to display the Spelling Options dialog box.
l Cancel: Click to exit the spell check.

To set spell check options:

1. In the menu bar of the Text properties, choose Tools | Speller Options.
2. In the Spelling Options dialog box, adjust the options.
3. Options

l Check spelling as you type: Select to have the spell check underline misspelled words in red as you type in
the Text area.

l Correct spelling errors as you type: Select to have the spell check use the Auto Correct Pairs in the cus-
tom dictionary selected for the spell check, to automatically correct any misspelled words it detects as you type
in the Text area.

l Ignore words in upper case: Select to prevent the spell check from spell checking any words written in
upper case.

l Ignore words containing numbers: Select to prevent the spell check from spell checking any words that
contain numbers.

l Ignore markup languages: Select to prevent the spell check from spell checking any words that are part of
the HTML or XML markup languages.

l Ignore Internet addresses: Select to prevent the spell check from spell checking email or Web site
addresses.

l Ignore quoted lines: Select to have the spell check exclude from the spell check any text that appears
between quotes. This applies only to double quotes (“); it does not apply to single quotes (‘).

l Ignore abbreviations: Select to have the spell check treat any abbreviations it encounters as legal words.
The abbreviationmust appear in at least one of the dictionaries selected for the spell check.

l Prompt on repeated word: Select to have the spell check prompt you if it encounters two instances of a
word together in the text. This option is case sensitive.

l Automatically correct DUal capitals: Select to have the spell check automatically correct words that begin
with two upper case characters by changing the second to a lower case character.

l Dictionary options
l Dictionaries list: Select the dictionaries you want the spell check to use. The name of the dictionary appears
on the left, and the name of the file that contains it on the right. Select Locate dictionaries to browse the file sys-
tem and add a dictionary to this list.

l Custom dictionary: Select the custom dictionary you want to use for the spell check. All of the custom dic-
tionaries you created appear in the drop-down list in this box.

l Dictionaries button: Click to create, edit, or delete a custom dictionary.

To reset the spell check options to their default values:

1. In the Text area, right-click and choose Spell Check Options.
2. In the Spelling Options dialog box, click Reset Defaults.
3. Click OK.

To add a dictionary:

PlanetPress Design Objects

©2010 Objectif Lune Inc - 136 -

1. Make sure the dictionary is accessible on the computer on which you are running PlanetPress Design. Additional dic-
tionaries are available athttp://www.addictivesoftware.com/dicts.htm.

2. In the Text area, right-click and choose Spell Check Options.
3. In the Spelling Options dialog box, in theDictionaries list, click Locatedictionaries.
4. In the Browse for Folder dialog box, navigate to the dictionary you want to add and click OK.

To create a custom dictionary:

1. In the Text area, right-click and choose Spell Check Options.
2. In the lower right of the Spelling Options dialog box, click Dictionaries.
3. In theDictionaries dialog box, click New.
4. In theNew Custom Dictionary dialog box, enter a name for the new dictionary, and click OK.
5. To exit the Dictionaries dialog box and return to the Spelling Options dialog box, click OK.
6. Click OK.

To edit a custom dictionary:

1. In the Spelling Options dialog box, click Dictionaries.
2. In theDictionaries dialog box, select the custom dictionary you want to edit and click Edit.
3. Click Added Words and enter any words you want the spell check to treat as legal words when it uses this custom dic-

tionary.
l Ignore this word: Type the word you want to add to the list of words the spell check treats as legal when it
uses this custom dictionary. Click Add to add it to the Word list.

l Word list: Displays the words the spell check treats as legal when it uses this custom dictionary.
l Add: Click to add the word entered in the Ignore this word box, to the Word list.
l Delete: Click to delete the word that is currently selected in the Word list.

4. Click Auto Correct Pairs and enter any automatic corrections you want the spell check to perform.
l Replace/With: Use these boxes to define an automatic correction you want the spell check to perform when
it uses this custom dictionary. Type the string you want the spell check to automatically replace in the Replace
box, and the replacement string in the With box. Click Add to add it to the Auto-correct pairs list.

l Auto correct pairs list: Displays the automatic corrections the spell check performs when it uses this custom
dictionary. The misspelled string appears on the left and its correction on the right.

l Add: Click to add the contents of the Replace/With boxes to the Auto-correct pairs list. This button is not avail-
able if either or both of the Replace/With boxes are empty.

l Delete: Click to delete the auto-correct pair that is currently selected in the Auto-correct pairs list.
5. Click Excluded Words and add any words you want the spell check to always treat as misspellings.

l Exclude this word: Type the word you want to add to the list of words the spell check always treats as mis-
spellings when it uses this custom dictionary. Click Add to add it to the Excluded word list.

l Excluded word list: Displays the words the spell check always treats as misspellings when it uses this cus-
tom dictionary.

l Add: Click to add the word entered in the Ignore this word box, to the Excluded word list.
l Delete: Click to delete the word that is currently selected in the Excluded word list.

6. Click OK to return to the Dictionaries dialog box.
7. In theDictionaries dialog box, click OK to return to the SpellingOptions dialog box.

To delete a custom dictionary:

1. In the Spelling Options dialog box, click Dictionaries.
2. In theDictionaries dialog box, select the custom dictionary you want to delete and click Delete.
3. Click OK.

Use the Thesaurus

To use the Thesaurus:

PlanetPress Design Objects

©2010 Objectif Lune Inc - 137 -

1. In the Text area, highlight the word you want to search for in the thesaurus.
2. In the menu bar of the Text properties, choose Tools | Thesaurus.

l Looked up: Displays the word for which the thesaurus is currently displaying choices. Use the box to view and
select words you previously entered in this thesaurus session.

l Contexts: Displays a list of the different contexts in which the wordmight occur.
l Choices list: Displays a list of possible synonyms for the selected word in the selected context. Click a word in
this list to have it appear in the Replace with box.

l Replace with: Displays the word with which you want to replace the word that appears in the Looked up box.
You can either enter the wordmanually or click a word in the Choices list.

3. Do any of the following:
l To replace the word with one of the words in the Choices list, click the word in the Choices list, then click
Replace.

l To look up another word, either enter the word in the Replace with box and click Lookup or, if the word
appears in the Choices list, click it and then click Lookup.

l To return to a previous lookup, click Previous or, in the Looked up box, select the previous lookup.

Change the Width of the Text Object in the Text Area

To change the width of a text object in the Text area:

1. In the Text area, locate the widthmarker. The widthmarker is initially aligned with the right edge of the right indent
marker.

2. Position the pointer over the widthmarker to display the resize pointer, then click and drag the widthmarker to the new
position.

Use Variables in a Text Object

You can reference both system and global variables from a text object. The global variables you reference within a text object
can be of type string, measure, integer, and currency.

If you reference a global variable in a text object and subsequently change the type of the global variable to one not supported
by the text object, PlanetPress Design replaces the global variable in the text object with a blank space. The next time you
open the text object, an error message appears in the Messages area of the Object Preview and in the status bar of the text
object. You cannot exit the text object until you remove all references to the global variable.

You can also create local variables that are internal to the text object. The value of a local variable can be a data selection, a
constant, or a PlanetPress Talk expression.

You insert a data selection in a text object by creating a local variable that contains the data selection. Note that you cannot
modify the value of those variables through the PlanetPress Talk before paragraph and PlanetPress Talk after paragraph prop-
erties.

Also note that if you use a global variable to display Arabic text in a Text object, the data will not be displayed correctly in the
application. To fix this, you need to initialize the variable content using the MapUTF8 PlanetPress Talk command.

To determine the variables currently available in the text object, do any of the following:

l To determine the global variables available Choose Variables |Global Variables.
l To determine the local variables available Choose Variables |Data Selections Available.

To insert an existing variable, do one of the following:

l To insert a local variable Choose Variables |Data Selections Available. Then choose the local variable you
want to insert from the menu that appears.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 138 -

l To insert a global variable Choose Variables |Global Variables. Then choose the global variable you want to
insert from the menu that appears.
PlanetPress Design inserts the variable in the Text area, displays its value on the current data page and highlights it in
blue.

To quickly insert a data selection as a local variable:

1. Choose Variables | SelectData.
2. Use the Data Selector to select the data for the variable.
3. Close the Data Selector.

PlanetPress Design inserts the variable, highlights it in blue, and displays its value on the current data page. Plan-
etPress Design also adds the variable name to the menu that appears when you right-click and chooseData Selec-
tions Available.
You can use the Data page box in the toolbars to navigate through the data pages and view the value of the variable on
other data pages.

To create a new local variable using the Variables dialog box:

1. Choose Variables | EditDataSelection.
2. Click Add Variable.
3. Click the variable name to select the variable. Then click the variable name a second time to select the name. Edit the

name, then click outside the variable name.
4. Click the variable in the Variables list to select it.
5. Use either of the following to define the value of the local variable. The value of the variable on the current data page

appears in the Variables list, beside its name and type.
Define a Data Selection value
Clear Custom data selection and define the new value by creating a data selection using either the line and column
boxes or the Data Selector.
If you use the Data Selector to select the data for the variable, and you select data that extends over more than a single
line, PlanetPress Design uses only the data on the first line (or record) as the data selection for the variable. Note that in
a database emulation, the Data Selector does not permit selections that extend over more than a single field.
Trim leading spaces: Select to remove any ASCII space characters that appear before the data in the data selection
for the variable.
Trim trailing spaces: Select to remove any ASCII space characters that appear after the data in the data selection
for the variable.
Define a Constant value OR a PlanetPress Talk Expression
SelectCustom data selection and enter a constant value or a PlanetPress Talk expression in the String to dis-
play box.

6. Click OK.

To display the name of a variable in the Text area:

l Pause the pointer over the variable.

To edit the definition of a local variable:

1. Choose Variables | EditDataSelection.
2. In the Variables list, select the variable you want to edit.
3. Right-click the variable name and choose Rename. Edit the name, then click outside the variable name.
4. In the Variable value area, edit the value of the local variable.
5. Click OK.

To delete a reference to a variable:

PlanetPress Design Objects

©2010 Objectif Lune Inc - 139 -

l In the Text area, highlight the reference you want to delete and press any key.

To delete a local variable in the Text area:

1. In the Text area, select any reference to the variable you want to delete.
2. Right-click and chooseDelete data selection.

To delete a local variable using the Variables dialog box:

1. Choose Variables | EditDataSelection.
2. In the Variableslist, select the local variable you want to delete.
3. Press DELETE.
4. Click OK.

To avoid an empty line in output when a line contains only variables, none of which contain data:

1. In the Format toolbar, locate the Skip Empty Paragraphs icon. If this toolbar is not visible, right-click in the toolbar
area of the Text area and choose Format.

2. Set the Skip empty paragraphs option. Click to turn this option on or off. When the option is on, if a line in the Text
area contains only variables, and none of those variables contain data, the line does not appear in the output. When this
option is off, an empty line appears in the output.

Data Selection Object
Data Selections are used to retrieve and display information from your data file with simple formatting. It is normally used
either for Line Repeat, or as triggers for PlanetPress Image, PlanetPress Fax and PlanetPress Searchmetadata.

In addition to the common object properties, Data Selections have the following properties:

Data

l Data Selection: This section changes depending on your emulation:
l For Line Printer, ASCII, Channel Skip andUser-Defined emulations, see
l For Database andCSV emulations, see
l For XML emulations, see
l For PDF emulations, see

l You can also use Custom Data Selections using a PlanetPress Talk command. See Custom Data Selections.
l Lines per inch: Set the lines per inch for the data selection object. This makes sense only for data selection objects
that contain two or more lines, or two or more records in the case of a database emulation.

l Alignment: Align the data selection within the data selection object, as well as the data selection object itself. The
alignment of the data selection object is with respect to the Left position setting. For example, if Left=3.5000, and you
select a Right alignment, PlanetPress Design aligns the data selection on the right edge of the object and aligns the
right edge of the object to 3.5000.

l Trim leading spaces: Remove any ASCII space characters that appear before the data in the data selection.
l Trim trailing spaces: Remove any ASCII space characters that appear after the data in the data selection.

Lines

l Text before each line: Enter any text you want to appear in the document before each line of the data selection. For
example, if the data selection is lines 32 through 34, and you enter the string “ITEM:” in this text box, ITEM: appears
three times in the document: before the data on line 32, before the data on line 33, and before the data on line 34. You
can enter either text or a PlanetPress Talk expression that resolves to a text string in this box.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 140 -

l Text after each line: Enter any text you want to appear in the document after each line of the data selection. For
example, if the data selection is lines 20 through 22, and you enter the string “SHIPPED” in this text box, SHIPPED
appears three times in the document: after the data on line 20, after the data on line 21, and after the data on line 22.
You can enter either text, or a PlanetPress Talk expression that resolves to a text string, in this box.

l On empty lines: Use to control how the document treats lines that do not contain data.
l SelectDo not skip to have the document display a blank line when it encounters an empty line in the data
selection.

l Select Skip completely empty line to have the document ignore empty lines in the data selection. No blank
line appears in the document in this case.

l Select Skip empty region to have the document ignore the line when the portion of the line included in the
data selection is empty. No blank line appears in the document in this case. In Custom data selections, Skip
empty region is equivalent to Skip completely empty line.

l Line condition: Set the line condition, if any, that you want to apply to the data selection.
l SelectNo line condition if you do not want to set a line condition on this data selection.
l SelectWhen text is present,When text is absent orWhen advanced condition is true to create
conditions for each line. See Create or Remove a Line Condition.

Archive/Email/Fax

The indexing information in this section is useful for integrating PlanetPress Design in a workflow that uses PlanetPress Image,
PlanetPress Fax or PlanetPress Search. For more information on PlanetPress Fax and PlanetPress Image, see the PlanetPress
Workflow Tools User Guide. For more information on PlanetPress Search, see the PlanetPress Search User Guide.

l PlanetPress Image options group
l PDF bookmark: Select to have PlanetPress Image use this data selection as a bookmark in the PDF file it gen-
erates for this document.

l Index: Select to use this data selection as an index term in PlanetPress Search. The name of the index term is
the one you specify in the Name box, and its value is the value of the data selection you specify in the Data prop-
erties of the data selection object. PlanetPress Image uses this information to generate the .PDI file it creates for
each PDF file it creates. The default length for the value of the index term in the PlanetPress Search database is
the length of the data selection. The length of the data selection is its length after PlanetPress Design applies the
settings of the Trim leading spaces and Trim trailing spaces boxes in the Data properties of the data selection
object. If you have two or more data selection objects that provide values for the same index term, PlanetPress
Design sets the length to that of the longest of the data selections.

l Index Name: Specify the name youwant to use for the PlanetPress Search index term. You can enter a name,
select one from the drop-down list, or leave the box empty. If you leave the box empty, PlanetPress Design
uses the name of the data selection object as the name of the index term. The drop-down list contains the
names of all index terms defined to date in the document. If you select one of these, the data selection you
create in this object becomes an additional value for that index term. You can create as many index terms as
you require in a document. In the .PDI file the name you specify here appears as the value of an ~IndexName
field. Note that the name cannot contain a colon (:) or a closing bracket (]).

l This is a Recollect index: Select to use this data selection as an index term in Recollect from Rebus soft-
ware. TIFFs and JPGs containing index values that match those provided by a Recollect query are displayed
with a red box around the corresponding index value. There will be inconsistencies with how the red binding box
containing the index is rendered in Recollect if a Data Selection that is configured as an index for Recollect is
rotated or contained in an N-Up object in PlanetPress Design.

l Add Index to metadata: The index is added to the metadata at the Page level, using a custom _PDI_Meta-
dataName field. This field is available throughmetadata data selections. This optionmust be checked if you
want the index to appear in the PDI using the PlanetPress WorkflowMetadata to PDI task.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 141 -

http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/documentation/en/planetpress-search/
http://www.objectiflune.com/documentation/en/planetpress-search/
http://www.objectiflune.com/documentation/en/planetpress-search/
http://www.objectiflune.com/documentation/en/planetpress-search/

l Email options group
l E-mail address (To): Select to have PlanetPress Image use this data selection as the E-mail address
to which to send the PDF file.

l E-mail address (Cc): Select to have PlanetPress Image use this data selection as the E-mail address
to which to send the PDF file as a carbon copy (CC).

l E-mail address (Bcc): Select to have PlanetPress Image use this data selection as the E-mail address
to which to send the PDF file as a blind carbon copy (BCC).

l Subject: Select to have PlanetPress Image use this data selection as the text of the subject line of the E-
mail it sends with the PDF file. Use the Trim box to the right of the Subject box to specify how youwant to
treat any leading or trailing spaces that appear in the data selection. Select Trim to trim both leading and
trailing spaces.Select Do not trim to leave any leading or trailing spaces in the data selection. Note that
the Trim leading spaces and Trim trailing spaces boxes in the Data properties of the data selection object
are independent from the Trim box here and have no effect on the data selection PlanetPress Image
receives.

l Body text: Select to have PlanetPress Image use this data selection as the body text of the E-mail it
sends with the PDF file. Use the Trim box to the right of the Message text box to specify how youwant to
treat any leading or trailing spaces that appear in the data selection. Select Trim to trim both leading and
trailing spaces. Select Trim leading to trim only leading spaces. Select Trim trailing to trim only trailing
spaces. Select Do not trim to leave any leading or trailing spaces in the data selection.

l PlanetPress Fax options group
l Fax number: Select to have PlanetPress Fax use this data selection as the fax number to which to fax the PDF
file.

l Information: Select to have PlanetPress Fax use this data selection as the description of the fax in both the
PlanetPress Fax dialog box and the fax log file.

Text-Based Data Selections

Text-Based data selections are used when your sample data file uses either the Line Printer Emulation, ASCII Emulation, Chan-
nel Skip Emulation or User-Defined Emulation.

The following options appear in a the Data section of any data selection object's properties when using either of these emu-
lations:

l From line: Enter the line at which to start your data selection.
l To line: Enter the line at which to stop your data selection. If you enter 0, the data selection will extend until the end of
the data page.

l From column: Enter the column for the character at which to start your data selection.
l To column: Enter the column for the character at which to stop your data selection. If you enter 0, the data selection
will extend until the end of the line(s) of the data page.

l Use Data Selector: Click to display the Data Selector to choose which lines and columns to use instead of entering
themmanually.

You can also create more advanced data selections by creating Custom Data Selections.

Using the Sample Data Pane to create a data selection

You can create a text-based data selection by opening the Sample Data pane, selecting the data you wish to use with drag and
drop, then drag the selection on the page.

You can use the following keyboard shortcuts within the Sample Data Pane to modify the selection. These shortcuts can also
be used when a data selection is selected on the page and the Sample Data Pane is open, in which case modifying the selection
changes the data selection object.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 142 -

l HOME, END: Move the currently active cell to the first cell of the current line (HOME), or the last cell of the current
line (END). This shortcut collapses the current data selection to only the currently active cell.

l PAGE DOWN, PAGE UP: Move the currently active cell forward (PAGE DOWN) or backward (PAGE UP) one
screen, where the size of a screen is defined as the number of lines currently visible in the Data Pane. Thus you can
adjust the size of a screen by resizing the Data Pane. This shortcut collapses the current data selection to only the cur-
rently active cell.

l CTRL+PAGE DOWN, CTRL+PAGE UP: Move the currently active cell right (CTRL+PAGE DOWN) or left
(CTRL+PAGE UP) one screen, where the size of a screen is defined as the number of columns currently visible in the
Data Pane. Thus you can adjust the size of a screen by resizing the Data Pane. This shortcut collapses the current data
selection to only the currently active cell.

l SHIFT+ARROW: Add cells to, or remove cells from, a data selection.
l ALT+ARROW or CTRL+SHIFT+ARROW: Move the current data selection region within the Data Pane.
l SHIFT+HOME, SHIFT+END: Increase the size of the data selection to include all cells on the same lines, from the
first column of the data page to the first column of the selection (SHIFT+HOME), or from the last column of the data
selection to the last column of the data page (SHIFT+END). The Maximum line width set in the Data Selector deter-
mines the number of the last column.

l ARROW: Move the currently active cell. This shortcut collapses the current data selection to only the currently active
cell.

Database Data Selections

Database data selections are used when your sample data file uses either the Database Emulation, or the Comma Separated
Value (CSV) Emulation.

The following options appear in a the Data section of any data selection object's properties when using either of these emu-
lations:

l Field name: A drop-down list that displays all of the fields from your database results. Click on the list and click on the
field you want to use.

l From record: Enter the number of the record where the data selection should start.
l To record: Enter the number of the record where the data selection should end. If you enter 0, the data selection will
include all your records.

l Use Data Selector: Click to display the Data Selector to choose which field and records to use instead of entering
themmanually.

You can also select multiple fields by creating a Custom Data Selections.

To create a data selection in database emulation using the Data Selector:

1. In theDataSelector, use any of the following to create the data selection.
FIELD NAME AND Range Coordinates
In the Field name box, select the field you want to use for the data selection, and use the From record and To rec-
ord boxes to specify the range of records you want to include in the data selection.
Mouse
Click in the field you want to use for the data selection, in the first of the records you want to include in the data selec-
tion, then drag the mouse to select the remaining records to include.
Keyboard Shortcuts
Click in the Data Pane and use any of the following keyboard shortcuts to navigate in the Data Pane.
HOME, END: Move the currently active cell to the first field of the current record (HOME), or the last field of the cur-
rent record (END). This shortcut collapses the current data selection to only the currently active cell.
PAGE DOWN, PAGE UP: Move the currently active cell forward (PAGE DOWN) or backward (PAGE UP) one
screen, where the size of a screen is defined as the number of lines currently visible in the Data Pane.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 143 -

CTRL+PAGE DOWN, CTRL+PAGE UP: See Use the Data Selector to Create a Data Selection .
ALT+ARROW or CTRL+SHIFT+ARROW: See Use the Data Selector to Create a Data Selection .
SHIFT+HOME, SHIFT+END: See Use the Data Selector to Create a Data Selection .
CTRL+SHIFT+ARROW: Move the current data selection.
ARROW: Move the currently active cell. This shortcut collapses the current data selection to only the currently active
cell.

2. Click OK.

XML Data Selections

XML data selections are used when your sample data file uses the XML Emulation.

The following options appear in a the Data section of any data selection object's properties when using this emulation:

l XPath: Specify the path in the structure for the data selection you want to obtain.
l From iteration and To iteration fields: Use these fields to specify the range of the data selection. The To iter-
ation field allows a value of 0. When To iteration is not zero, it must be higher than the value of From iteration and is the
last iteration index. If it is zero, the repetition occurs from the From iteration to the maximum (or entire) number of ele-
ments.

l Data Type: Specify how youwant to select the information: by Count, Name, or Value as follows:
Data Type Description

Count Returns an integer indicating the number of nodes for the specified XPath.

Name Returns a string that represents the name of the current node or the first node in the specified XPath.

Value Returns a string that represents the content of the node in the specified XPath.
l Element on which to iterate field: Select the element on which to iterate. Using this in conjunction with the From
iteration and To iteration fields narrows the scope of the data selection set.

l Use Data Selector: Click to display the Data Selector to choose which value or property to use instead of entering
themmanually.

To create a data selection in XML emulation using the Data Selector:

1. In theDataSelector, use the mouse to create the data selection.
FIELD NAME AND Range Coordinates
In the Field name box, select the field you want to use for the data selection, and use the From record and To rec-
ord boxes to specify the range of records you want to include in the data selection.
Mouse
Click in the field you want to use for the data selection, in the first of the records you want to include in the data selec-
tion, then drag the mouse to select the remaining records to include.
Keyboard Shortcuts
Click in the Data Pane and use any of the following keyboard shortcuts to navigate in the Data Pane.
HOME, END: Move the currently active cell to the first field of the current record (HOME), or the last field of the cur-
rent record (END). This shortcut collapses the current data selection to only the currently active cell.
PAGE DOWN, PAGE UP: See Use the Data Selector to Create a Data Selection .
CTRL+PAGE DOWN, CTRL+PAGE UP: See Use the Data Selector to Create a Data Selection .
SHIFT+ARROW: Use the Data Selector to Create a Data Selection .
ALT+ARROW: Use the Data Selector to Create a Data Selection .
SHIFT+HOME, SHIFT+END: Use the Data Selector to Create a Data Selection .
CTRL+SHIFT+ARROW: Use the Data Selector to Create a Data Selection .
ARROW: Use the Data Selector to Create a Data Selection .

2. Click OK.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 144 -

About PlanetPress Design XPath

In supporting XML programming functionality, PlanetPress Design data selectionmakes use of a proprietary version of XPath.
The proprietary version of XPath is derived from the W3C standard XPath. In the context of PlanetPress Design, XPath selects
data from the XML file that is associated with a PlanetPress Design document and is used in the data emulation.

In XPath, there are various types of nodes: element, attribute, text, namespace, processing-instruction, comment, and doc-
ument (root) nodes. XML documents are treated as trees of nodes. The root of the tree is called the document node (or root
node).

The characteristics of PlanetPress Talk XPath are:

l Uses a 1-based system. This means XPath accesses the first element in the XML structure using the predicate [1]. W3C
XPath also uses base 1.

l Returns a single value only. Each time PlanetPress Talk XPath encounters an element that is not indexed in the XML
structure, an index of [1] is returned instead, thus returning the value of the first element.

l Returns the content of the specified tag—meaning the W3C XPath command /text() is inherent in PlanetPress Design
XPath.

l Does not read values or attributes of the top level node if the Second Element emulation option is enabled in the Data
Selector dialog box.

PlanetPress Design XPath uses the following subset of W3C XPath:

Syntax Description
/agency/crew Navigates the data file content in a standard way

/agency/crew[1]
PlanetPress Design XPath supports simple indexing embedded in square brackets.
Result
Selects the first crew element that is the child of the agency element.

* Matches any element node
/name() Obtains the name of the element’s tag
@ Obtains an attribute

Any remaining XPath expressions and syntax used by W3C XPath are not implemented by PlanetPress Talk XPath.

PDF Data Selections

PDF data selections are used when your sample data file uses the PDF Emulation.

The following options appear in a the Data section of any data selection object's properties when using this emulation:

l Left: Enter the position (in inches) of the left boundary of your data selection.
l Top: Enter the position (in inches) of the upper boundary of your data selection.
l Right: Enter the position (in inches) of the right boundary of your data selection.
l Bottom: Enter the position (in inches) of the lower boundary of your data selection.
l Use Data Selector: Click to display the Data Selector to choose which area to use instead of entering the coordinates
manually.

Using the Sample Data Pane to create a data selection

You can create a PDF data selection by opening the Sample Data pane, selecting the data you wish to use with drag and drop,
then drag the selection on the page. The text contents of the selection appears on the page.

Edit Text-Based Data Selection Size

To edit the size of a data selection using the mouse:

PlanetPress Design Objects

©2010 Objectif Lune Inc - 145 -

1. In the Page area, select the data selection object whose data selection you want to edit.
A red rectangle appears around the selected object. It contains eight resize handles, one on each corner, and one in the
middle of each edge of the rectangle.

2. Position the pointer over the appropriate resize handle to display the double-headed arrow pointer, then click and drag
to adjust the size of the object. Release when the object contains the data selection you require. Note that if you
defined the data selection in the object using PlanetPress Talk expressions, you cannot resize the object along any of
the edges defined by those expressions.

To edit the size of a data selection or reposition it on the data page using keyboard shortcuts:

1. In the Page area, select the data selection object whose data selection you want to edit.
2. Use the following keyboard shortcuts to resize or reposition the data selection.

PlanetPress Design updates the data selection in the selected object with each press of anARROW key. More pre-
cisely, it adjusts the From line, To line, From column, and To column properties of the data selection in the selected
object to reflect the changes. The Data Pane also updates to reflect the changes to the data selection.
Resize
SHIFT+DOWN ARROW: Increase the size of the data selection by one line along its bottom edge.
SHIFT+UP ARROW Decrease the size of the data selection by one line along its bottom edge.
SHIFT+RIGHT ARROW: Increase the size of the data selection by one column along its right edge.
SHIFT+LEFT ARROW: Decrease the size of the data selection by one column along its right edge.
Reposition
ALT+UP ARROW: Move the selection up one line (or record in the case of a database emulation).
ALT+DOWN ARROW: Move the selection down one line.
ALT+LEFT ARROW: Move the selection to the left one column.
ALT+RIGHT ARROW: Move the selection to the right one column.

Postal Address Object
The Postal Address Object is used to display an address on your page and add specific address-related functionalities to
your document. You can of course display an address with other objects such as a Text Object or aData Selection
Object, but the Postal Address Object includes features not available in other objects.

Metadata

The Postal Address Object was originally created in order to facilitate communication with postal sorting software, which uses
the metadata created by PlanetPress in order to sort the data and print in the correct order. However, this metadata can also
have other uses to you, and the exact level at which the metadata level is added (and what levels are created) depends on two
options: Use Data for Postal Sorting, and the Group ID input box. Please review the table below for more precise
details:

Group ID Present Postal Sorting Checked Metadata in level Group ID In Metadata Metadata divided on
No No Page No Datapage

Yes No Page Yes Datapage

No Yes Document No Document

Yes Yes Document Yes Group & Document

In addition to the common object properties, postal address objects have the following properties in the Address data tab:

Data Tab

PlanetPress Design Objects

©2010 Objectif Lune Inc - 146 -

l Custom data selections:
l 1 Through 8: The 8 data selection boxes are where you put your address. Just like any other PlanetPress
Talk-enabled input box, you can enter any PlanetPress Talk expression in these inputs. You can also con-
catenate them, for example@(1, 1, 50) + ', ' + @(2, 1, 2) + ' ' + @(3, 1, 5) for City, State ZIP.

l Group ID: Enter a PlanetPress Talk expression that defines the Group ID for your data file. See Metadata (above) for
more information on the behavior of this option.

l Lines per Inch: Determines the vertical spacing between the line by changing the lines per inch. A lower value will
place more spacing (less lines per inch, thus lines take more space) and vice versa. Note that font size will also affect
the spacing.

l From bottom to top: If you wish your address to be bottom-aligned, select this option, which will push all the lines
to the bottom of the object.

l Skip Empty Lines: Check if you wish option is checked, empty lines in the data selections will be removed from the
result on the page. If used in combination with the From bottom to top option, the empty lines will cause the rest of the
information to move down, instead of up.

l Use Data for Postal Sorting: Generates additional hidden fields that are for use with Postal Sorting/Address Cleans-
ing tasks in PlanetPress Workflow Tools. This also changes where the metadata is located (see table above).

Advanced Options Tab

l Address Lines: The display names for each of the 8 address lines and the Group ID field.
l Metadata Field Name: The names of the metadata fields that will be created whenever metadata is regenerated
either from PlanetPress Design or PlanetPress Workflow Tools.

l Restore Defaults: Restore the default metadata field names.
l Generate Names: Generate unique and randommetadata field names.

PlanetPress Talk Object
The PlanetPress Talk object is used to add PlanetPress Talk code to your document.

In addition to the common object properties, PlanetPress Talk objects have the following properties:

PlanetPress Talk code:

l Code area: Enter your PlanetPress Talk code here.
l Refresh Preview: If the Object Preview Window is open, refreshes the preview that is generated by the PlanetPress
Talk code. For performance reasons, this does not occur automatically.

l Use PressTalk Editor: Opens the "The PlanetPress Talk Editor" (page 201) window.

For more information on PlanetPress Talk, see the chapter on PlanetPress Talk.

PlanetPress Design Objects

©2010 Objectif Lune Inc - 147 -

©2010 Objectif Lune Inc - 148 -

Shape Object
Shape objects are used to add a variety of lines, arrows, or geometric shapes to your document. Add shapes one at a time.
You can also group one or more shapes that you add to the document andmanipulate the group as a single shape.

In addition to the common object properties, shape objects have the following properties:

Type Tab

l Shape type: Select the type of style of the shape you want from the list of Box, Line, Circle, Ellipse, Arrow or Triangle.
l Style: Select the style for the lines in the shape.
l Width: Enter the width, in units of points, for lines in the shape.
l Color box: View the current color for the lines in the shape.
l Color button: Click to select a color for the lines in the shape using the Color Picker.
l Arrow (available when the Shape type is Arrow):

l Start Style: Select a style for the arrowhead at the start of the arrow.
l End Style: Select a style for the arrowhead at the end of the arrow.

Color Tab

l Fill: Click to fill the object with a specific color or gradient. This enables the properties in the Fill group
l Color box: View the current fill color for the background box.
l Color button: Click to select the fill color for the background box using the Color Picker.
l Gradient fill
l Gradient fill: Select to use a gradient fill for the background box. The start color for the gradient is the fill
color. Use the controls in this area to set the end color for the gradient, the number of gradations the gradient
uses, and the direction of the gradient. Gradients are not available if the background box you select for the
text/box object has one or more rounded corners.

l Color box: View the end color for the gradient.
l Color button: Click to select the end color for the gradient using the Color Picker.
l Steps: Enter the number of gradations you want to use in the gradient, or use the spin buttons to set the
value. The number of gradations determines how obvious the transition is between the Fill color and the
Gradient fill color. The maximum number of gradations is 100.

l Gradient direction: Select the direction for the gradient.
l Reverse: Select to reverse the start and end colors for the gradient.

l Shadow: Select to display a drop shadow with the background box.
l Color box: View the current color for the drop shadow.
l Color button: Click Color to select a color for the shadow using the Color Picker.
l Width: Enter the width for the drop shadow. Units are typographical points.
l Scale ratio: Enter the percentage by which you want to scale the text object to create the drop shadow.
l X shift, Y shift: Select the X and Y offsets respectively for the center of the drop shadow. The coordinates
(0,0) align the center of the drop shadow with the center of the text object. Positive X values move the shadow
to the right of the center of the text object, and negative X values move it to the left of the center of the text
object. Positive Y values move the shadow below the center of the text object, and negative Y values move it
above the center of the text object.

N-Up Object

The N-Up Object is used to execute a virtual page N-Up. N-Up refers to executing a page such that two or more instances of it
print on one side of a sheet of paper.The page you execute N-Upmust be of type virtual, however it overlays can be asso-

©2010 Objectif Lune Inc - 149 -

ciated with the virtual page. When PlanetPress Design scales the virtual page in the N-Up object, it simultaneously scales any
overlays associated with that page.

Data Pages and N-Up: It is important to note that because the N-Up object can change the data page within a sin-
gle page, any other object after the N-Up object that uses data selection will always point to the last data page.

In addition to the common object properties, N-Up objects have the following properties:

l Horizontal
l Number of repeats: Enter the number of times you want to repeat the page horizontally.
l Space between each repeat (Horizontally): Enter the amount of space you want to leave between each
horizontal repeat. Units are as set in the User Options dialog box.

l Vertical
l Number of repeats: Enter the number of times you want to repeat the page vertically.
l Space between each repeat: Enter the amount of space you want to leave between each vertical repeat.
Units are as set in the User Options dialog box.

l Page options
l Scale ratio: Enter the percentage by which you want to scale each instance of the page.
l Page to execute n-up: Select the virtual page you want to execute n-up.
l Alignment: Select the order in which the n-up object repeats the page. You use this option when you are print-
ing in duplex mode, have an n-up object on both of the two pages that print duplex, and need to control how the
contents of the two pages align. The image and text on the front of the invitation should have the same orien-
tation as the text on the back of the invitation, so that when the recipient turns it over, they do not have to rotate
it to read the text. You use the Repeat order option in each n-up object to ensure the proper alignment of the
front and back of the postcard. Each of the options here define both a starting point and direction for the repeat.

l Data options
l Change data page with each repeat: Select to change the data page at each repeat. Clear to use the
same data page for all repeats. If you select this option, be sure you understand the implications of the data
page changes for any other objects in the document that use data selections. This option is not available in doc-
uments that use a user-defined emulation.

l Skip empty data page: Select to skip any empty data pages. Clear to execute a repeat with a data page
even when that data page is empty.

l Skip repeat when page condition is false: Use this option to control whether the n-up object leaves an
empty repeat when a page condition set on the virtual page resolves to False. Select to prevent the n-up object
from leaving an empty repeat of the virtual page if the page condition on the virtual page resolves to False.
Clear to have the n-up object leave an empty repeat of the virtual page when the condition resolves to False.

l Advance data page before executing: Select to advance to the next data page before executing this n-up
object. Clear to start executing this n-up object with the current data page. This option determines whether a
data page change occurs after the last repeat in one n-up object, before the first repeat in the next n-up object.

Picture Object
The picture object is basically a placeholder that can display a picture or PDF located in any of the following locations:

l As a picture resource within the PlanetPress Design Document
l As a local picture file on the hard drive of the computer or server running PlanetPress Suite
l As a picture file located in a virtual printer drive
l As a picture file located on a printer's memory (flash, hard drive or RAM)

©2010 Objectif Lune Inc - 150 -

In all cases, the image can either be static (always the same) or dynamic (depending on certain conditions or the data). Only
certain image formats are supported by PlanetPress Suite. These image formats are listed in Supported Image Formats.

For more information on image formats, resolution, quality and resources, please see the chapter on Adding Resources.

In addition to the common object properties, image objects have the following properties:

Settings

l Image: Specify the image resource to associate with the picture object, using one of the followingmethods:
l Click the drop-down to display a list of picture resources of your PlanetPress Design document. Click on the
image to use it.

l Enter an image file name (static or dynamic using PlanetPress Talk). PlanetPress Design will first look in its
resources for the image name. If it cannot find it, it will look in the Virtual Drive (if located on a computer) or the
printer's hard drive (if printed in Printer Centric or Optimized PostScript runmodes).

l Enter the full path of an image on the hard drive. PlanetPress will use the file on your computer. This method
will not work in Printer Centric runmode.

l Click the Browse button to select an image file using the Open dialog box. Once you select an image file, Plan-
etPress Designmakes a copy of that image file and adds it to the Image resources of the document. If the image
resource is a bitmapped image, it sets the image quality and scanline orientation of the resource to reflect the
values set in the Document properties dialog box.

l Page: If the image resource is a multi-page PDF file, enter the page number of the file that you want to use as the
image for this picture object. You can also use a PlanetPress Talk expression in this box to specify the page number.
When PlanetPress Design adds an image resource that is in PDF format, it adds the complete file; a picture object can
reference only a single page of that image resource.

l Transparent: If the image is a monochrome bitmapped image, select to make the background color of that image
transparent. This makes the white pixels of the image transparent.

l Duotone: Select to create a duotone by replacing the foreground color in the bitmapped image with a color.
Click Color to select the color using the Color Picker. The Color box displays the current duotone color. Note
that any changes to the foreground color are internal to the picture object and do not have any effect on the
image resource itself.

l Color: Click to select the foreground color for the duotone using the Color Picker. The color you select replaces
the current foreground color in the bitmapped image.

l Color box: View the current duotone color. This is the color that replaces the foreground color in the bitmapped
image.

l Clipped region: Select to specify whether the image resource must be clipped, defining a clipped region using Left,
Top,Width andHeight coordinates.

l Invert clipped region: Select to invert the specified clipped region, thus using the reverse of the designated
region.

l Fit setting: Select how youwant the document to size the image relative to the size of the picture object.
l SelectConstant resolution to display the image at the resolution specified in the relevant resolution box in
the Document dialog box or at the default size. This is the least time-consuming of all the resolution options
since it does not require any scaling of the image at runtime.

l SelectConstant height to scale the image such that its height is equal to the height of the picture object. The
scaling preserves the aspect ratio of the image, and thus in some cases may result in the image extending
beyond the right edge of the picture object.

l SelectConstant width to scale the image such that its width is equal to the width of the picture object. The
scaling preserves the aspect ratio of the image, and thus in some cases may result in the image extending
beyond the bottom edge of the picture object.

©2010 Objectif Lune Inc - 151 -

l SelectBest fit to scale the image to create the best fit with the width and height of the picture object. The scal-
ing preserves the aspect ratio of the image. This is the most time-consuming of all the Fit setting options since it
requires calculating the image size that yields the best fit with the picture object. Best fit is the default Fit setting.

l On error: Select how youwant the document to handle any image it cannot locate.
l SelectPrint square to have the document display a square with an X in it in the image area.
l SelectBlank to have the document leave the image area blank.
l Select Stop job to have the document abort execution and output a PostScript error.

Barcode Object

With PlanetPress Design, you can add a variety of barcodes to your documents simply by using drag and drop, including 1d
and 2d barcodes. To view a full list of barcodes supported by PlanetPress Design, see Supported Barcodes. Note however that
while we support these barcode types, your own barcode reader may require specific parameters that are different than the
standards provided to us and require tweaking or modifications. For detailed descriptions of each one of the options offered by
specific barcodes, or for background information on barcodes, refer the documentation provided by individual barcode sup-
pliers.

None of the barcodes used in PlanetPress Design supports Double Byte or Arabic characters.

In addition to the common object properties, barcode objects have the following properties:

Barcode Options Tab

l Barcode Type: Select the type of barcode you wish to use.
l Options group (some options may be unavailable for certain barcode types, according to their own specifications):
l Add human readable: Check to have human-readable (alphanumerical) characters appear underneath the barcode
for verification of its value.

l Automatically append checksum: Check to have the checksum automatically calculated and inserted in the bar-
code value.

l Add start/stop character automatically: Check to have start/stop characters added to the barcode value.
l Bar width (in mils.): Changes the bars of the barcode. This is necessary only if the dispersion of ink on your
printer's paper causes the bars to be too slim or too wide.

l Barcode settings: One or two groups may appear underneath the other options in order to offer more control over
the barcode. These options are taken from the barcode's specifications and are explained either in Supported Barcodes
or in the barcode reader's documentation.

Data Tab

l The options here are identical to those of the Data Selection Object.

Supported Barcodes
This section provides basic information on the barcodes supported by PlanetPress Design, such as which characters are com-
patible with which barcodes, how many characters can be used in a given barcode, etc.

Australia Post

This barcode must begin with one of the following two digit Format Control Code (FCC) number:
11, 59, or 62.

©2010 Objectif Lune Inc - 152 -

The FCC number must be followed by eight (8) digits. These are mandatory to specify the destination. Additional characters
may be used for the Customer Information Field. The number characters varies according to each FCC format:

l Format 11: No extra characters.
l Format 59: Up to 8 digits or 5 letters.
l Format 62: Up to 15 digits or 10 letters.

Compatible characters for the Customer Information Field include:

l Upper and lower case letters: a to z and A to Z.
l Digits: 0 to 9.
l Symbols: space and # (pound).

A checksum is automatically calculated.

Aztec

This barcode can be used to generate Normal, Compact or Full Aztec barcodes. This barcode supports the full ASCII character
set and its maximum data capacity depends on the selected barcode type:

l Normal barcode mode: Up to 3800 digits, or up to 3000 alphanumeric characters.
l Compact barcode mode: Up to 58 digits, or up to 47 alphanumeric characters.
l Full barcode mode: Up to 310 digits, or up to 250 alphanumeric characters.

Bar width is set usingmillimeters and corresponds to the minimum barcode width.

Error correction levels correspond to the percentage the symbol that includes error checking data. Note that level 0 provides
optimal error correction. Each barcode mode has its own value range (Normal mode values range from 0 to 99, Compact from
0 to 4; and Full from 0 to 32).

CEPNet (Brazilian Postal Code)

CEPNet is the equivalent of the PostNet barcode but is used in Brazil. It uses the same basic specifications as PostNet and thus
looks graphically similar.

CEPNet accepts an 8-digit Brazilian postal code and will fail on any other data.

Codabar

This barcode must start with a Start character and end with a Stop character. Characters A, B, C and D can be used as Start
and Stop characters.

For the remaining barcode data, the following characters may be used:

l Digits: 0 to 9.
l Symbols: - (hyphen), $(dollar),: (colon), / (slash),. (period), + (plus).

A checksum is automatically calculated.

CodablockF

This 2D barcode can currently only be used in documents that will be printed using either the Optimized Postscript or Windows
Printingmode (printer centric mode will be added in a future release).

©2010 Objectif Lune Inc - 153 -

This barcode supports the full ASCII character set based on the 3 alphabets used in the Code128 barcode (see below). The
switch between alphabets is done automatically. Special characters in the A alphabet are called with their ASCII value using
the following syntax: ^nnn (such as ^010 for LineFeed).

A minimum of 3 characters is required in this barcode. The maximum string length for this barcode varies depending on the
control characters used in the code. Bar width is set usingmillimeters and corresponds to the minimum barcode width.

Code 11

The following characters are valid for this barcode:

l Digits: 0 to 9.
l Symbol: - (hyphen).

A checksum is optional, but should be added to ensure data reliability. When the Checksum option is selected, the required
checksum digits are added automatically.

l For data with fewer than 10 characters, a single checksum digit is used.
l For data with 10 characters or more, two checksum digits are used.

Code 16k

This 2D barcode can currently only be used in documents that will be printed using either the Optimized Postscript or Windows
Printingmode (printer centric mode will be added in a future release).

This barcode supports the full ASCII character set based on the 3 alphabets used in the Code128 barcode (see below). A max-
imum of 5 characters per row over 16 rows is permitted. If the first 4 characters in the data are numeric, a 'SwitchC' character
is automatically added before the data. Special characters within the data can be used to switch alphabets in the same way as
with the Code 128 barcode.

The selected barcode mode determines the starting codeset and leading character:

l Automatic: The codeset and leading character are selected automatically.
l Mode 0: Selects codeset A.
l Mode 1: Selects codeset B.
l Mode 2: Selects codeset C.
l Mode 3: Selects codeset B and sets the leading character to’Fnc1’.
l Mode 4: Selects codeset C and sets the leading character to’Fnc1’.
l Mode 5: Selects codeset C and sets the leading character to’Shift B’.
l Mode 6: Selects codeset C and sets the leading characters to two successive’Shift B’ characters.

Bar width is set usingmillimeters and corresponds to the minimum barcode width.

Code 39

The following characters are valid for this barcode:

l Digits: 0 to 9.
l Upper case letters: A to Z.
l Symbols: space, - (hyphen), $(dollar), / (slash), + (plus),% (percent), * (star),. (period).

To go beyond the 44 basic characters listed above, youmay use extended ASCII characters (granted that scanners are pro-
grammed for this, otherwise extended characters will simply be read as basic characters).

To use extended characters, use the encoding listed in the following table:

©2010 Objectif Lune Inc - 154 -

Character Encode as Character Encode as Character Encode as Character Encode as

NUL %U SP Space @ %V ` %W

SOH $A ! /A A A a +A

STX $B “ /B B B b +B

ETX $C # /C C C c +C

EOT $D $ /D D D d +D

ENQ $E % /E E E e +E

ACK $F & /F F F f +F

BEL $G ' /G G G g +G

BS $H (/H H H H +H

HT $I) /I I I i +I

LF $J * /J J J j +J

VT $K + /K K K k +K

FF $L , /L L L l +L

CR $M - - M M m +M

SO $N . . N N n +N

SI $O / /O O O o +O

DLE $P 0 0 P P p +P

DC1 $Q 1 1 Q Q q +Q

DC2 $R 2 2 R R r +R

DC3 $S 3 3 S S s +S

DC4 $T 4 4 T T t +T

NAK $U 5 5 U U u +U

SYN $V 6 6 V V v +V

ETB $W 7 7 W W w +W

CAN $X 8 8 X X x +X

EM $Y 9 9 Y Y y +Y

SUB $Z : /Z Z Z z +Z

ESC %A ; %F [%K { %P

FS %B << %G \ %L | %Q

GS %C = %H] %M } %R

RS %D > %I ^ %N ~ %S

YS %E ? %J _ %O DEL %T,%X,%Y,%Z

A checksum is optional, but should be added to ensure data reliability.

Code 49

This 2D barcode can currently only be used in documents that will be printed using either the Optimized Postscript or Windows
Printingmode (printer centric mode will be added in a future release).

The data for this barcode can include both numeric and alphanumeric characters. When only numbers are present in the data,
the maximum number of characters is 82. When alphanumeric characters are present, the maximum is 50 characters.

Bar width is set usingmillimeters and corresponds to the minimum barcode width.

©2010 Objectif Lune Inc - 155 -

Code 93

The following characters are valid for this barcode:

l Digits: 0 to 9.
l Upper case letters: A to Z.
l Symbols: space, - (hyphen), $(dollar), / (slash), + (plus),% (percent), * (star),. (period).

To go beyond the 44 basic characters listed above, youmay use extended ASCII characters (granted that scanners are pro-
grammed for this, otherwise extended characters will simply be read as basic characters).

To use extended characters, use the encodings listed in the following table:

Character Encode as Character Encode as Character Encode as Character Encode as

NUL (%)U SP Space @ (%)V ` (%)W

SOH ($)A ! (/)A A A a (+)A

STX ($)B “ (/)B B B b (+)B

ETX ($)C # (/)C C C c (+)C

EOT ($)D $ (/)D D D d (+)D

ENQ ($)E % (/)E E E e (+)E

ACK ($)F & (/)F F F f (+)F

BEL ($)G ' (/)G G G g (+)G

BS ($)H ((/)H H H H (+)H

HT ($)I) (/)I I I i (+)I

LF ($)J * (/)J J J j (+)J

VT ($)K + (/)K K K k (+)K

FF ($)L , (/)L L L l (+)L

CR ($)M - - M M m (+)M

SO ($)N . . N N n (+)N

SI ($)O / (/)O O O o (+)O

DLE ($)P 0 0 P P p (+)P

DC1 ($)Q 1 1 Q Q q (+)Q

DC2 ($)R 2 2 R R r (+)R

DC3 ($)S 3 3 S S s (+)S

DC4 ($)T 4 4 T T t (+)T

NAK ($)U 5 5 U U u (+)U

SYN ($)V 6 6 V V v (+)V

ETB ($)W 7 7 W W w (+)W

CAN ($)X 8 8 X X x (+)X

EM ($)Y 9 9 Y Y y (+)Y

SUB ($)Z : (/)Z Z Z z (+)Z

ESC (%)A ; (%)F [(%)K { (%)P

FS (%)B << (%)G \ (%)L | (%)Q

GS (%)C = (%)H] (%)M } (%)R

©2010 Objectif Lune Inc - 156 -

RS (%)D > (%)I ^ (%)N ~ (%)S

YS (%)E ? (%)J _ (%)O DEL (%)T, (%)X, (%)Y, (%)Z

A checksum is mandatory for this barcode (it is always added automatically).

Code 128

Code 128 uses 3 alphabets, each containing 106 characters:

l Alphabet A contains no lower case characters but includes special characters, such as NUL, ACK and FF.
l Alphabet B contains upper and lower case characters.
l Alphabet C is used almost exclusively for double density numeric values, ranging from 00 to 99.

In the case of alphabet A, to enter the non-printable characters listed as ordinals 64 to 94 in the following table, youmust use
alphabet B equivalents (for the ACK character, for example, use character f).

The non-printable characters listed as ordinals 95 to 105 can be entered using their ordinal value preceded by ^. To enter
FNC1, for example, you would enter ^102. To enter an actual ^ character, you would enter ^062.

Numeric values entered using alphabet C are always considered as digit pairs (0001, for example, for values 0 and 1). Only
when you use alphabets A or B can you enter an odd number of digits (001, for example, for values 0, 0 and 1).

Having {} taken as a pair of characters to be converted into alphabet C will fail the job and result in a typecheck error.

The following table lists the characters that can be used in all three alphabets:

Ordinal Value in alphabet Encoding Ordinal Value in alphabet Encoding

A B C A B C

00 SP SP 00 11011001100 53 U U 53 11011101110

01 ! ! 01 11001101100 54 V V 54 11101011000

02 “ “ 02 11001100110 55 W W 55 11101000110

03 # # 03 10010011000 56 X X 56 11100010110

04 $ $ 04 10010001100 57 Y Y 57 11101101000

05 % % 05 10001001100 58 Z Z 58 11101100010

06 & & 06 10011001000 59 [[59 11100011010

07 ' ' 07 10011000100 60 \ \ 60 11101111010

08 ((08 10001100100 61]] 61 11001000010

09)) 09 11001001000 62 ^ ^ 62 11110001010

10 * * 10 11001000100 63 _ _ 63 10100110000

11 + + 11 11000100100 64 NUL ` 64 10100001100

12 , , 12 10110011100 65 SOH a 65 10010110000

13 - - 13 10011011100 66 STX b 66 10010000110

14 . . 14 10011001110 67 ETX c 67 10000101100

15 / / 15 10111001100 68 EOT d 68 10000100110

16 0 0 16 10011101100 69 ENQ e 69 10110010000

17 1 1 17 10011100110 70 ACK f 70 10110000100

18 2 2 18 11001110010 71 BEL g 71 10011010000

19 3 3 19 11001011100 72 BS h 72 10011000010

20 4 4 20 11001001110 73 HT I 73 10000110100

©2010 Objectif Lune Inc - 157 -

21 5 5 21 11011100100 74 LF j 74 10000110010

22 6 6 22 11001110100 75 VT k 75 11000010010

23 7 7 23 11101101110 76 FF l 76 11001010000

24 8 8 24 11101001100 77 CR m 77 11110111010

25 9 9 25 11100101100 78 SO n 78 11000010100

26 : : 26 11100100110 79 SI o 79 10001111010

27 ; ; 27 11101100100 80 DLE p 80 10100111100

28 < < 28 11100110100 81 DC1 q 81 10010111100

29 = = 29 11100110010 82 DC2 r 82 10010011110

30 > > 30 11011011000 83 DC3 s 83 10111100100

31 ? ? 31 11011000110 84 DC4 t 84 10011110100

32 @ @ 32 11000110110 85 NAK u 85 10011110010

33 A A 33 10100011000 86 SYN v 86 11110100100

34 B B 34 10001011000 87 ETB w 87 11110010100

35 C C 35 10001000110 88 CAN x 88 11110010010

36 D D 36 10110001000 89 EM y 89 11011011110

37 E E 37 10001101000 90 SUB z 90 11011110110

38 F F 38 10001100010 91 ESC { 91 11110110110

39 G G 39 11010001000 92 FS | 92 10101111000

40 H H 40 11000101000 93 GS } 93 10100011110

41 I I 41 11000100010 94 RS ~ 94 10001011110

42 J J 42 10110111000 95 US DEL 95 10111101000

43 K K 43 10110001110 96 FNC3 FNC3 96 10111100010

44 L L 44 10001101110 97 FNC2 FNC2 97 11110101000

45 M M 45 10111011000 98 SHIFT SHIFT 98 11110100010

46 N N 46 10111000110 99 Code C Code C 99 10111011110

47 O O 47 10001110110 100 Code B FNC4 Code B 10111101110

48 P P 48 11101110110 101 FNC4 Code A Code A 11101011110

49 Q Q 49 11010001110 102 FNC1 FNC1 FNC1 11110101110

50 R R 50 11000101110 103 START A START A START A 11010000100

51 S S 51 11011101000 104 START B START B START B 11010010000

52 T T 52 11011100010 105 START C START C START C 11010011100

STOP STOP STOP 11000111010

The checksum is always calculated automatically.

Datamatrix

This barcode supports the full ASCII character set and its maximum data capacity depends on the data type and the selected
barcode mode:

l Square: Up to 2046 double-digits (00 to 99), or up to 2047 alphanumeric characters.
l Rectangular: Up to 98 double-digits (00 to 99), or up to 70 alphanumeric characters.

Bar width is set usingmillimeters and corresponds to the minimum barcode width.

©2010 Objectif Lune Inc - 158 -

Error correction levels depends on the selected barcode mode. Levels range from 0 to 6 in Rectangular mode, and from 0 to 24
in Square mode. Note that the number of characters available is inversily proportional to the error correction that has been
set.

Discrete 2 of 5

The following characters are valid for this barcode:

l Digits: 0 to 9.

A checksum is automatically calculated. Optional bearer bars can be added for added reliability.

FIM

This static code can only represent one of three available FIM types: FIMA, FIMB, and FIMC.

GS1 Databar (RSS)

This barcode supports digits only and the maximum number of characters allowed is based on the selected barcode mode.

l RSS-14, RSS-14 Truncated, RSS Limited, RSS-14 Stacked, RSS-14 Stacked Omnidirectional: Limited to 14 digits (this
includes a 1 digit checksum).

l RSS Expanded and RSS Expanded Stacked: No set character limit.

Bar width is set usingmillimeters and corresponds to the minimum barcode width.

IMB/OneCode

The Intelligent Mail Barcode is used by USPS to track letters and flats. The barcode has no selectable option, but the data must
be formatted in a very specific way to be useable. The data must be one single string of letters, composed of the following
items:

l Barcode Identifyer: ID String of exactly 2 characters containing only numeric digits.
l Service Type Identifyer: String of exactly 3 characters containing only numeric digits.
l Mailer Identifier: String of either 6 or 9 characters containing only numeric digits.
l Serial Number: String with a length of 6 or 9 digits. The Mailer ID + Serial Number must have a total length of 15.
l Delivery Point Zipcode: Optional string with a length of 0, 5, 9 or 11 digits.

For more information on the OneCode barcode, please see www.ribbs.usps.gov/onecodesolution.

Interleaved 2 of 5

This code must have an even number of characters (including the checksum character), so if number of characters in the data
is odd, it should be prefixed with the digit 0.

The following characters are valid for this barcode:

l Digits (0 to 9).

Bearer bars are optional, but can be added for added reliability.

The checksum is optional and can be added with the checksum option.

©2010 Objectif Lune Inc - 159 -

http://www.ribbs.usps.gov/onecodesolution

Japan Post

The Japan Post barcode will accept digits and uppercase letters and the hyphen. The data consists of a 7 digit postal code plus
address data. If the address data is less than 13 characters the remaining character positions are filled with control characters
to make the length 20.

The postal code sectionmay have a hyphen at the 4th character position (eg. 123-4567) although this hyphen does not appear
in the encoded data. There may also be a hyphen between the postal code and the address data (eg. 154-0023-1-3-2-A-507).
Again this hyphen does not appear in the encoded data. Note that the remaining hyphens are encoded.

Maxicode

This 2D barcode can be used in documents that will be printed using the Optimized Postscript, Windows Printing or printer cen-
tric mode.

This barcode supports various data types and the maximum number of characters allowed is based on the selected barcode
mode:

l Mode 2: For shipping data including a zipcode.
l Mode 3: For shipping data including a postal code.
l Mode 4: For any data (full ASCII supported) up to 84 characters.
l Mode 5: For any data (full ASCII supported) up to 68 characters.
l Mode 6: For any data (full ASCII supported) up to 84 characters.

Note that the Barcode Options page of the Barcode dialog box may also be used to enter the data. When
mode 2 or 3 is selected, all the corresponding dialog box fields are accessible. Whenmode 4, 5 or 6 is
selected, only the Message dialog box field may be used to enter data. Entering data this way supersedes
any data entered using the Data page of the Barcode dialog box.

Micro PDF417

This barcode supports various data types and the maximum number of characters allowed is based on the selected barcode
mode:

l Text compaction: Alphanumeric characters up to a maximum of 250 characters.
l Numeric compaction: Numeric characters up to a maximum of 366 characters.

The number of columns in the barcode may be selected as required up to a maximum limit of 4 columns.

Bar width is set usingmillimeters and corresponds to the minimum barcode width.

Note that the error correction level is always set automatically.

Micro QR

This barcode supports various data types and the maximum number of characters allowed is based on the selected barcode
mode:

l Numeric: Numeric characters up to a maximum of 35 digits.
l Alphanumeric: Numeric and alphanumeric characters (limited to uppercase letters, spaces, and the following char-
acters: dollar ($), percent (%), star (*), plus (+), minus (-), period (.), slash (/),and colon (:) only up to a maximum of
21 characters.

Bar width is set usingmillimeters and corresponds to the minimum barcode width.

©2010 Objectif Lune Inc - 160 -

Error correctionmay be set from Level 0 to Level 3.

MSI Plessey

This code can contain a variable number of characters. The following characters are valid for this barcode:

l Digits: 0 to 9.

A checksum is added automatically.

PDF417

This 2D barcode replaces the PDF417 barcode used in previous versions of PlanetPress Design. It can be used in documents
that will be printed using the Optimized Postscript, Windows Printing or printer centric mode.

If you open document that uses the “old PDF417 barcode”, existing PDF417 barcodes will remain unchanged, and any new
PDF417 barcode that youmay add to that document will also use the “old PDF417 barcode”. If you want this older document to
use the new barcode, you will have to delete all its “old PDF417 barcodes”, to save the document, and then to add new PDF417
barcodes. Barcodes added to older documents that did not contain any PDF417 barcode or to new documents will be added
using the “new PDF417 barcode”.

This barcode supports various data types and the maximum number of characters allowed is based on the selected barcode
mode:

l Text: Basic alphanumeric characters up to a maximum of 1847 characters.
l Binary/ASCII Plus: Extended ASCII character set (all 256 characters) up to a maximum of 1847 characters.
l Numeric: Numeric characters up to a maximum of 2707 digits.

The number of columns in the barcode may be selected as required up to a maximum limit of 20 columns.

Bar width is set usingmillimeters and corresponds to the minimum barcode width.

Error correctionmay be set from Level 0 to Level 8.

Place a checkmark in the Truncated box to make the barcode a truncated PDF417 barcode. By default, barcodes are added
as standard PDF417 barcodes.

Plessey

This code can contain a variable number of characters. The following characters are valid for this barcode:

l Digits: 0 to 9.
l Upper case letters: A to F.

A two-digit checksum is added automatically.

USPS Postnet

Standard Postnet codes must contain exactly 5 characters. The following characters are valid for this barcode:

l Digits: 0 to 9.

Apart from the standard Postnet code, two additional codes can also be used:

l Postnet+4 (5 digits + 4 supplemental digits).
l Postnet+6 (5 digits + 6 supplemental digits).

©2010 Objectif Lune Inc - 161 -

A checksum is added automatically.

QR Code

This barcode supports various data types and the maximum number of characters allowed is based on the selected barcode
mode:

l Numeric: Numeric characters up to a maximum of 7089 digits.
l Alphanumeric: Numeric and alphanumeric characters. Limited to uppercase letters, spaces and the following
characters: dollar ($), percent (%), star (*), plus (+), minus (-), period (.), slash (/), colon (:), semicolon (;), at (@)
and comma (,) up to a maximum of 4296 characters. Note that lowercase characters are automatically converted to
uppercase.

l Kanji: All double-byte characters.
l Full: All ASCII characters.

Bar width is set usingmillimeters and corresponds to the minimum barcode width.

Error correctionmay be set from Level 0 to Level 3.

Royal Mail

The following characters are valid for this barcode:

l Digits: 0 to 9.
l Upper case letters: A to Z.

A checksum is added automatically.

UPC

The UPC barcode in PlanetPress Design supports multiple subtypes:

UPC-A

Standard UPC-A codes must contain exactly 12 characters (including the checksum character). The following characters are
valid for this barcode:

l Digits: 0 to 9.

Apart from the standard UPC-A code, two additional codes can also be used:

l UPC-A+2 (12 digits + 2 supplemental digits).
l UPC-A+5 (12 digits + 5 supplemental digits).

A checksum is added automatically.

UPC-E

Standard UPC-E codes must contain exactly 8 characters:

l Must start with the digit 0 (must be added if not included in data).
l Six variable digits
l One checksum digit (added automatically).

The following characters are valid for this barcode:

l Digits: 0 to 9.

©2010 Objectif Lune Inc - 162 -

Apart from the standard UPC-E code, two additional codes can also be used:

l UPC-E+2 (8 digits + 2 supplemental digits).
l UPC-E+5 (8 digits + 5 supplemental digits).

EAN-13

The standard code must contain exactly 13 characters (this includes one checksum character).

The following characters are valid for this barcode:

l Digits (0 to 9).

Apart from the standard EAN-13 code, two additional codes can also be used:

l EAN-13+2 (15 characters in all).
l EAN-13+5 (18 characters in all).

A checksum is automatically calculated for this barcode.

Human readable characters are always included in the code.

EAN-8

The standard EAN-8 code must contain exactly 8 characters (this includes one checksum character).

The following characters are valid for this barcode:

l Digits (0 to 9).

Apart from the standard EAN-8 code, two additional codes can also be used:

l EAN-8+2 (10 characters in all)
l EAN-8+5 (13 characters in all)

Human readable characters are always included in the code.

ISBN

Standard ISBN barcodes contain 10 digits (9 digits for the data plus 1 checksum digit) or 13 digits (a 3 digit prefix, 9 digits for
the data plus 1 checksum digit).

l ISBN 10 digit codes typically include 4 sections and 3 hyphens or spaces.
l ISBN 13 digit codes include 5 sections and 4 hyphens or spaces. The prefix is usually 978 or 979.

Using hyphens or spaces is not compulsory but recommended to clearly separate each part of the code.

The following characters are valid for this barcode:

l Digits: 0 to 9.
l Symbols: space, - (hyphens).

Apart from the standard ISBN code, two additional codes can also be used:

l ISBN+2 (10 or 13 characters + 2 supplemental digits).
l ISBN+5 (10 or 13 characters + 5 supplemental digits).

©2010 Objectif Lune Inc - 163 -

Business Graphic Object
A business graphic in PlanetPress Design is a bar graph, pie chart, or line graph. PlanetPress Design builds the graphic from
the static or variable data you select for the graphic. There are 4 type of business graphics available:

Bar Graph

In a bar graph, PlanetPress Design calculates the maximumwidth of each bar by dividing the width of the business graph
object by the number of bars in the graph. It then calculates the actual width of the bar using the Spacing percentage property
you set for the bar graph.

Bar Graph Options

l Show text on graphic: Select to display the data as text under the bar.
l Baseline value: Enter a baseline value for the bar graph.
l Spacing percentage: Enter the amount of space, expressed as a percentage, to leave to the right of each bar. This
determines both the width of each bar and the amount of space to its right, as follows. PlanetPress Design divides the
width of the business graphic object by the number of bars in the graph to obtain the maximumwidth for each bar. It
then uses the Spacing percentage to determine the amount of space the bar itself occupies.

l Automatic height adjustment: Select to automatically make the height of the tallest bar in the bar graph, equal to
the height of the business graphic object. Clear to specify the height using Units per inch/centimeter.

l Units per inch/centimeter: Enter the number of units PlanetPress Design displays for each unit of measure. The
unit of measure is as set in the User Options dialog box.

l Use 3D effect: Select to use a 3D effect on each bar of the bar graph.
l Angle: Enter the angle, in degrees, for the 3D effect.
l Depth: Enter a depth to use for the 3D effect. Units are as set in the User Options dialog box.

Line Graph

In a line graph, PlanetPress Design calculates the position of each point by dividing the width of the business graph object by
the number of points on the graph.

Line Graph Options

l Show text on graphic: Select to display the data as text above each point on the graph.
l Baseline value: Enter a baseline value for the line graph.
l Automatic height adjustment: Select to automatically make the highest point in the line graph, equal to the
height of the business graphic object. Clear to specify the height using Units per inch/centimeter.

l Units per inch/centimeter: Enter the number of units PlanetPress Design will display for each unit of measure.
The unit of measure is as set in the User Options dialog box.

Pie Chart

In a pie chart, all data values must be greater than or equal to zero.

Pie Chart Options

l Show text on graphic: Select to display the data as text alongside the pie chart. If this is selected, PlanetPress
Design uses the style set for the business graphic in Basic attributes.

l Use 3D effect: Select to use a 3D effect with the pie chart.
l Angle: Enter the angle, in degrees, for the 3D effect.
l Depth: Enter a depth to use for the 3D effect. Units are as set in the User Options dialog box.

In all 3 of these PlanetPress Business Graphic options, the following tabs are also available in the object's properties:

©2010 Objectif Lune Inc - 164 -

Data

l Skip lines with invalid data: Select to remove any empty lines or lines that do not contain valid integer, measure
or currency values from the data selection.

l Thousands separator: Enter the thousands separator the input data uses. PlanetPress Design requires this to
ensure it reads the input data correctly. It does not use this or any other thousands separator in the values it displays.

l Decimal separator: Enter the decimal point separator the input data uses. PlanetPress Design requires this to
ensure it reads the input data correctly. It does not use it as the decimal separator in the values it displays. Rather, it
uses a period as the decimal separator.

l Currency symbol: Enter the currency symbol the input data uses. PlanetPress Design requires this to ensure it reads
the input data correctly. It does not use this or any other currency symbol in the values it displays.

Colors

l Color list: Displays the colors the graph uses. Each entry you add to the list displays both a sample of the color and
the numerical value of the color in the color model you are currently using. Recall that you select the default color
model in the User Options dialog box. The order in which you organize the colors in the Color list determines the assign-
ment of colors to the lines, bars, or pie sections of the graph. PlanetPress Design cycles through the colors in the Color
list, starting at the top, and assigns colors to the lines, bars or pie sections of the graph.

Excel Graphic

See Excel Graphic.

Excel Graphic

Microsoft Excel graphics can be added to your PlanetPress Design documents just like any other PlanetPress Design business
graphic. Data selections are used to populate the graphics at runtime, so each document displays context-specific information,
such as stock prices or monthly expenses. Like other images, Excel business graphics can be moved or resized. At design
time, only a placeholder is displayed on the page (the actual graphics are generated at runtime).

This feature is only available for Optimized Postscript printing and for Windows Printing. Microsoft Excel 2000 or better must
be installed on the server running the PlanetPress Design documents (although only the Excel template is actually required to
design the PlanetPress Design document).

For each Excel business graphic you want to use in PlanetPress Design, youmust create an Excel template file (see the exam-
ple below for more details). At runtime, PlanetPress Design uses this file to generate the graphic and to display it on the doc-
ument.

To add an Excel business graphic

l Create an Excel workbook:
l The first sheet in your workbook must include the sample data on which your graph will be based. The data dis-
played in the graphmust appear in the first one hundred cells of the same column. Some of the cells may remain
empty, but no data should appear past cell number 100. These 100 cells must not have any special formatting
(use the standard formatting). Youmay add a table on the same sheet for the purpose of organizing your data ,
but any data included in that table should be referenced to your sample data cells.

l The graph itself must be placed on a new sheet. Any variable information appearing in the graphmust be ref-
erenced to the sample data cells from the other sheet, or to cells from the table, but only if those cells are ref-
erenced to the sample data cells. If you use the Chart Wizard to create your Excel business graph, bear in
mind that at the end of the procedure, you should select the As new sheet option so as not to place the graph
on the same sheet as the sample data..

©2010 Objectif Lune Inc - 165 -

l Save the template file in the following location: Documents and Settings\All Users\Application
Data\Objectif Lune\PlanetPress Suite N\PlanetPress Design\ (where N is the PlanetPress Suite
version number).

l Add an Excel Business graph object on your PlanetPress Design document:
l Place an Excel business graph object on your document page.
l In the Graphic page of the Excel Business Graphics properties dialog box, select any of your Excel graph
template files and set its properties.

l In theData page of the Excel Business Graphics properties dialog box, select the data that will be placed
in the source data cells of your Excel graph template file.

l Bear in mind that when you design a document, only a placeholder is displayed. The actual graphs are only
appear when documents are generated.

Excel Business Graphics properties are as follows:

Graphic page

l Excel template: Select the template you want to use for your graphic. Click the Refresh button to redisplay all the cur-
rently available templates.

l On error: Select the desired behavior if an Excel graph cannot be generated.
l Excel sheet column: Enter the letter that corresponds to the Excel data column in which the variable data is to be
entered at runtime.

Data page

l Excel data graph data column: Select the data that should be entered in the cells of the Excel data sheet at run-
time.

l Excel sheet column: Enter the letter that corresponds to the Excel data column in which the variable data is to be
entered at runtime.

l Other options are similar to the Data Selection Object properties.

When printing Excel Business Graphics in Optimized PostScript Stream runmode, if you notice any quality loss in the
graphics you will need to adjust your document's resource options and change the Picture compression level to 100.
See "Set Up a Document" (page 105).

Capture Field Object
The Capture Field object is used to create input fields for use with the Anoto Digital Pen in a PlanetPress Capture workflow. A
document containing capture fields is called a capture ready document, or simply a capture document. Any capture document
must pass through the Capture Fields Generator action task in PlanetPress Production in order to be printable.

For information on PlanetPress Capture implementations, environment considerations, activation andmore, please check the
PlanetPress Workflow User Guide - PlanetPress Capture

PlanetPress Capture Fields cannot simply be inserted into an existing document as-is and expected to work properly,
efficiently or consistently. In order to design a document with Capture Fields, youmust review and understand the
Critical PlanetPress Capture Implementation Restrictions.

In addition to the common object properties, Capture Field objects have the following properties:

Capture Options tab

©2010 Objectif Lune Inc - 166 -

http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#/AboutPlanetPressCapture.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#/AboutPlanetPressCapture.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#/AboutPlanetPressCapture.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#/AboutPlanetPressCapture.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#/AboutPlanetPressCapture.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#/AboutPlanetPressCapture.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#/AboutPlanetPressCapture.html
en/knowledgebase/search/1508
en/knowledgebase/search/1508
en/knowledgebase/search/1508
en/knowledgebase/search/1508
en/knowledgebase/search/1508

l Capture Field Type: Select which type of Capture Field to be used, from the following:
l User Area: An area to write or select using the Anoto Digital Pen.
l Pidget: Short for "pen widget", pidgets are capture fields that are used to change options on the document or
the pen by drawing a line on a special pattern with the pen. See "Pidgets" (page 168).

l Color Selector: Use to change the color of the lines between each part of a Multi-Area field. Will only appear when
that type of field is selected below.

l Field Settings group (User Area):
l Field Style: Determines which type of Capture Field to display on the page.

Field Styles are being offered as forward-compatibility with future versions of PlanetPress Suite, which
should include more advanced processing of these fields as well as ICR (Intelligent Character Rec-
ognition).

l Checkbox: Select to create simple checkbox. Checkboxes are used for simple options andmultiple
choices. Any mark made with the pen within the checkbox will set it to "checked" when processing the
ink data.

l List: Currently not implemented, acts the same as a text field.
l Text field: Creates a single text field with no boundaries or divisions.
l Multi-Area field: Creates a Capture Field that is divided into multiple sections separated by lines. The
number of fields can be set statically (by entering a number in the Rows/Columns below), dynamically
(by specifying a variable expression in the Rows/Columns below) or automatically (by selectingCus-
tom in theMask Type option and using aMask Format).

l Rows: Specifies the number of horizontal separations (available for Multi-Area Fields only).
l Columns: Specifies the number of vertical separations (available for Multi-Area Fields only).
l Mask Type: Determines which type of mask to use on the Multi-Area field. This is used for
ICR features.

l None: No mask (accepts any characters)
l Numeric: Accept only numerical characters ([0-9])
l Alphabet: Accept only letters ([a-zA-Z])
l Alphanumeric: Accept only letters and numbers ([a-zA-Z0-9])
l Custom: Accepts specific characters determined by a Mask Format
l Regular Expression: Accepts specific characters determined by a Regular Expression.

l Mask Format List: Displays a list either of CustomMasks or Regular Expressionmasks,
depending on the option chosen in Mask Types. For more information aboutmasks, see Capture
Field Masks.

l Field Settings group (Pidget):
l Field Style (available with pidget fields only): Determines the type of pidget to use. Currently, only Pen set-
tings is available in the list.

l Stroke Settings (available whenPen settings is selected): Choose which pen setting to change, such as the
width and color of the ink. This changes the appearance of the ink when it gets added to the document after the
pen is docked.

l Required field: Select whether the capture field is mandatory, optional or final:
l Optional: The field is optional, and the capture document can be closed even if no ink is present in this field.
l Mandatory: The field is mandatory and ink must be present in this field for the capture document to be closed,
unless it is grouped (seeGroup ID below)

l Final: Any ink present in this field will force the document to close, ignoring the presence of ink in any man-
datory or optional field in the rest of the capture document.

l Group ID: Enter a Group ID for the Mandatory field. Whenmultiple Mandatory fields share the same Group ID, the
mandatory status becomes true for the group, instead of individual fields. The capture document can be closed if any of
the fields in the group has ink, instead of each individual field. Groups only work within the same page, even if they are
part of the same document.

©2010 Objectif Lune Inc - 167 -

l Disable rewriting: Check to prevent a field that has already been written in to accept any further ink data. This is
useful only if forms are sometimes partially processed or are processedmultiple times until all mandatory fields (or a
final field) are completed. The rewriting is only disabled after the pen has been docked (in a different session), which
means there is no warning whenwriting on a non-rewrite field.

Considerations

There are some important considerations when using the capture field object in a PlanetPress Design document:

l Capture Fields should always be set to print on top of any other object and should not be hidden. Placing another object
over a Capture Field may cause unexpected behaviors in reading pen data.

l Capture Fields are complex and ink-intensive. They consume a fair amount of ink and take a lot of time to process
when present. This means it is recommended only to use fields when necessary, and not to make it any larger than you
need it.

l When you add one or more Capture Fields to a page, a copyright notice automatically appears on the page indicating
that the Anoto technology is being used. This notice must remain visible at all times and hiding it constitutes a violation
of the PlanetPress Suite End User License Agreement (EULA). You can change the position of this notice in your doc-
ument's properties (see the Resources Options section in "Set Up a Document" (page 105)).

l If all of the fields in a Capture document are set to be Final, they will react the same as if they were all Optional.
l Capture Fields are not supported with the N-Up feature of PlanetPress.
l There is a 7mm (1/3 inch) wide area on each side of a field the penmay not be able to recognize depending on the direc-
tion and angle at which the pen is held while writing. In order to prevent the majority of writing errors, you can place a
thin white border, 7mm from the sides of your fields. The white line will not confuse then pen and anyone writing in the
field will naturally write within the box created, avoiding the 7mm area. For the same reason, the minimum size of a
Capture field is 2/3 inch (14mm).

An example of a white border within a capture field.

Pidgets

Pidgets are special static patterns you can print on a page to use with the Anoto Digital Pen. When the pen "writes" over those
specific patterns, options are triggered as the pen recognizes them. In other words, pidgets are triggers for the pen's features
and are limited to what features the pen actually has.

The pidgets themselves are small EPS files that are printed as an image. Once printed, pidgets can be re-usedmultiple times.
This is because the pidgets are printed in true black which the pen recognizes even if there have beenmultiple color pen
marks on top of them.

To activate a pidget, simply place the pen inside of the pidget's icon and press down. Generally, there is no need to move the
pen or write anything, the pen can detect the pattern. When the pen successfully reads a pidget, it vibrates twice in quick suc-
cession.

©2010 Objectif Lune Inc - 168 -

There are two types of pidgets - those that change the digital ink settings and those that change the pen settings. At the
moment, only digital ink pidgets are available but future versions of PlanetPress Suite will offer pen settings pidgets.

Available pidgets are:

l Stroke Width: Changes the width of the digital ink in the pen.
l Stroke Color: Changes the color of the digital ink in the pen.

Capture Field Masks
When using a Field Type of Custom or Regular Expression, the mask to be usedmust be set with a Field Mask.

To open the Mask List

1. Create a new Capture Field Area
2. Set the Capture Field Type to User Area
3. Set the Field Style to Multi-Area Field
4. Change the Mask Type to either Custom or Regular Expression.
5. Next to the Format List, click the Edit Masks button.

To add a new mask to the list

1. Click on the button to add a new entry.
2. Double-click in the Name box and enter a name for the expression.
3. Double-click in the Value box and enter the desired expression (see below).

Custom Masks

Custommasks are not as powerful as regular expressions but they offer two distinct advantages. First, Custommasks will
automatically divide the Multi-Area Field in which they are used into the correct number of expected boxes and any static char-
acters used in the mask will output in the Capture Field Box when printing. Second, Custommasks are simpler to use and have
a one-on-one relationship between the mask and its output.

Accepted Characters

Each character, except for \, is deemed to be a single expected character, so the number of captured characters is not variable

l 9 : Indicates any numeric character from 0 to 9.
l A: Indicates an alphabetic character from A to Z. The character will be converted to uppercase.
l X: Indicates an alphanumeric character from 0 to 9 or A to Z. Alphabetical characters will be converted to uppercase.
l \ followed by any character: Indicates a literal character. These characters will not be written by the client but rather
output in the mask when printing the Capture Document.

Examples

These examples should clarify how the accepted characters should be used:

Mask Description Examples

\(999\)999\-
9999

Canadian phone number with the area code

(514)875-
5863
(800)555-
1234

\(999\)999\- Canadian phone number with area code and extension
(514)875-
5863 Ext.123

©2010 Objectif Lune Inc - 169 -

9999\
\E\x\t\.999

(800)555-
1234 Ext.432

\+9\(999\)999\-
9999

Canada/US phone number including area code and country code.
+1(800)555-
1234

\P\R\O\D\-
XXXXX\-AAA\-
99999

A product number made of 5 alphanumerical characters, 3 letters and then 5 numbers.

PROD-
5G32B-ADE-
23643
PROD-
IPHON-TGS-
16000

999\-9999 A Japanese postal code, which is digits only
325-6731
812-2298

99999 A 5-digit US zip code
90210
32454

A9A\ 9A9 A Canadian postal code
H0H 0H0
J0S 1J0
H1V 2C8

\$999\,999\.99
Dollar amount with thousand separator, up to $999,999.99 dollars. However, note that all char-
acters must be present, so the mask must be padded with zeroes (0) if the amount does not
fully fill each box (see examples)

$000,001.99
$321,443.54
$000,599.97

It is important to understand that these masks are very precise and will not accept any sort of variation. For example, the sec-
ond example (phone number with extension) will only accept a 3-digit extension. A 5-digit extension could not be entered with
this mask. Because the Multi-Area Field will automatically divide the field into boxes accepting one character per box, this is
made clear to anyone using these boxes.

Regular Expressions

If the data that is expected from the field can vary in contents as well as length, a Regular Expression can be used instead of a
Custommask. Regular expressions are muchmore powerful but they can be difficult to understand at first. Note that a Regular
Expressionmask will not automatically divide the Multi-Area Field into rows and columns nor will it print out static characters in
the field, since the number of characters can be variable.

Accepted Values

This documentation cannot pretend to teach anyone how to learn to use Regular Expressions nor to describe how to build reg-
ular expressions. Plenty of tutorials and documentation on Regular Expressions exist online. However, here are some quick
resources that may help you in building your expressions:

These links are provided for your education and are not supported or maintained by Objectif Lune Inc.. Use the infor-
mation provided by those links at your own risk.

l Regular Expressions Cheat Sheet , available in PDF and PNG format
l Regular-Expressions.info tutorial.

Examples

These examples are similar to the ones in the CustomMask butmay extend upon them and accept a wider variety of results.

Regular Expression Description Examples

©2010 Objectif Lune Inc - 170 -

http://www.addedbytes.com/cheat-sheets/regular-expressions-cheat-sheet/
http://www.addedbytes.com/cheat-sheets/regular-expressions-cheat-sheet/
http://www.addedbytes.com/cheat-sheets/regular-expressions-cheat-sheet/
http://www.addedbytes.com/cheat-sheets/regular-expressions-cheat-sheet/
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html

(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$
A fully featured expression for most phone number for-
mats used in the world.

work 1-(800)
555.1212 #1234
800-555-1212
80055512121234

PROD-[0-9A-Za-z]{5}-[A-Z]{3}-\d{5} Product Number

PROD-5G32B-ADE-
23643
PROD-IPHON-TGS-
16000

^\d{5}(-\d{4})?$ A 5 or 9 digit US Zip code with optional dash.
90210
32454-4332

^[ABCEGHJKLMNPRSTVXY]{1}\d{1}[A-Z]{1}
*\d{1}[A-Z]{1}\d{1}$

A valid Canadian postal code.
H0H 0H0
J0S 1J0
H1V 2C8

©2010 Objectif Lune Inc - 171 -

©2010 Objectif Lune Inc - 172 -

Document Resources
Resources are images or PostScript attachments you add to your document. These resources can be used using Picture
Objects (for images) or the Attachments properties of documents and pages (PostScript attachments).

This chapter explains resources and their location as well as how to refer to them from within your document.

For the purpose of this chapter, PDF files are considered to be images and are used in the same way as multi-page
TIFF files.

Document Resources

©2010 Objectif Lune Inc - 173 -

©2010 Objectif Lune Inc - 174 -

Image Resources
An image resource is any sort of image (see "Supported Image Formats" (page 175)) that is used in your PlanetPress Design
document, whether it is imported as an internal resource or used as an external resource, called when the document
executes.

Location of image resources

In order to be useful in a PlanetPress Design document, images have to be in one of the following locations:

l Internal Images: Internal image resources are imported within your PlanetPress Design document and follow the
document wherever it is sent, including PlanetPress Workflow servers, printers and other PlanetPress Design work-
stations.

l Printer Images: These images are located on the printer's hard drive or memory, and can only be used by doc-
uments printing in the Printer-Centric runmode.

l Network Images: Images located on a local path or network path. Those images can only be accessed through the
Optimized PostScript runmode or the Windows Driver output. Accessing these images may require special permissions
at the system or network level.

Each location has its own unique advantage and limitation, and they can be combined in hybrid implementations if necessary.

l Internal Images are best if you have a small number of images called statically or via conditions in your document, and
if these images are not too large. Since they are kept inside the document, having too many images or large images
may cause issues withmanageability and performance.

l Printer Images are useful to maintain a smaller document size regardless of the number or size of the images being
called. Images can also be shared betweenmultiple documents when they are printed from the same printer. How-
ever, some printers may have limited space on their hard drive.

l Network Images are useful only if you are sharing images betweenmultiple installations of PlanetPress andmay slow
down printing significantly as no caching is possible with this method.

Static and Dynamic Images

A static image is an image that does not change during document execution. Static images are independent of the input data.

A dynamic image is an image that changes during document execution. Dynamic images depend on the input data and other
variables to determine the image file to display.

You create both static and dynamic images using picture objects (see "Picture Object" (page 150)). In the case of a static
image, the picture object references a single image resource and is selected from the image drop-downmenu. In the case of a
dynamic image, the reference in the picture object is a PlanetPress Talk expression that resolves to a different image name on
each data page. Since dynamic images rely on PlanetPress Talk expressions, they are described in the appropriate chapter.
See "Dynamic Images" (page 209).

Supported Image Formats

What image formats does PlanetPress Design support?

The following summarizes the image formats PlanetPress Design supports for both static and dynamic images.

©2010 Objectif Lune Inc - 175 -

Format: Extension: Type: PlanetPress Design supports:
BitMap Pic-
ture

BMP Bitmap
1-, 4-, 8-, and 24-bit images inWindows format. Supports uncompressed and Run Length
Encoded (RLE) formats. Does not support RLE for 24-bit images.

Encapsulated
PostScript

EPS
Vector,
Metafile

EPS files that conform to the Adobe Encapsulated PostScript
File Format Specification (Adobe Technical Note #5002).

Joint Pho-
tography
Experts
Group

JPEG, JPG Bitmap
8-bit grayscale and 24-bit color images. Supports save quality, progressive save, and opti-
mized Huffman codes.

Portable Doc-
ument For-
mat

PDF Metafile PDF 1.5 format (Acrobat 6) without encryption or security settings.

Portable Net-
work Graph-
ics

PNG Bitmap
1-, 4-, 8-, and 24-bit images. Supports gamma adjustments, progressive save, and variable
compression levels. Also reads but does not consider the alpha channel.

Tagged
Image File
Format

TIF, TIFF Bitmap

1-, 4-, 8-, and 24-bit uncompressed images. TIFF images that use LZW compression. CCITT
group 3 1D, CCITT group 3 2D, CCITT group 4, Packbits, Zlib (deflate), JPEG. Also supports
multi-page images but restricts output to only the first image.PlanetPress Design now supports
TIFF images that use LZW compression.

In the case of dynamic images that reference images external to the document, in addition to the supported formats listed
above, documents can also accept images in the PostScript format generated by the Image Downloader.

Image Glossary

Defining images in PlanetPress Design requires that we first establish a few terms that will be used throughout this chapter.

Bitmap File Formats

A bitmap file format stores an image as a set of pixels. Common bitmap formats are BMP, TIFF, PNG and JPEG. Images such
as photographs typically use a bitmap format.
The disadvantages of bitmap images are loss of image quality when scaling, and large file sizes for images with large pixel
dimensions and color depths.

Vector File Formats: A vector file format encodes an image as a set of commands or mathematical equations. Encap-
sulated PostScript (EPS) is a common vector format. Images such as illustrations typically use a vector format.

In a vector format, the commands precisely describe how to draw the image. The advantage of images in vector format is that
they scale without loss of color, detail, or sharpness. Depending on the complexity of the image they describe, they may also
have a smaller file size than their bitmapped counterpart. The disadvantage is that they require the computer or printer to
interpret the commands and render the image.

Metafile Format

A metafile image format can include both bitmapped and vector images. PlanetPress Design supports images in both Encap-
sulated PostScript (EPS) and Portable Document Format (PDF) metafile formats.

As for vector images, a metafile image file specifies a size for the image. In this case, if the metafile image contains bitmapped
images, scaling it may affect the image quality of those bitmapped images.

Resolution

©2010 Objectif Lune Inc - 176 -

Resolution is a broad term that can refer to different things in different contexts. A detailed discussion of the different mean-
ings and interrelationships is beyond the scope of this guide. Instead we provide This section provides a brief overview of the
different possible meanings to clarify our use of resolution in PlanetPress Design.

Term: Means:
Scan res-
olution

The resolution at which you scan an image on a scanner. It refers to the number of samples per inch (spi), where
each sample represents a single pixel in the resulting bitmapped image.

Display
resolution

The resolution of the monitor screen. For example 96 DPI means the screen displays 96 pixels per inch. Thus an
image with pixel dimensions of 96 x 96 would measure 1 inch x 1 inch on this monitor screen.

Printer
resolution

The number of spots of ink the printer can produce per inch, commonly measured as dots per inch (DPI). The use of
DPI as a measure can be confusing as it may be interpreted as meaning one dot of ink maps to one image pixel. In
fact the number of spots of ink the printer uses to represent a single pixel can vary with the halftone screen used for
a print job (the lines per inch (LPI)), the color depth of the image, and the algorithm the printer uses to represent
individual colors.

Color Depth

Color depth refers to the number of colors each individual pixel in a bitmapped image can display. Color depth is expressed in
bits per pixel where each individual bit can take on one of two values (0 or 1).

Pixel Dimension

Pixel dimensions refer to the number of pixels in the width and height of a bitmapped image. Thus an image with pixel dimen-
sions of 200 x 300 has a width of 200 pixels and a height of 300 pixels. Pixel dimensions do not define a fixed size for the bit-
mapped image. Rather the resolution determines the final physical dimensions of the image. See "Resolution" (page n) for help
understanding resolution in PlanetPress Design.

You can adjust the pixel dimensions of a bitmapped image to adjust the size it occupies at a given resolution. This is called
resampling the image, and it is particularly useful for large image files that containmore pixels than are necessary to produce
the highest quality output.

Image Quality: Line Art

In line art quality, the edges of different elements of the image are clearly visible and sensitive to any increase or decrease in
pixel dimensions that occurs through resampling. As an example of line art, think of a corporate logo. A logo typically uses flat
areas of color with each area clearly distinguished from the other. PlanetPress Design uses a lossless compression for line art
quality images. A lossless compression preserves all image information.

Image Quality: Photo

In photo quality, edges of elements are not as clearly delineated and are consequently less sensitive to any increase or
decrease in pixel dimensions that occurs through resampling. As an example of photo quality, think of a photograph of a nat-
ural object or landscape; there are many subtle tones and gradations, even along the edges between elements. PlanetPress
Design uses a lossy compression (JPEG compression) for photo quality images. A lossy compression does not preserve all
image information. In the case of photo quality, you set a compression level that determines how much image information is
lost. An appropriate compression level results in no visible deterioration of quality in the document output.

Scanline Orientation
Scanline orientation refers to the way in which the laser in a laser printer writes the page image onto the printer drum. In Plan-
etPress Design you can use this information to minimize the amount of runtime processing bitmapped image resources
require, and thereby contribute to minimizing the overall execution time of a document.

©2010 Objectif Lune Inc - 177 -

../../../../../Content/1423.html
../../../../../Content/1423.html
../../../../../Content/1423.html

You determine the scanline orientation for an image resource from three pieces of information: the paper orientation selected
in the document for the page containing the image resource, how the paper enters the printer, and the scanline orientation of
the printer. Once you have these three pieces of information, you then visualize the page of your documentmoving through
the printer and determine whether the printer scans the images onto the page from top to bottom or side to side.

If you use the same bitmapped image resource in both a rotated and un-rotated presentation, you should add the image file as
two distinct image resources, and set the scanline orientation for each image resource separately.

You set the default scanline orientation for all bitmapped image resources in the document, in the Document dialog box. You
can set the scanline orientation for an individual bitmapped image resource by selecting that image resource in the Structure
area, and then using the Object Inspector to edit the Scanline orientation property.

Image Quality Settings

The image quality and compression settings in PlanetPress Design apply only to the images included in the document. They do
not apply to dynamic images that are external to the document. Note however that you can adjust the image quality of
dynamic images external to the document if you use the Image Downloader to download the images to their runtime location.

You can set a default image quality for all bitmapped image resources you add to the document in the Document dialog box.
You can also adjust the image quality for an individual bitmapped image resource. You set a single compression level for all
photo quality image resources in the document.

Suggested Resolution Settings

Any bitmapped images embedded in PDF or EPS files that exceed the resolutions set are downsampled to this resolution. This
downsampling occurs for image resources at document conversion and for external images in supported image formats, at
runtime. In both cases the maximum resolution is the one in effect at document conversion. No downsampling occurs for
images you download using the Image Downloader.

You set a separate resolution for color, grayscale, andmonochrome images. On all but very high-end 600 DPI printers, res-
olutions greater than those listed below do not result in any noticeable difference in quality to the human eye.

Color depth: Maximum suggested image resolution:
Color 150 to 200 DPI
Grayscale 150 to 200 DPI
Monochrome600 DPI

An exception to these recommendations is in the case of a line art image. Line art images should ideally be at the resolution of
the printer. Thus if the printer resolution is 600 DPI, you should set the resolution of the line art image to 600 DPI.

Caches
A cache is an amount of RAM set aside to hold items that the document references during execution. In the case of PlanetPress
Design and PlanetPress Suite Workflow Tools these items are images. The cache improves performance by providing faster
access to images that the document uses more than once.

There are two caches: a host-based cache, and a printer-based cache. You can adjust the sizes of both of these caches. How-
ever, the default cache sizes set for PlanetPress Design are reasonable ones that in most cases should not require adjustment.

©2010 Objectif Lune Inc - 178 -

Host-Based Cache

The host-based cache is the cache the document uses when it executes host-based. The size of this cache is independent of
the document, and its size in PlanetPress Design is independent of its size in PlanetPress Suite Workflow Tools. When you
execute the document host-based from within either product, the size of the cache depends on the setting in effect in that prod-
uct at execution time. In PlanetPress Design you use the Image cache option in the User Options dialog box to set the size of
this cache.

When the document executes host-based in either PlanetPress Design or PlanetPress Suite Workflow Tools, it uses the host-
based cache for its image resources, and for the dynamic images it retrieves from the PlanetPress Design Suite virtual disk. It
never uses this cache for dynamic images it retrieves from a folder.

Printer-Based Cache

The printer-based cache is the cache the document uses when it executes printer-based. The size of this cache depends on the
document.

You use the Max form cache option in the Document dialog box to set the size of the printer cache. You can also use the Max
form item option to set the maximum size of any item in the cache.

When the document executes printer-based, it uses the printer-based cache for both image resources and external images
any dynamic images reference.

Adding Image Resources

Image resources are added differently depending on their location.

Network images are simply placed in the correct location using your operating system or any process youmay have to
create, move and copy images on your computer or network. They are accessed using their full path in a PlanetPress Talk
expression (see "Dynamic Images" (page 209))

Printer images are sent to your printer using either one of the following tools:

l "The Image Downloader" (page 641) is used to send images to one or more printer or PlanetPress Suite virtual drive.
l The Send Images to Printer and Download to Printer plugins in PlanetPress Workflow Tools can be used to send images
to one or more printer or PlanetPress Suite virtual drive.

Internal images are imported in your PlanetPress Design document using one of the followingmethods:

l In the PlanetPress Design Ribbon, go to theHome tab then click Picture Resource in theDocument group.
Browse to the folder where the image is located, then select one or more images to import as resources.

l Copy the image file to your clipboard usingCTRL+C inWindows Explorer. Then in PlanetPress Design, click onPic-
ture Resources in theDocument Structure Pane and use CTRL+V to paste the image as a picture resource.

l Select a single image inWindows Explorer then drag & drop it to theWorkspace. This imports the picture resource
and also creates a picture object and associates it to the new picture resource.

l Select multiple images inWindows Explorer then drag & drop them either in theWorkspace or in the picture
resources folder of theDocument Structure Pane.

Once the picture resource is added to the document, a link is maintained with the original file on your operating system. As
long as your PlanetPress Design document remains on the same computer and the original image is in the same location, if the
original image is modified a dialog will be displayed in PlanetPress Design asking if you want to update the image instances in
PlanetPress Design.

©2010 Objectif Lune Inc - 179 -

http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#5111
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#5111
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#5111
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#5111
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#5145
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#5145
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#5145

Guidelines for Optimizing Images
Images increase the execution time of a document and in the case of image resources, also increase the file size of a doc-
ument. Tuning images to the execution environment of the document and the image quality required in the output, keeps doc-
ument file size and execution time to a minimum.

This section provides suggestions for reducing the file size of images andminimizing the amount of runtime processing they
require, without compromising the required image quality. These are general guidelines. In any real-world situation, there are
often trade-offs to make among image quality, image file size and document execution speed.

l Image Formats: Unless displaying complex images such as photos, landscapes or very complex logos, vector-based
images are normally faster and offer better quality on your printer than bitmap (raster) images.

l Image Resolution: Always set bitmap (raster) images to Constant Resolution. If the image appears to be too large
for your page, it means its resolution is too high and it should be resized to be smaller and fit within the page. A higher
resolution image will not printer better on your printer - it is limited by its own resolution (normally 600 DPI) and the
technology used to print colors and greyscale image.

l Scanline Orientation: Always use bitmap images that has been rendered in the correct scanline orientation.
l Image Complexity: The more complex the picture, the more processing time to print it. This applies to both vector
and bitmap images and is especially true when using gradients. Gradients make vector-based images much larger and
timely to process, and bitmap images remain larger since gradients cannot be easily compressed.

l PDF and EPS files: The more images and data PDFs and EPS files contain, the more time they take to process. This
is especially true if these files contain images.

l Multipage PDF or TIFF file: Image resources like PDF files and TIFF files may containmultiple pages, and all their
pages will be processed even if they are not all used in the document. If you are not using a large number of pages, it is
better to remove them from the image resource.

Modifying and Updating Images

Internal Images can be modified and updated inmany different ways.

To edit an internal image resource:

1. In the Structure area, select the image resource you want to edit.
2. In theObject Inspector, locate the Edit image property, click the property value and click the edit button that

appears on the far right of the property value.
PlanetPress Design launches the image editor. If the image resource is a bitmapped image resource (an image
resource in GIF, TIFF, PNG or BMP format), PlanetPress Design launches the image editor you defined in the User
Options dialog box. If you did not define an image editor in the User Options dialog, or if the image resource is in either
PDF or EPS format, PlanetPress Design launches the default editor defined for those formats inWindows.

3. Edit the image resource.
4. Save the changes and exit the image editor.

To resample an internal image resource (adjust the pixel dimensions), do either of the following:

l In the Object Inspector, adjust the pixel height or pixel width of the image resource that static image references. Note
that when you adjust one pixel dimension, PlanetPress Design automatically adjusts the other dimension to preserve
the aspect ratio of the image. Also note that resampling an image resource in the Object Inspector has an irreversible
effect on image quality. If you want to restore both the original pixel dimensions and the original quality of the image
resource, youmust add the image resource to the document again.

l Open the image resource the picture object references in an image editor and adjust its pixel dimensions
Any picture objects that reference that image resource update to reflect the new pixel dimensions.

©2010 Objectif Lune Inc - 180 -

To edit the properties of an image resource:

1. In the Structure area, select the image resource you want to view and/or edit.
2. In the Object Inspector, view and/or edit the properties.

l Name: The name of the image resource in the document.
l Color depth: Indicates the color depth of the image resource. Color depth is meaningful only for image
resources of type bitmap. You cannot edit this property; PlanetPress Design automatically determines the color
depth by examining the file specified in the File name box.

l Edit image: Use to launch the image editor and edit the image resource. You define the image editor you want
to use in the User Options dialog box.

l File name: Specifies the pathname of the image file from which PlanetPress Design created the image
resource. Editing this is equivalent to replacing the image resource.

l Image quality: Select the image quality for this image resource. Select Photo if edges in the image are not
sharply defined and thus not highly sensitive to any loss of image information that occurs through compression.
The compression PlanetPress Design applies to line art images is lossless.

l Image type: Specifies the type of the image file (bitmap, EPS, or PDF). You cannot edit this property; Plan-
etPress Design automatically determines the type by examining the file specified in the File name box.

l Height (pixels): Adjust the number of pixels in the height of the bitmapped image resource. If you adjust this
value PlanetPress Design also automatically adjusts the value in the Width box to maintain the aspect ratio of
the image. A pixel height adjustment has an irreversible effect on quality and for this reason PlanetPress Design
prompts for confirmation before proceeding with the operation. The only way to restore the original pixel dimen-
sions of an image resource at its original quality is to add the image resource to the document again.

l Width (pixels): Adjust the number of pixels in the width of the bitmapped image resource. If you adjust this
value PlanetPress Design also automatically adjusts the value in the Height box to maintain the aspect ratio of
the image.

l When you import a PDF file into a PlanetPress Design document, its size may not be set accurately, so you
should set it manually.

l Scanline orientation: Specify the scanline orientation for the image resource. When PlanetPress Design
adds an image resource to the document, it sets the scanline orientation of the image resource to the value of
the Scanline orientation box in the Document properties dialog box. If you have the value properly set in the Doc-
ument properties dialog box, you should only need to adjust the value here if you rotate the image resource
within a picture object by a multiple of 90 degrees. If you use the same image resource in both a rotated and
unrotated presentation, you should add the image file as two distinct image resources, and set the scanline orien-
tation for each image resource separately.

When a PDF image resource is selected, the Object Inspector offers a preview of the PDF as well as a page selector. To navi-
gate the pages of a multi-page PDF image resource, locate the page selector and either enter the page of the PDF you want to
view, or use the spin buttons to navigate the pages of the PDF.

To edit or resample a network image:

l Open the file on the computer using your graphic editor of choice, make the modification to the image file and save the
new version. PlanetPress Design will always use the latest version of your file.

Color Management and Matching

Since PlanetPress Design displays on your screen, in PDFs and on printers, there are a few things to keep inmind if you want
the colors you see to be the same as the colors your print, and if you want to match a specific, exact color.

©2010 Objectif Lune Inc - 181 -

Monitor display VS Printing

l The monitor produces the color you see on-screen with light while the printer produces color with pigment. The set of
colors, or gamut, you can produce with light is not identical to the set you can produce with pigment. Thus there are col-
ors you can produce on a monitor and not on a printer, and vice-versa.

l The monitor uses three primary colors of light (red, green, blue) to produce all the colors you see on-screen. It mixes
different amounts of each of the primaries to produce a particular color. An on-screen color is specified as three
numeric values, the first describing the amount of red, the second the amount of green, and the third the amount of
blue light to use to create the color. Thus these are often referred to as RGB (Red Blue Green) colors.

l The printer uses three primary colors of ink (cyan, magenta, yellow) and black to produce all the colors it prints.
l The set of colors you can produce with light (the RGB gamut) is larger than the set of colors you can produce with pig-
ment (the CMYK gamut). Thus monitors can produce more colors than printers.There is a significant overlap between
the two gamuts however, and, in those cases, the problem becomes how to match a color that it is possible to create
with either light or pigment, on different physical devices.

Representation and control of color in physical devices

The difficulty with physical devices is that none are stable enough to ensure a consistent representation of a given color. Phys-
ical devices for our purposes are monitors and printers.

l Monitors The same color can vary across monitors due to factors such as the phosphor specification, the calibration,
and the age of the individual monitor. Even on the same monitor the color can change as the monitor ages or loses its
calibration. The set of colors a monitor can display (its gamut) can also vary across monitors.

l Printers The same color can also vary across printers or on the same printer due to factors such as the inks a printer
uses, the amount of ink in the printer at the time you print, and the physical properties of the paper on which you print.

Color perception

Our perception of a color can change with variations in the ambient lighting. A color that appears very rich under subdued light-
ingmay appear washed out under bright lighting. Our perception of a color can also change due to the colors that appear along-
side it. The same color on two different backgrounds can appear to be two different colors. Finally, two individuals may not
see the same color.

To set up color management in PlanetPress Design:

1. Start PlanetPress Design.
2. From the PlanetPress Design Button, choose Preferences to display the Preferences dialog box.
3. In the Preferences dialog box, expandBehavior, click Color, and set the color management options.

l SelectColor Management Active. Note that youmust select this option before you can select the monitor
and printer color profiles.

l SetMonitor Profile to the color profile for the monitor of the computer on which you are running PlanetPress
Design.

l SetPrinter Profile to the color profile for the printer on which you intend to execute the document.
4. Click Close.

When you use color management profiles, PlanetPress Design attempts to display the color on your monitor as close with so it
is as close as possible to the printed result.

The following limitations apply, however:

l Since external variables such as lighting, time of day and different users can impact colors, there is no guarantee of the
result.

l Changing the color profile does not, in any way, change printed and PDF output colors. It is only and exclusively meant
for monitor display.

©2010 Objectif Lune Inc - 182 -

l Profiles only apply to colors specified within PlanetPress Design such as font colors, backgrounds, shapes and lines. Pro-
files do not modify the display of images and other "external" resources.

Color Management in PlanetPress Design

Objectif Lune approached the issue of color management with an eye to making it as straightforward and convenient as pos-
sible for its customers. It designed the color management in PlanetPress Design to accurately display, in the Page area, the col-
ors that print when the document executes on a printer.

When you set up color management in PlanetPress Design, you are setting up a relationship between two color profiles: a mon-
itor profile and a printer profile. The color management workflow in PlanetPress Design consists of two basic steps:

1. Install the device color profiles.
You install a profile for eachmonitor you intend to use during document design with PlanetPress Design, and for each
printer on which you intend to execute your documents. PlanetPress Design uses version 2.0 of the Image Color Man-
agement (ICM) system. The ICM system supports device profiles that conform to the International Color Consortium
(ICC) color profile specification.

2. In PlanetPress Design, select the appropriate monitor profile for your monitor and the appropriate printer profile for the
printer on which you intend to print the document. If the printer and/or monitor you use is document-dependent, you
may need to adjust the profiles you use on a per document basis.

Once you set up color management, PlanetPress Design handles color in the document as follows:

Color
source:

PlanetPress Design color management:

Document
color

When you select colors using the Color Picker or define colors using numerical values, PlanetPress Design displays
the specified colors by first assuming they are in the color space of the selected printer profile and then translating
them into the color space of the selectedmonitor profile. This ensures the on-screen color represents, as closely as
possible, the one the printer prints.

Bitmapped
images

When you import static bitmapped images or reference dynamic bitmapped images, for performance reasons Plan-
etPress Design does not perform any color management on the images.

PDF and
EPS image

When you import a static PDF or EPS image resource or reference a dynamic PDF or EPS image, for performance
reasons PlanetPress Design displays the PDF or EPS as color or grayscale images. The images are displayed in
color only when you preview or execute the document.

PostScript Attachments
A PostScript attachment is a file that contains standard PostScript code, which is attached in your document and printed as-is.
PostScript attachments are not added in your pages and are rather executed before or after a page or document. This means
that they must contain PostScript that creates and prints one or more pages in a format that your printer will understand.

You cannot edit a PostScript attachment resource from PlanetPress Design. Youmust edit a PostScript attachment resource in
Windows using the appropriate application.

You can set PostScript attachments to execute before either one of these locations:

l The Document: In the document's properties, you can set any number of PostScript attachments to run before or after
each document, which is normally equal to one data page unless you are using the N-Up object or special Plan-
etPressTalk command to modify its execution order.

l A specific page: In a normal page's properties, you can set any number of PostScript attachments to run before or after
that page.

©2010 Objectif Lune Inc - 183 -

In both cases, you can apply a condition so the PostScript attachment will only execute at certain times depending on your data
and other variables.

To add one or more PostScript attachments as resource to your document, do one of the following:

l In the PlanetPress Design Ribbon, go to theHome tab then click Attachment in theDocument group. Browse
to the folder where the PostScript file is located, then select one or more images to import as resources.

l Copy the attachment file to your clipboard usingCTRL+C inWindows Explorer. Then in PlanetPress Design, click on
PostScript attachments in theDocument Structure Pane and use CTRL+V to paste the attachment as a
resource.

l Select multiple PostScript files inWindows Explorer then drag & drop them either in theWorkspace or in
PostScript attachments folder of theDocument Structure Pane.

If you add an attachment with the same name as an attachment that currently exists in the document, PlanetPress Design
appends a number to the name of the new attachment.

To edit the properties of an attachment resource:

1. In the Structure area, select the PostScript Attachment you want to view and/or edit.
2. In the Object Inspector, view and/or edit the properties.

l Name: Specifies the name of the PostScript Attachment resource in PlanetPress Design.
l Original file name: Specifies the path of the file from which PlanetPress Design created the attachment
resource. Editing this is equivalent to replacing the PostScript Attachment.

Delete a Resource

You can delete an image resource or PostScript attachment at any time by selecting it, then doing any of the following:

l Press theDelete key on your keyboard.
l In the PlanetPress Design Ribbon, go to theHome tab then click Delete in the ClipBoard group.
l Right-click on the object and selectDelete from the menu.

If the resource is currently in use, deleting it without any further action would break the link to that resource from picture
objects, pages and PlanetPress Talk code and cause errors when printing, previewing and converting. In order to prevent this,
PlanetPress Design features the Resource Deletion window.

The Resource Deletion window appears once for each resource you are deleting. It displays the following options:

l Deletion options:
l Replace all references with: Select to delete the resource and to replace all references to it with a ref-
erence to another image resource in the document.

l Resource available: Select the image resource you want to use as the replacement reference. When
you delete the resource, PlanetPress Design replaces all references to the deleted resource with a ref-
erence to the resource you select here. Select the * None * option if you want to remove the references
to the resource while keeping the objects that reference the resource intact. You can use the Add
Resource button to add a new image resource to this list.

l Add Resource button: Click to add a new resource, which ads it to the list and imports it in your doc-
ument.

l Delete: Select to delete the resource and all document elements that reference it.
l Referencing elements: Lists all of the elements from which the resource is referenced, letting you know in a glance
what objects will be modified by this dialog.

To quickly delete any unused resource in your document:

©2010 Objectif Lune Inc - 184 -

1. Select all the resources of the same type (images or attachments) and use one of the methods described above to
delete them.

2. On each Resource Deletion dialog, simply click on Cancel.
One dialog will appear for each used resource, but no dialog appears for unused resources and they are simply deleted.

©2010 Objectif Lune Inc - 185 -

©2010 Objectif Lune Inc - 186 -

Conditions
This chapter explains conditions, variables, and PlanetPress Talk and how to use these features in your document.

Conditions

What is a condition?

A condition is a PlanetPress Talk expression that performs a test on the data page and resolves to either True or False. The
conditionmay be as simple or as complex as you require. You use conditions to make the display of a page, object, group, or
line of data in a data selection object dependent on input data. The page, object, group, or line of data in a data selection
object displays only if the condition resolves to True.

Conditions can be used to create OMR, by creating black lines of the size and locations specified in your OMR requirement spec-
ifications, and by applying correct conditions to these lines (such as "first page", parity checks and page numbering).

There are three kinds of conditions: global conditions, local conditions, and line conditions. You can associate at most one
global or local condition at a time with a page, object, or group. A line condition is internal to a data selection object. You can
associate a global or local condition with a data selection object, regardless of whether that data selection object uses a line
condition. The global or local condition you set determines whether the data selection object will display. The line condition
alterswhat the object displays. Note that global conditions are the only ones that appear in the Structure area, and are the
only ones available for use with any of the pages, objects, or groups in the document.

It is important to understand the order in which the document processes conditions when it executes. At runtime, the doc-
ument evaluates global conditions before it executes a data page. It evaluates local conditions and line conditions as it
executes the pages or objects with which they are associated.

Global Conditions

What is a global condition?

A global condition is a condition that is available for re-use throughout the document. Global conditions are the only type of con-
ditions that appear in the Structure area, and that are thus available for re-use by other elements in the document.

You create global conditions for conditions you expect to use more than once in the document. For example, consider a form
letter that includes a few pages of information relevant only for residents of Kyoto. You create a global condition to test for the
presence of “Kyoto” in the client address in the data page, and associate the condition with each of the relevant pages.

Local Conditions

What is a local condition?

A local condition is one that you associate with a particular page, object, or group. It is not available to any other page, object,
or group in the document, and appears only within the element in which you define it; it does not appear in the Structure area.
You cannot re-use or combine a local condition.

You can use global conditions as variables in a local condition.

Line Conditions

What is a line condition?

Conditions

©2010 Objectif Lune Inc - 187 -

A line condition is a condition that acts as a filter on a data selection. Only data selection objects can use line conditions. The
line condition determines two things: what lines (or records in the case of a database emulation) to display in the data selec-
tion, and whether to display an empty line for any line (or record) that does not display. Line conditions only make sense for
data selections that extend over more than one line of the data page (or record of the record set in the case of a database emu-
lation).

A line condition performs its test on each line of the data page a data selection object references. There are three types of line
conditions you can define: one that tests for the presence of a text string, one that tests for the absence of a text string, and
one that you define yourself using a PlanetPress Talk expression.

What is a Line?

In a line condition, a line refers to an entire line of the data page, not just the portion of the line that falls inside the data selec-
tion. The document tests the entire line of the data page when it evaluates a line condition.

If you set a line condition, the document tests all lines of the data page that have a portion lying within the data selection
region. If the line condition resolves to True, the portion of the line that lies in the data selection region displays. If the line con-
dition resolves to False, the portion of the line that lies in the data selection region does not display.

Create or Remove a Line Condition

To create a line condition using the Data Selection properties dialog box:

1. If the properties dialog box for the data selection object for which you want to create a line condition is not already
open, open it doing the following: In the Structure area or in the Page area, double-click the data selection object.

2. In theData Selection properties dialog box, click Lines, and locate the Line Condition Properties area.
3. Select the type of line condition you want to create, and set the options associated with that type. If you selectWhen

advanced condition is true, and need help understanding how to enter the PlanetPress Talk expression, see "Variable
PlanetPressTalk Properties" (page 199).
Line condition: Select the type of line condition you want to create. SelectWhen text is present to create a line con-
dition that tests for the presence of a text string. SelectWhen text is absent to create a line condition that tests for the
absence of a text string. When you select either of these, a Text to search for box and a Location box appear. Use the
Text to search for box to enter the text string you want the condition to look for, and the Location box to define the line,
or the line and column number, (or in the case of a database emulation, the record, or the record and field name) on
which you want to perform the test SelectWhen advanced condition is true to define your own line condition using a
PlanetPress Talk expression. Use the Line displays if box that appears to enter the PlanetPress Talk expression.
When text is present / When text is absent
These boxes appear when you select either When text is present or When text is absent in the Line condition box.

Text to search for: Enter the string whose presence/absence on the line you want the condition to test.
Location: Select the line, or the line and column number, that you want to test for the presence/absence of the string
you specified in the Text to search for box. In database emulation line refers to a record. The selections available are
relative to the current line. Select On line, On previous line, or On next line to test for the presence/absence of the string
on the current line, the preceding line, or the succeeding line respectively. In all emulations except database, select On
line at column, On previous line at column, or On next line at column to test for the presence/absence of the string at a
specific column on the current line, the preceding line, or the succeeding line respectively. In this case you use the
From column spin box that appears to enter the column number. You cannot specify both a record (line) and a field (col-
umn) in database emulation.

Conditions

©2010 Objectif Lune Inc - 188 -

From column: Enter the column number at which to test for the string. This box appears when you select On line at
column, On previous line at column, or On next line at column in the Location box. Recall that these options are not avail-
able in database emulation.
When advanced condition is true
This box appears when you selectWhen advanced condition is true in the Line condition box.

Line displays if: Enter the PlanetPress Talk expression that defines the line condition. Remember that a condition,
and thus this expression, must always resolve to either True or False.

4. Define whether or not you want the document to display a blank line when the line condition resolves to False for a
given line (or record).
Do not display a blank line when condition is false: Select to prevent a blank line from appearing when the
line condition resolves to False. Clear to display a blank line when the line condition resolves to False.

5. This completes the line condition definition. If you have no other adjustments to make in the Data Selection properties
dialog box, click OK to exit the dialog box.

To create a line condition using the Object Inspector:

1. Select the data selection object on which you want to set a line condition.
2. In the Object Inspector, locate the Line condition properties and adjust them to create the line condition you want to set

on the object.

To remove a line condition using the Data Selection properties dialog box:

1. In the Structure area or in the Page area, double-click the data selection object.
2. In theData Selection properties dialog box, click Lines.
3. In the Line condition box, select No line condition.
4. If you have no other adjustments to make in the Data Selection properties dialog box, click OK to exit the dialog box.

To remove a line condition using the Object Inspector:

1. Select the data selection object from which you want to remove a line condition.
2. In the Object Inspector, locate the Line condition property and select No line condition.

Examples of Line Conditions

Youmight use a line condition to accommodate an unstable data page structure. For example, consider a document that uses
ASCII emulation and for which the data selection you want does not always appear in exactly the same place on every data
page; the data selection shifts up or down by a few lines. The string “PREF” appears on those data lines, making it possible to
uniquely identify them. You create a data selection object that spans the entire area in which the data selection can appear,
and set a line condition to test for the presence of the string “PREF.” The data selection applies only to those lines in the data
selection region that contain the string “PREF.”

PlanetPress Supports Global Variables in the Global Function Library Manager

To view global variables in the Global Function Library Manager:

l In the PlanetPress mainmenu, choose Tools | Application |Global Function Library Manager.

In the Global functions in the current document column, global variables are sorted first followed by global functions in alpha-
betical order. For each global variable, the Global Function Library Manager contains variable names, data types, and default
values. In the Libraries column, libraries are listed in alphabetical order.

Conditions

©2010 Objectif Lune Inc - 189 -

Create a Global Condition

To add a global condition:

1. ChooseHome |Document | Condition.
2. In the Condition properties dialog box, click Identification and enter a name for the global condition.

3.

In the Condition properties dialog box, click Condition and select the type of condition from the Condition type box.
Options specific to that type of condition appear below the box. Adjust these options as necessary to define the con-
dition.
Invert the condition: Invert the value of the condition. If the condition evaluates to True, its final value is False. If
the condition evaluates to False, its final value is True.

Text-Based

A text-based condition tests whether a string exists in a defined region of the data page, or compares a
string with one found at a specific location in the data page.

String to find: Enter the text string you want to test for on the data page. Note that if you leave this
box empty, select an operator that requires a data selection, and use the Data Selector to create the data
selection for that operator, PlanetPress Design enters the first line of the data selection you create in this
box.
Operator: Select a location or comparison operator. Location operators look for the specified string in a
specific area of the data page. Comparison operators compare the specified string with the one that
starts at a specific line and column in the data page, and are intended for comparing one number to
another. Comparison operators work by comparing the ASCII values of the two strings, proceeding char-
acter by character until a comparison yields an answer for the selected operator. For example, consider
the case where the operator is Greater than, the string to find is 1348 and the string on the data page is
1506. The comparison operator first compares “1” to “1”; since it cannot determine from this comparison
which is greater, it must proceed to a comparison of the next two characters, “3” and “5”. This com-
parison permits it to determine which is greater thus it does not proceed with further comparisons of the
string. If you select a location operator, for all except On page, youmust specify the appropriate data
page coordinates in the boxes that appear. If you select a comparison operator, youmust specify the line
and column numbers that start the string you want to compare with the specified string.

On value change

Conditions

©2010 Objectif Lune Inc - 190 -

The result of the On value change condition is based not on the data value itself, but on whether the data
has changed from one data page to another.
The On value changecondition has two parameters:

l As with all other conditions, the first parameter is mandatory and it represents the data region to
monitor. Depending on the emulation, the selection can be a block of data, a single field or an
advanced PlanetPress Talk statement.

l All Text/PDF emulations: Allow the selection of a block of data.
l XML/Database: Allow the selection of a single field.
l Any emulation: Allow any valid PlanetPress Talk expression.

l The second parameter allows the user to specify an existing condition or a PlanetPress Talk
expression that controls whether the On value change condition should be evaluated or not. This
option is useful, for instance, to monitor the contents of an Address block, but only when the string
“Page 1 of” is found on the data page as well (otherwise, the address block would be considered
as “changed” on datapage 2 if it is not repeated in the data stream).

Page based

A page-based global condition compares the page number of the current data page with a page number
you define, or compares the position of the data page in a set sequence of data pages with a page posi-
tion you define.
Type of test: Select the type of test you want the condition to perform. There are five types of tests:
On page, Less than, Greater than, Less than or equal to, Greater than or equal to. For example, if you
know the first data page is always a banner page, youmight want to suppress printing it by creating a
condition to test for a page number equal to 1 (an On page test) and associating that condition with the
first page of the document. Or, youmight want to insert a separator page before the first page of every
sequence of 9 data pages. In this case, you create a condition to test for the data page being the first in a
sequence of 9, and then create a separator page that prints only if the condition is True.
Page number: Enter the page number or use the spin buttons to adjust the value. This is either the
page number of the data page, or the position of the data page within a set sequence of data pages. In
the latter case, you select Of, and use Sequence to define the number of pages in the sequence.
Of: Select to indicate the test is on a sequence of data pages.
Sequence: Enter the number of data pages in the sequence, or use the spin buttons to adjust the value.

Advanced

An advanced global condition is a condition that you define using PlanetPress Talk expressions. You can
include existing global conditions in an advanced condition.
Advanced condition: Enter the PlanetPress Talk expression that defines the test you want the con-
dition to perform.

4. In theOverride mode box, select how youwant PlanetPress Design to evaluate the condition during the design
phase.
Data: Select to have the value of the condition depend on the contents of the sample data file. This in effect removes
any override, and results in the condition behaving as it will at runtime.
True: Select to have the value of the condition always equal to True.
False: Select to have the value of the condition always equal to False.

5. If necessary, add PlanetPress Talk code to the object.
l In the Condition properties dialog box, click PlanetPress Talk before to enter PlanetPress Talk code that you
want the document to execute just before it evaluates the condition, or click PlanetPress Talk after to enter
PlanetPress Talk code that you want the document to execute just after it evaluates the condition.

6. Click OK.

Conditions

©2010 Objectif Lune Inc - 191 -

View or Edit the Properties of a Global Condition

To view or edit properties using the Object Inspector:

l Select the global condition in the Structure area.

To view or edit properties using the Condition properties dialog box:

1. Double-click the global condition in the Structure area.
2. Enter any edits you want to make to the global condition.
3. Click OK.

Apply or Remove a Global Condition

To apply a global condition to a page, object or group:

l In the Structure area, drag the global condition to the page, object, or group in the Structure area to which you want
to apply it, and release.
The condition indicator appears in the upper-left corner of the page, object, or group symbol in the Structure area. The
color of the indicator reflects the current value of the condition (green indicates True; red indicates False).

Box object with a condition set on it

To remove an applied global condition:

l Select the page, object, or group from which you want to remove the applied global condition, and then, in the Object
Inspector, locate the Condition property. Highlight the contents of the Condition property and press BACKSPACE to
clear the property.

Use a Global Condition as a Variable

To use a global condition as a variable:

l Place an ampersand before the first character of the condition name. For example, the following line of PlanetPress
Talk code references the condition backordered as a global variable:
show(if(&backordered,'Out of stock',''))
When the condition evaluates to True, the line “Out of stock” prints; when it evaluates to False, nothing prints.

Combine Global Conditions

You can use either the Condition properties dialog box or the Object Inspector to combine global conditions. When you com-
bine conditions, it is important to understand the significance of the position in which a condition appears in the Structure area.
The position of a condition in the Structure area both determines the conditions with which you can combine it, and limits how
you canmove it in the Structure area. More precisely, you can combine a condition only with conditions that appear above it,
and you cannot move a condition above any condition it references.

You combine conditions by creating a valid Boolean expression that references conditions as variables. You construct the
expression using Boolean logic, and the four Boolean operators: AND, OR, NOT, ().

Operator Description Example
AND Operates on two conditions. The result is True only if BOTH conditions are True. &red AND &round
OR Operates on two conditions. The result is True if EITHER condition is True or BOTH conditions are &blue OR

Conditions

©2010 Objectif Lune Inc - 192 -

Operator Description Example
True. &square

NOT Operates on a single condition. The result is the inverse of the condition. NOT (&over_50)
() Assigns the highest precedence to its contents. See below for an explanation of precedence rules.

The expressions you create using these operators can be either simple or complex. For example:

&red OR &blue

&over_50 AND &under_300 AND NOT (&red) AND &round

(NOT (&red OR &blue)) AND (&big OR (&round AND &tin))

Precedence rules determine the order in which PlanetPress Design evaluates the expression. The final result of an evaluation
can depend on the precedence rules. For example, consider that you want a line item on an invoice to print only if the part
number is greater than 50, and the part is either red or round. You write:

&over_50 AND &red OR &round

Depending on the precedence rules, this could also mean print the line item only if both the part number is greater than 50
AND the part is red, or the part is round. In the latter case, line items for parts that are round print, regardless of whether their
part number is greater than 50.

PlanetPress Design uses standard Boolean precedence rules:

Operator Precedence
() 1
AND 2
NOT 2
OR 3

Thus, the contents of parentheses are always evaluated first. If two operators in an expression have the same precedence,
they are evaluated left to right. Since parentheses have the highest precedence, you can override the precedence of a lower-
precedence operator by enclosing it in parentheses. In the following example, although the OR operator has a lower prec-
edence than the AND operator, the OR expression evaluates before the AND expression because parentheses enclose the OR
expression.

(&before_2002 OR &under_50) AND &over_300

Thus, to return to the earlier example, to print the line item only if the part number is greater than 50, and the part is either red
or round, you would rewrite the expression as:

&over_50 AND (&red OR &round)

To combine global conditions using the Condition properties dialog box:

1. In the Structure area, double-click the condition to open the Condition properties dialog box for the condition with
which you want to combine one or more existing conditions:

2. In the Condition properties dialog box, click Concatenation.
The name of the condition you are defining appears in the Completed condition box, and the names of the conditions
you can combine with it appear in the Conditions available for concatenation box.

3. Do one or more of the following to combine conditions into a valid Boolean expression. As you work, PlanetPress
Design reports any syntax errors in the Status area.

Conditions

©2010 Objectif Lune Inc - 193 -

A. Status area
l Type directly in the Completed condition box. Names of conditions and Boolean operators are both case-insen-
sitive. Note that if you want to use a NOT operator, youmust enclose the condition on which you want it to oper-
ate in parenthesis. Thus you enter NOT (&black) rather thanNOT &black.

l Drag and drop conditions from the Conditions available for concatenation box. Click on the name of the condition
you want to add, drag it to the Completed condition box, release it at the position at which you want to insert it in
the expression, and choose either And or Or from the menu PlanetPress Design displays. Legal positions for
insertions are displayed in blue as you drag. Releasing over a condition name inserts the condition after that con-
dition. Releasing over an opening parenthesis inserts the condition before that opening parenthesis. Releasing
over a closing parenthesis inserts the condition after that closing parenthesis.

l Apply the NOT operator to a condition by right-clicking the condition and choosing Insert “Not” Operator.
PlanetPress Design encloses the expression on which you clicked in parentheses, and precedes it by the NOT
operator.

l Remove the NOT operator from a condition by right-clicking the condition and choosingRemove “Not” Oper-
ator.

l Delete a condition by right-clicking the condition and choosingDelete Item from Condition. Note that you
cannot delete the condition you are currently defining.

l Delete any or all conditions by highlighting the section you want to delete and pressingBACKSPACE, or by
backspacing through the section.

4. Click OK.
If the Boolean expression contains a syntax error and you attempt to close the Condition properties dialog box, Plan-
etPress Design returns the focus to the Concatenation area of the Condition properties dialog box. Youmust fix the
error to close the dialog box.

To combine global conditions using the Object Inspector:

Conditions

©2010 Objectif Lune Inc - 194 -

1. In the Structure area, select the condition to which you want to add one or more existing conditions.
2. In the Object Inspector, locate the Combined condition property.
3. In the Combined condition property, enter a valid Boolean expression that references one or more of the conditions

that appear above the currently selected condition in the Structure area, and describes how youwant to combine those
conditions. This expressionmust reference the condition whose Combined condition property you are editing.

Override a Global Condition

To override a global condition:

1. In the Structure area, double-click the global condition to display the Condition properties dialog box for the condition
whose value you want to override.

2. In the Condition properties dialog box, click Condition and select the override for the condition in theOverride
mode box.
Data: Select to have the value of the condition depend on the contents of the sample data file. This in effect removes
any override, and results in the condition behaving as it will at runtime.
True: Select to have the value of the condition always equal to True. Note that this override is valid only during doc-
ument design and has no effect at runtime.
False: Select to have the value of the condition always equal to False.

3. Click OK.

Delete a Global Condition

To delete one or more global conditions:

1. Select the global conditions you want to delete.
2. ChooseHome | Clipboard | Delete.

If no elements in the document reference any of the selected global conditions, PlanetPress Design performs the dele-
tion.
If any elements in the document reference any of the selected global conditions, PlanetPress Design prompts you to
define how youwant to handle the deletion of each referenced global condition.

To use the Condition Deletion dialog box:

1. Adjust the options to reflect how youwant PlanetPress Design to handle the deletion request. The name of the global
condition you selected for deletion appears in the title bar of the Condition Deletion dialog box, and the list of elements
that reference it appear on the right of the dialog box.
Replace all references with: Select to delete the global condition and to replace all references to it with a ref-
erence to another of the global conditions in the document.
Conditions available: Select the global condition you want to use as the replacement reference. When you delete
the global condition, PlanetPress Design replaces all references to the deleted global condition with a reference to the
global condition you select here. You can use the Conditions button to create a new global condition to add to this box.
Conditions button: Click to create a new global condition. PlanetPress Design creates the new global condition and
selects it in the Conditions available box.
Delete all elements: Select to delete the global condition and all document elements that reference it. All document
elements that reference this global condition appear in the list on the right of the Condition Deletion dialog box.

2. Click OK.

Create, Edit, or Delete Local Conditions

To create a local condition:

Conditions

©2010 Objectif Lune Inc - 195 -

l Select the page, object, or group for which you want to create the condition. In the Object Inspector, locate the Con-
dition property and enter the PlanetPress Talk expression that defines the local condition.
The condition indicator appears on the upper-left corner of the page, object, or group symbol in the Structure area. The
color of the indicator reflects the current value of the condition (green indicates True; red indicates False).

To edit a local condition:

l Select the page, object, or group whose local condition you want to edit. In the Object Inspector, locate the Condition
property and edit the PlanetPress Talk expression that defines the local condition.

To delete a local condition:

l Select the page, object, or group whose local condition you want to delete. In the Object Inspector, locate the Condition
property and either highlight its contents and press BACKSPACE, or select an existing global condition with which you
want to replace the local condition.
If the element no longer has a condition associated with it, PlanetPress Design removes the condition indicator from its
symbol in the Structure area.

Verify a Condition

To verify a global condition:

1. In the Conditions area of the Structure area, locate the global condition you want to verify.
2. Navigate through the sample data file.

To verify a local condition:

1. In the Structure area, locate the page, object, or group whose local condition you want to verify.
The color of the condition indicator on the upper-left corner of the page, object, or group symbol in the Structure area
reflects the current value of the condition. The indicator appears in green when the condition is True and in red when
the condition is False.

2. Navigate through the sample data file.
The color of the condition indicator updates to reflect the value of the local condition on the current data page.

Add a Global Function

To add a global function:

1. ChooseHome |Document |Global Function.
2. In the Structure area, double-click the new global function, or select it and press ENTER.
3. Replace the default name,@GlobalFunction1, with a name that reflects the purpose of the global function. Note that

the initial @ character is part of the name of the function. If you omit it when you call the function from a PlanetPress
Talk script, the script produces a syntax error.

4. Enter the code for the new global function.
The function you define may or may not return a value. If it does return a value, youmust assign the return value to the
predefined variable&result on the last line of the function definition (the line that immediately precedes the end-
function() line).
You use the@name() command to subsequently call the function you define. Consult the PlanetPress Talk Lan-
guage Reference for further help with this and any other command youwant to use within the global function.

5. Click OK.

View or Edit a Global Function

To view or edit a global function:

Conditions

©2010 Objectif Lune Inc - 196 -

1. In the Structure area, double-click the global function.
2. Use the PlanetPress Talk Editor to edit the properties of the global function, if necessary.
3. Click OK.

If youmade a modification that may cause execution problems in the document, PlanetPress Design reports an error in
the Messages area.
If youmade a modification that may cause execution problems in the document , PlanetPress Design requests con-
firmation before proceeding with the modification.

To change the name of a global function:

l Do any of the following:
l Rename the function in the Structure area: In the Structure area, select the function, then press F2 or click the
name of the function a second time to select the name. Edit the name. You can press ESC at any point to abort
the rename operation. When you have completed the modification, press ENTER or click outside the name.

l Rename the function in the Object Inspector: In the Structure area, select the global function. The Object
Inspector displays the properties of that function. In the Object Inspector, edit the Name property to reflect the
new name, then press ENTER or click outside the name box.

l Rename the function in the PlanetPress Talk Editor: In the Structure area, double-click the global function, or
select it and press ENTER. The PlanetPress Talk Editor appears. Change the name of the function in the Editor
then click OK to exit the Editor.

Delete a Global Function

To delete one or more global functions:

1. Select the global functions you want to delete.
2. ChooseHome | Clipboard | Delete.

If no elements in the document reference any of the selected global functions, PlanetPress Design performs the dele-
tion.
If any elements in the document reference any of the selected global functions, PlanetPress Design prompts you to
define how youwant to handle the deletion of each of the referenced global functions.

To use the Global Function Deletion dialog box:

1. Adjust the options to reflect how youwant PlanetPress Design to handle the deletion request. The name of the global
function you selected for deletion appears in the title bar of the Global Function Deletion dialog box, and the list of ele-
ments that reference it appear on the right of the dialog box.
Replace all references with: Select to delete the global function and to replace all references to it with a reference
to another global function in the document.
Global functions available: Select the global function you want to use as the replacement reference. When you
delete the global function, PlanetPress Design replaces all references to the deleted global function with a reference to
the global function you select here. You can use the Global Functions button to create a new global function to add to
this box.
Global Functions button: Click to create a new global function. PlanetPress Design creates the new global function,
and selects it in the Global functions available box.
Delete all elements: Select to delete the global function and all document elements that reference it. All document
elements that reference this global function appear in the list on the right of the Global Function Deletion dialog box.

2. Click OK.

Conditions

©2010 Objectif Lune Inc - 197 -

©2010 Objectif Lune Inc - 198 -

PlanetPress Talk
PlanetPress Talk is a complete scripting language that opens the door to more powerful and sophisticated documents.

Please note, as of October 20th 2011, the PlanetPress Talk Reference Guide has beenmerged with the PlanetPress
Design User Guide. This chapter now contains the language reference andmore details about our scripting language.

You can use PlanetPress Talk expressions inmany places in the documents you create in PlanetPress Design. You can enter a
PlanetPress Talk expression in any text box with a maroon label. You can also include complete PlanetPress Talk programs in
your document. This provides the power and flexibility that make even the most complex documents possible in PlanetPress
Design. You enter PlanetPress Talk programs when you create a user-defined emulation, and when you edit the PlanetPress
Talk properties of an object, a page, a document, or a condition. When you edit the PlanetPress Talk properties, you can enter
PlanetPress Talk code directly, or through the PlanetPress Talk Editor. Finally, you can also write your own PlanetPress Talk
functions from PlanetPress Design, making it easy to extend the language to suit the requirements of your particular document
or documents. When you write programs in PlanetPress Talk, you should work through the logic of the program you intend to
create before you start coding. This ensures the program accomplishes what you intend it to accomplish, andmakes the cod-
ingmore straightforward. It can also result in insights into different ways of accomplishing the same task, or raise issues that
were not immediately apparent. Note that PlanetPress Talk is case-insensitive.

When a user-defined emulation is used withmetadata, results and behavior are unknown and unsupported. For
instance, refreshing the metadata file may cause the document to crash and/or corrupt. For this reason, it is strongly
advised to create backup copies of your documents beforehand.

This chapter introduces the PlanetPress Talk scripting language, describes where and how you can enter PlanetPress Talk
code in PlanetPress, explains its syntax and each of its elements, and offers some tips and tricks for writing PlanetPress Talk
scripts.

Variable PlanetPressTalk Properties
You can enter a PlanetPress Talk expression in any parse field. Parse fields can be identified by their maroon field label text.
(note that maroon is a default setting that you canmodify in the User Options dialog box).

A. Maroon label

The following procedure describes how to enter a PlanetPress Talk expression in such a text box. You can enter the complete
PlanetPress Talk expression by hand, build it using items from the menu that appears when you right-click in the text box, or
create it using a combination of the two. For help with PlanetPress Talk, consult the PlanetPress Talk Language Ref-
erence.

The menu that appears when you right-click in the text box contains some or all of the following items.

Choose: To:
Data Selec-
tion

Launch the Data Selector and create a data selection to insert in the PlanetPress Talk expression.

Get Data
Launch the Data Selector and retrieve characters to insert in the PlanetPress Talk expression. The string you
retrieve is static.

PlanetPress Talk

©2010 Objectif Lune Inc - 199 -

http://www.objectiflune.com/Documentation/EN/planetpress-talk/
http://www.objectiflune.com/Documentation/EN/planetpress-talk/
http://www.objectiflune.com/Documentation/EN/planetpress-talk/
http://www.objectiflune.com/Documentation/EN/planetpress-talk/
http://www.objectiflune.com/Documentation/EN/planetpress-talk/
http://www.objectiflune.com/Documentation/EN/planetpress-talk/

Choose: To:

Color
Launch the Color Picker and select a color to include in the expression. When you exit the Color Picker, the
CMYK values for the color appear in the expression.

Style
Display a menu of the styles defined in the document and choose the name of a style to add to the expression.
PlanetPress Design adds the style as a variable of type string.

Global Con-
dition

Display a menu of the global conditions available in this document, and choose one of those functions to include
in the expression.

Global Var-
iable

Display a menu of the different types of global variables defined in the document (integer, Boolean, string,...),
and choose a global variable to add to the expression.

System Var-
iable

Display a menu of the different types of system variables (integer, Boolean, string,...), and choose a system var-
iable to add to the expression.

Local Var-
iable

Display a menu of the different types of local variables defined in the object (integer, Boolean, string,...), and
choose a local variable to add to the expression. This menu item is available only when the object contains local
variables.

Global Func-
tion

Display a menu of the global functions available in this document, and choose one of those functions to include in
the expression.

Integer
Display a menu of the integer functions available in PlanetPress Talk, and choose one of those functions to
include in the expression.

Measure
Display a menu of the measure functions available in PlanetPress Talk, and choose one of those functions to
include in the expression.

String
Display a menu of the string functions available in PlanetPress Talk, and choose one of those functions to include
in the expression.

Boolean
Display a menu of the Boolean functions available in PlanetPress Talk, and choose one of those functions to
include in the expression.

Custom Data
Selection
CRLF

Add a new line to the Custom data selection. This menu item is available only when you are defining a Custom
data selection.

To enter a PlanetPress Talk expression in a text box:

1. Enter the equals sign (=) in the text box.
2. Construct the PlanetPress Talk expression using one or more of the followingmethods.

l Type directly in the text box. Note that if you want to use an apostrophe (‘) or a backslash (\) in a string, you
must precede it by a backslash. For example: =if(@(1,1,4) = 'ABCD', 'Don\'t forget your alphabet' ,
'Now you know your A:\\, B:\\, C:\\!')

l Click in the text box at the position at which you want to insert a variable, function, or data selection, then right-
click and use the menu to choose the item youwant to insert. PlanetPress Design inserts the chosen item in the
text box. Note that if you did not enter an equals sign (=) as the first character of the text box, and this is the
first item you are adding from the right-click menu, PlanetPress Design automatically inserts an equals sign in
front of the item.

l Highlight a section of the expression entered to date, and then right-click and choose a function from the menu.
The function appears in the text box, with the highlighted section of the expression as its argument. In this case,
youmust be careful that the content of the highlighted section is in fact a valid argument for that function. If nec-
essary, consult the PlanetPress Talk Language Reference for the function in question. Note that if you
use a data selection to retrieve Arabic text, youmust nest your data selection in a maputf8 () command. For
example:

maputf8(@(21,10,28))
l PlanetPress Design reports any errors in the expression in the Status area of the dialog box that contains it. If
you attempt to close the dialog box that contains it, PlanetPress Design returns the focus to the text box. You
must correct the error before you can close the dialog box.

PlanetPress Talk

©2010 Objectif Lune Inc - 200 -

The PlanetPress Talk Editor

The PlanetPress Talk Editor is a feature-rich editor for entering PlanetPress Talk code. You can write, run, and debug code, as
well as import and export code, all from the PlanetPress Talk Editor.

There are four main areas in the PlanetPress Talk Editor: the Commands area, the Code area, the status bar and the Spy list.

A. Commands area B. Code area C. Status bar D. Spy list

Commands Area

The Commands area displays a list of available PlanetPress Talk commands, organized into groups. It serves both as a quick
reference as well as an easy way to enter code either by dragging and dropping, or double-clicking a command.

Code Area

The Code area displays the PlanetPress Talk code entered to date. If the Code area is currently displaying the contents of a
file, the title bar of the window displays the path of that file.

PlanetPress Talk Editor Status Bar

The status bar displays information about the line of code that is currently under the pointer, and the current execution status
of the program.

The Editor also uses the status bar to display any conversion or run errors it encounters in the Code area when you attempt to
exit the Editor.

©2010 Objectif Lune Inc - 201 -

Spy List

The Spy list displays any and all spies set in the object or page from within which you are using the Editor.

PlanetPress Talk Editor Features

What are the features of the PlanetPress Talk Editor?

The PlanetPress Talk Editor provides the following features for entering, editing, and executing code..

Feature: Description:
Easily cus-
tomized
appearance
and behavior

You can set a number of options that affect the appearance and behavior of the Editor.

Flexible code
entry

The Editor provides several ways to enter code, and it includes a number of features to enhance the speed and
efficiency of code entry. You can enter code in the PlanetPress Talk Editor by dragging and dropping commands
from the Commands area, double-clicking commands in the Commands area, or by typing commands directly in
the Code area as you would in a text editor.
When you type commands directly in the Code area, the command name completion can enhance the speed and
accuracy of command entry.
The Editor also provides a number of ways to enter arguments into a command, andmakes it easy to quickly dis-
play a list of the arguments a command requires.

Syntax high-
lighting

You can use syntax highlighting to make the different elements of the code in the Code area easier to distinguish
visually. For example, youmight choose to display all command names in a bold font with the color set to black,
and all comments in a regular font with the color set to gray.

Convenient
navigation

You can navigate in the Code area as you would in a text editor, using the arrow keys, and the scrollbars that
appear on the bottom and on the right of the Code area when the code extends beyond the size of the Code
area.
The Editor also provides bookmarks to make it easy to jump to a specific point in the code, and a feature to
make it easy to jump to a specific line number.

Selection and
manipulation
of a region of
code

You can select a region of code and then cut, copy, paste, or delete that region.

Undo com-
mand

You can undo either a single editing command, or a group of editing commands. You can also repeat the undo to
continue undoing previously entered commands or groups of commands.

Search, and
search and
replace

You can perform search as well as search and replace operations in the Editor.

Program
execution
control

You can run a program through to completion, advance execution only to the pointer position, or advance
execution one line of code at a time.

Result pre-
view

You can use the Object Preview to preview the result of execution.

Print the pro-
gram

You can print the code that appears in the Code area and set a number of options that determine how the code
prints.

Import and
export pro-
grams

The Editor can import and export programs. Thus you can write code in an external text editor and import it, or
save the code you write in the Editor out to a file.

Help ref- The Commands area provides a quick reference for the PlanetPress Talk language, and the command name

©2010 Objectif Lune Inc - 202 -

Feature: Description:
erences completion feature and the argument list display feature provide quick references for specific commands.

Debugging Features

What debugging features are available in the PlanetPress Talk Editor?

The Editor provides four key features that can help you debug problem programs: execution control, breakpoints, spies, and
expression evaluation. They are not available when you launch the Editor from the PlanetPress Talk properties of a document
or condition, when you are editing the PlanetPress Talk before/after paragraph properties of a text object, or when you are
creating or editing a global function.

1. Execution control
The different executionmethods, in particular the Run to cursor and the Step by stepmethods of executing a program,
can be useful when you are debugging a program. You can exit program execution at any point.

2. Breakpoints
A breakpoint stops the execution of the program at a specific line in the code. You can set the breakpoint to take effect
whenever the program arrives at that line, or only when the program arrives at that line and a specified condition is
True. You can set as many breakpoints as you need.

3. Spies
A spy is a PlanetPress Talk expression that references one or more variables or expressions in your PlanetPress Talk
code and evaluates to a string, integer, measure, currency or Boolean value. The expression you use for the spy may
or may not be part of the existing code.
Spies are useful for monitoring variables or expressions in your PlanetPress Talk code. The spies you create appear in
the Spy list. When you execute the program, they update to reflect the changing values of the variables they reference.
Spies can reference global, system, and local variables. Note, however, that the only local variables you can reference
when you create a spy are those defined in the program loaded in the Editor at that time.
There is one Spy list per individual object or page.

4. Expression evaluation
You can evaluate any PlanetPress Talk expression that evaluates to a string, integer, measure, currency or Boolean
value, whether or not that expression appears in the Code area of the Editor.
The value of any variable the expression references is its value at the point in program execution at which you perform
the evaluation. You can reference system variables, global variables, as well as any local variables that appear in the
program currently loaded in the Editor.

Other Features Useful in a Debugging Context

In addition to the four key debugging features, comments, debugging code, and the Object Preview can also be useful during
debugging.

Comments can be very handy for enabling or disabling sections of code.

Debugging code is code you embed in the program for debugging purposes only; during execution, it prints information that
helps you debug the program. The Messages area of the Object Preview displays the debugging code. Once you solve the
problem, you remove the debugging code.

The Object Preview is useful both for viewing the result of code execution up to the current stop point in the code, and for
examining error messages and debugging strings.

Code Execution in the Editor

When are the execution and debugging features of the Editor available?When I execute a program in the Editor, what other
code executes along with it?

©2010 Objectif Lune Inc - 203 -

The execution and debugging features of the Editor are available only when you launch the Editor from the PlanetPress Talk
properties of an object or page, or from the Data Selector. They are not available when you launch the Editor from the Plan-
etPress Talk properties of a document or condition, when you are editing the PlanetPress Talk before/after paragraph prop-
erties of a text object, or when you are creating or editing a global function.

The execution feature lets you preview the result of the PlanetPress Talk code using the Preview window. When you execute a
program, the Preview window displays the result of the execution up to the current stop point in the code.

A. Messages area

It is important to understand that when you execute a program in the Editor, only in the case of a user-defined emulation is
that program the only code that executes. When you execute a program from the PlanetPress Talk properties of an object or
page, the entire code for that object or page executes. This ensures the execution respects any dependencies one section of
code has on an earlier section of code.

Think of the entire code of an element as being composed of three parts:

1. PlanetPress Talk before code
The code you enter in the PlanetPress Talk before property of the element.

2. Element code
This includes the code for all the other properties of the element. For example, in an object it includes the code for the
Height, Width, Left, Right, Style, Condition, and all the other properties of the object In a PlanetPress Talk object, it
includes the code you enter in the PlanetPress Talk code property. In a page, it includes the code for all the properties
of the page as well as the code for all the objects on the page.

3. PlanetPress Talk after code
The code you enter in the PlanetPress Talk after property of the element.

When you execute a program in the Editor, the Editor executes all three parts of the element, in sequence.

©2010 Objectif Lune Inc - 204 -

You can stop execution, and use the debugging features only in the program you are currently editing in the Editor.

Enter a New Program in the Editor

The way you create a new program in the PlanetPress Talk Editor depends on whether the Code area of the Editor is currently
displaying the contents of a file.

To create a new program when no file is loaded in the Code area:

l Enter the new program.

To create a new program when a file is loaded in the Code area:

1. If necessary, save the program currently loaded in the Code area.
2. Press CTRL+A followed by BACKSPACE to clear the Code area.
3. Enter the new program.

Import or Export a Program

The file name extension .ptk indicates the file contains PlanetPress Talk code.

If a file is currently loaded in the Editor, you can also use the export procedure to save the contents of the Code area to a dif-
ferent file.

To import an existing PlanetPress Talk program:

1. Choose File | Import.
If you currently have an unsaved program in the Code area, the Editor prompts for confirmation to save it. Once you
respond to the prompt, or if no response was necessary, the Editor displays the Open dialog box.

2. In theOpen dialog box, navigate to the PlanetPress Talk program youwant to open and click Open. The .ptk file
name extension indicates the file contains PlanetPress Talk code.
The Editor loads the contents of the file into the Code area. The Editor does not verify that the file contains valid Plan-
etPress Talk code when it loads it. You can verify the code by executing it in the Editor and/or examining the Messages
area of the Object Preview.

To export a PlanetPress Talk program:

1. In the PlanetPress Talk Editor, choose File | Export As.
2. In the Save As dialog box, navigate to the folder in which you want to save the program and enter the file name for

the program.
3. Click Save.

Save a Program

If no file is currently loaded in the Editor, and you want to save the contents of the Code area, you use the export procedure.
You also use the export procedure if a file is currently loaded in the Editor and you want to save the contents of the Code area
to a different file.

To save a program:

l In the PlanetPress Talk Editor, choose File | Export.

Print a Program

To print the program:

©2010 Objectif Lune Inc - 205 -

1. If you want to print only a region of code, select that region.
2. In the PlanetPress Talk Editor, choose File | Print.
3. Adjust the print options if necessary.

File to print
File name: Displays the name of the file currently loaded in the Code area.
Print selected block: Select to print only the selected region of the program. Clear to print the complete program. This
option is available only if you have code selected in the Code area.
Options
Line numbers: Select to print code line numbers or clear to exclude them. The line numbers appear in the Editor along-
side the lines of code if the User Options are set to display them. Line numbers can provide a useful reference, par-
ticularly when debugging a program.
Word wrap: Select to have any line of code that extends beyond the page wrap to the next line. The wrap occurs on a
word break. Clear to prevent the word wrap, and thus force every line of code to occupy one line on the printed page.
Syntax print: Select to preserve the style attribute settings (Bold, Italic, Underline) set in the User Options, in the
printed output. Clear to remove these settings from the printed output. Note that Syntax print does not work if you
select Line numbers.
Left indent: Enter the left margin to use for the code on the printed page, in points. If you also select Line numbers, this
is the distance between the line numbers and the code.

4. If necessary, click Setup to display the Printer Setup dialog box and adjust the printer options.
5. Click OK.

Exit the PlanetPress Talk Editor

To exit the PlanetPress Talk Editor:

l In the PlanetPress Talk Editor, click OK.

The Editor verifies the code in the Code area. If it encounters any conversion or run errors, it displays the offending error in
the status bar and does not exit.

If the code is error-free, the Editor exits. If a file is currently loaded in the Code area, and youmade modifications to it, the
Editor prompts for confirmation to save it before exiting.

Show or Hide the Commands Area or Spy List

To show or hide the Commands area:

l Choose View | Commands.

To hide the Commands area:

l Choose Close.

To show or hide the Spy list:

l Choose View | Spy List.

Adjust the Sizes of the Commands Area, Code Area and Spy List

To adjust the relative sizes of the Commands area, Code area, and Spy list:

1. Position the pointer over the right edge of the Commands area, or the top edge of the Spy list to display the double-
headed arrow pointer.

2. Click and drag to adjust the relative sizes of the Commands area, Code area, and/or Spy list.

©2010 Objectif Lune Inc - 206 -

Expand or Collapse Command Groups

A. Expand/collapse box B. Expanded group C. Collapsed group

To expand or collapse a single command group:

l Click the expand/collapse box to the left of the group.

To expand or collapse all command groups:

l Right-click in the Commands area and choose Expand All or Collapse All.

Enter Commands in the Editor

Tomake code entry faster andmore adaptable to different work styles, the Editor provides a number of ways to enter code.

When you are entering commands, remember that PlanetPress Talk is case-insensitive.

To enter commands:

l In the Code area, click and type the command. When you type commands, youmay find the command name com-
pletion feature useful.
The exact insertion point depends on the type of command. If the command is a function, the Editor inserts it at the
exact point indicated by the click in the Code area. If the command is a procedure, and the point indicated by the click in
the Code area is anywhere except the first character of the line, the Editor inserts it after the line on which you clicked;
if you clicked on the first character of a line, it inserts it before that line.

To enter arguments:

l Use any of the following.
l Argument: You can enter any argument by typing it.
l Data selection: To enter a data selection as an argument using the Data Selector, right-click in the Code area at

©2010 Objectif Lune Inc - 207 -

the point at which you want to enter the data selection argument, and chooseData Selection.
l Color specification: To enter a color specification as an argument using the Color Picker, right-click in the Code
area at the point at which you want to enter the color specification, and choose Color.

l Style: To enter a style as an argument, right-click in the Code area at the point at which you want to enter the
style, choose Style, and then choose the style you want to reference.

l Image resource: To enter an image resource as an argument, right-click in the Code area at the point at which
you want to enter the argument, choose Image Resource, and then choose the image resource you want to
reference.

l Condition: To enter a condition as an argument, right-click in the Code area at the point at which you want to
enter the condition, choose Global Condition, and then choose the condition you want to reference.

l System variable (from the Commands area): To enter a system variable as an argument using the Commands
area, click in the code at the point at which you want to enter the system variable. Then, locate the variable in
the Commands area (either in the All in alphabetical order group or the Other group), and double-click it as you
would to enter a command.

l System variable (from the Code area): To enter a system variable as an argument from the Code area, right-
click in the Code area at the point at which you want to insert the system variable, choose System Variable,
then choose the variable type, and finally choose the system variable.

l Global variable: To enter a global variable as an argument using the list of global variables, right-click in the
Code area at the point at which you want to insert the global variable, choose Global Variable, then choose
the variable type, and finally choose the global variable.

l Global functions: To enter a global function as an argument using the list of global functions, right-click in the
Code area at the point at which you want to insert the global function, choose Global Function, then choose
the global function.

l Any type of variable (global, local, or system) or a global function: To enter a variable of any type or a global
function as an argument, in the Code area, click in the code at the point in the argument list at which you want to
insert the variable or global function and press CTRL+SPACE. A list of variables and commands appears. In
the list, double-click the variable or global function you want to insert, or if it is already highlighted, press
ENTER, to insert it into your code. You can abort the operation at any point by pressing ESCAPE. Note that the
position of the pointer when you press CTRL+SPACE is important. If you press CTRL+SPACE in the middle of
an existing string, the Editor performs a variable or command name completion instead of an argument inser-
tion.

l Commands: To enter a command as an argument to another command, use any of the techniques described in.
You can also use the technique described above for inserting any type of variable from the Code area.

Use Command and Variable Name Completion

To use command or variable name completion:

1. Click at the point at which you want to insert the command or variable, and type the first character or characters of its
name.

2. Press CTRL+SPACE.

©2010 Objectif Lune Inc - 208 -

Dynamic Images
Dynamic images are image resources that refer to more than one image in a dynamic fashion. These images can be located
on local or remote drives, or directly on the printer, depending on the runmode that is used.

This section explains how dynamic images work.

PlanetPress Talk Expressions for Dynamic Images that Reference
Image Resources
What do I need to know to construct a PlanetPress Talk expression for a dynamic image that references image resources?
What are some examples of these expressions?

Youmust be able to construct a PlanetPress Talk expression that resolves to the name of an image resource. In the simplest
case, the name of the image resource exists in the input data, and the PlanetPress Talk expression you construct contains a sin-
gle data selection command. For example, if columns 1 through 15 of the first line of each data page contain the name of the
image resource, you would enter the following PlanetPress Talk expression in the Image box.

=@(1,1,15)

If the input data does not contain the complete name of the image resource, in a single location, but you can construct the
name usingmore than one data selection, you construct an expression that contains the necessary number of data selections,
concatenated to form a single string.

If the input data contains only part of the name of the image resources, and the missing part is the same for all image
resources, you can construct an expression that takes the part of the name in the input data and concatenates the missing
part. For example, imagine a situation in which the name of each of the image resources begins with a country code that is the
same for all of the image resources, and that the country code is missing in the names in the input data. You could construct a
PlanetPress Talk expression that takes the name of image from the input data and adds the country code as a prefix. So the
final expressionmight be

='c10' + @(2,1,22)

where c10 is the country code, and the name of the image resource appears in columns 1 through 22 of the second line of each
data page.

If you cannot construct an expression that resolves to the names of the image resources you want the dynamic image to ref-
erence, two alternatives are to rename the image resources in the document so they match the names in the input data, or to
adjust the names of the images in the input data. In the first case, the number of image resources the dynamic image ref-
erences may determine whether this is a realistic solution. In the second case the adjustmentmay require altering the source
from which you generate the input data, andmay or may not be a feasible solution.

PlanetPress Talk Expressions for Dynamic Images that Reference
External Images
What do I need to take into account when I construct a PlanetPress Talk expression for a dynamic image that references exter-
nal images?What are some examples of these expressions?

©2010 Objectif Lune Inc - 209 -

The PlanetPress Talk expression you define references a selection of input data so that as the input data varies, so does the
image that appears in the picture object.

When the document executes, it must retrieve the external images associated with each dynamic image in the document.
These images must thus be accessible in the execution environment of the document.

When you construct the PlanetPress Talk expression that resolves to a pathname for an image, you therefore need to con-
sider:

1. The physical location of the images you want to associate with the dynamic image.
2. Whether the document executes host-based or printer-based.
3. The image format or formats in which the images exist.

Youmay have to adjust one or more of these prior to document execution to make the images available to the document at
runtime, in a format it can handle.

Physical Location of Dynamic Images

The pathname you define for an external image must resolve to one of three physical locations: the printer on which the doc-
ument executes, the local PlanetPress Design Suite virtual disk on the host on which the document executes, or any folder on
the host on which the document executes. The local PlanetPress Design Suite virtual disk is a virtual disk PlanetPress Design
creates andmaintains on the hard disk of the computer on which it is running.

Host-Based or Printer-Based Document Execution

When you preview a document in PlanetPress Design, or set up a PlanetPress Suite Workflow Tool process to execute a doc-
ument, you specify whether you want the document to run host-based, or printer-based. The physical dynamic image loca-
tions available to the document at runtime depend onwhether it executes host-based or printer-based.

A document that executes printer-based executes completely on that printer. In this case the document exists and executes
on the printer, and the only dynamic image location available to it at runtime is the printer.

A document that executes host-based, executes either partially or completely on the host. If the document does not produce
printer output, it executes entirely on the host. If it produces printer output, the host partially executes the document and then
sends the result to a printer; the document completes execution on the printer. The partial execution that takes place on the
host includes the retrieval of dynamic images. A document that executes host-basedmust exist on the host; you cannot run a
document that is installed on a printer, host-based. If a document executes host-based, and it contains dynamic images that
reference external images, those images can exist on the local PlanetPress Design Suite virtual disk on the host on which the
document is executing, or in any folder on the host on which the document is executing. If the document completes execution
on a printer, the external images can also exist on the printer. In this case if the document cannot find an external image on
the host, it looks for it on the printer.

There are only two ways to execute a document host-based. The first is to perform a preview in PlanetPress Design, and
select Run locally in the options for that preview. The second is to install the document in PlanetPress Suite Workflow Tool and
set up a PlanetPress Suite Workflow Tool process that executes the document host-based. See the PlanetPress SuiteWork-
flow Tool User Guide for help understanding and creating PlanetPress Suite Workflow Tool processes.

If you select host-based when you perform either a screen or hard copy preview in PlanetPress Design, the images can exist
either on the local PlanetPress Design Suite virtual disk or in a folder on the host. The pathname in the picture object deter-
mines which of the two locations the document uses.

©2010 Objectif Lune Inc - 210 -

If you select host-based when you set up a PlanetPress Suite Workflow Tool process to execute a document, the document
can access both the local PlanetPress Design Suite virtual disk as well as any folder on the computer on which it executes. If it
completes execution on a printer, it can also access the hard disk of the printer.

Image Format

Images must be in a format the document can accept at runtime.

Dynamic images that are resident on a printer or on the local PlanetPress Design Suite virtual disk must be in PostScript for-
mat. The only way to make images available in these locations, in a format the document can accept, is to use the Image
Downloader to copy the images to those locations. The Image Downloader converts any images it copies to PostScript format.

Dynamic images that exist on a folder on the host must be in one or more of the supported image formats.

Summary of Execution Environments

The following summarizes the different execution environments, and where the external images must reside in each case.
Recall that external images on either a printer or the local PlanetPress Design Suite virtual disk must be in the PostScript for-
mat generated by the Image Downloader. External images in a folder must be in one or more of the supported formats.

To: Images must reside on the:
View dynamic
images during
document
design

Host on which you are running PlanetPress Design, either in a folder or on the local PlanetPress Design Suite
virtual disk.

Perform a
screen preview

Host on which you are running PlanetPress Design.
If you choose a host-based screen preview, the images can be either in a folder or on the local PlanetPress
Design Suite virtual disk.
If you choose a printer-based screen preview, the images must be on the local PlanetPress Design Suite vir-
tual disk.

Perform a hard
copy preview

Host on which you are running PlanetPress Designor printer on which you perform the preview.
If you choose a host-based hard copy preview, the images can be in a folder on the host, on the local Plan-
etPress Design Suite virtual disk, or on the printer.
If you choose a printer-based hard copy preview, the images must be on the printer.

Execute a doc-
ument installed
on a printer

Printer on which you execute the document.

Execute a doc-
ument on a
printer from
PlanetPress
Suite Workflow
Tool

Host on which you are running PlanetPress Suite Workflow Tool or the printer on which you execute the doc-
ument.
If you configure the PlanetPress Suite Workflow Toolprocess to execute the document host-based, the
images can be in a folder on the host running PlanetPress Suite Workflow Tool, on the local PlanetPress
Design Suite virtual disk, or on the printer.
If you configure the PlanetPress Suite Workflow Tool process to execute the document printer-based, the
images must reside on the printer.

Execute a doc-
ument in Plan-
etPress Image
or PlanetPress
Fax

Host on which you are running PlanetPress Suite Workflow Tool, or the host on which you are running a
remote instance of PlanetPress Image or PlanetPress Fax.
If you configure the PlanetPress Image or PlanetPress Fax output to execute the document host-based, the
images can be in a folder on the host running PlanetPress Suite Workflow Tool, on the local PlanetPress
Design Suite virtual disk (if there is a PlanetPress Design installation on the host on which you are running
PlanetPress Suite Workflow Tool), or on the PlanetPress Design Suite virtual disk of the remote host on which
PlanetPress Image or PlanetPress Fax is running.
If you do not configure the PlanetPress Image or PlanetPress Fax output to execute the document host-

©2010 Objectif Lune Inc - 211 -

To: Images must reside on the:
based, the images must be either in a folder on the host running PlanetPress Suite Workflow Tool or on the
local PlanetPress Design Suite virtual disk.

Examples of PlanetPress Talk Expressions that Resolve to Pathnames

The following are examples of PlanetPress Talk expressions that resolve to pathnames. The expression can thus include
global and system variables.If the images exist on both a host and a printer, you can define an expression that specifies when
to use the images on the host, and when to use those in the printer. For an example of this, see the last entry below.

Expression: Specifies:

='map'

An image resource internal to the document. If no image resource exists by that name, the
document looks for an image in the root folder of the default disk of the printer or an image in
the local PlanetPress Design Suite virtual disk. If the image file is on either the printer disk or
the local PlanetPress Design Suite virtual disk, it is in PostScript format.

=trim(@(3,1,20)) + '.png'

An image in the document, or a host-resident or printer-resident image. The document first
looks for an image internally. If it does not find it internally it looks for an image in the root
folder of the default disk of the printer or an image in the local PlanetPress Design Suite virtual
disk. The document constructs the specific path of the image by concatenating the data selec-
tion that specifies the name of an image file, and the file name extension .png. If the image
file is on either the printer or the PlanetPress Design Suite virtual disk, it is in PostScript for-
mat.

='S:\\parts\\wingnut.tif'
A host-resident image file. The document expects to find the imagewingnut.tif in the parts
folder of the S drive of the host on which it is executing. The image is TIFF format, one of the
supported image formats.

='%disk1%parts\\bolt.eps'
or
='%disk1%parts/bolt.eps'

A printer-resident image file. The document expects to find the image bolt.eps in the parts
folder of the printer disk named disk1. The image file in this case is in PostScript format. The
.eps file name extension reflects the Naming convention option you set in the Image Down-
loader.

='S:\\people\\' + trim(@(
1,1,24))

A host-resident dynamic image file. The document expects to find the image in the people
folder of the S drive of the host on which it is executing. The document constructs the specific
path of the image by concatenating the path of a folder, with a data selection that specifies the
name of an image file. The images in the folder on the host are in one or more of the sup-
ported image formats.

='%disk2%' + trim(@(
1,1,20)) + '.tif'

A printer-resident image file. The document expects to find the image in the root of the printer
disk named disk2. The document constructs the specific path of the image by concatenating
the name of the disk, the data selection that specifies the name of an image file, and the file
name extension .tif. The image file is in PostScript format. The .tif file name extension reflects
the Naming convention option you set in the Image Downloader.

=if ((&printermode=1),
'C:\\proofs\\' +
@(1,30,12),'finals\\' +
@(1,30,12))

One set of image files for a screen preview (printermode=1) and another for when the doc-
ument executes on a printer. In the case of a screen preview, it uses images found in the
proofs folder on the C drive of the host on which PlanetPress Design is executing. The images
in the folder on the host are in one or more of the supported image formats. If the document is
not executing for a screen preview, it looks for an image in the finals folder of the default
disk of the printer or an image in the finals folder of the local PlanetPress Design Suite virtual
disk. If the image file is on either of these locations, it is in PostScript format.

©2010 Objectif Lune Inc - 212 -

Image Name and Pathname Resolution in Dynamic Images
How does the document resolve image names and pathnames in dynamic images?

When the document executes, it evaluates the PlanetPress Talk expression. Once it has the name or pathname, it proceeds as
follows until it encounters an image file that matches that name or pathname.

1. It compares the result to the image resources in the document. Thus if you entered the PlanetPress Talk expression

='house.jpg'
for the dynamic image, the document searches its image resources for one named house.jpg.

2. It looks for an image file at that pathname on the printer disk, or on the local PlanetPress Design Suite virtual disk.
3. It looks for an image file at that pathname on the host on which it is executing.
4. It looks for an image file at that pathname on the printer on which it is executing.
5. If it cannot find an image in any of these locations, it behaves as specified in the On error option of the picture object for

that dynamic image.

The sequence the document follows to retrieve an image is important when an image by the same name exists in more than
one of the locations the document examines.

Custom Data Selections

To create a Custom data selection:

1. Open the properties dialog box for the object for which you want to create a data selection.
2. In the properties dialog box, click Data.
3. SelectCustom data selection.

Create the Custom data selection using PlanetPress Talk. You can enter the selection on a single line, or divide it over several
lines, depending on the selection you are trying to create and how you define it. If you create a complex data selection, break-
ing it up over several lines canmake it more readable. When you break a selection over several lines, for each line, you deter-
mine whether to terminate it with a carriage return followed by a line feed (CRLF).

Both the String to display lines and the CRLF lines accept PlanetPress Talk expressions.

Navigating, inserting, deleting and repositioning lines:

l To navigate within the Custom data selection: Use either the mouse or the ARROW keys.
l To Add a new line, hit Enter on your keyboard to add a new line after the current one, or right-click on any line and
select Custom Data Selection CRLF in the menu to insert the line at the mouse cursor position.

l To delete a line: Highlight the contents of the line and press BACKSPACE twice.
l To reposition a line: Click the line you want to reposition and use the arrow buttons on the right of the Custom data
selection area to move the line up or down in the String to display lines.

Once you are done with your custom data selection, Click OK to close the object properties and save your changes.

If necessary, step through the sample data file to verify the data selection is accurate for the record sets in the sample data
file.

PlanetPress Talk Before and After

The properties for all documents, pages and objects contain two sections named "PlanetPress Talk Before" and "PlanetPress
Talk After", which are used to execute PlanetPress Talk code before or after the object is displayed on the page.

©2010 Objectif Lune Inc - 213 -

Specific variables are available within these boxes that can be used to obtain data about the object and to modify it, for exam-
ple for height, width and position. For more information, see the PlanetPress Talk Reference Guide.

Any object that has PlanetPress Talk code entered in either the "Before" or "After" section will be identified in the Doc-
ument Structure area in a maroon color instead of the normal black text. This color may be different and is con-
figurable in the "Color Preferences" (page 75). It is the same color as PlanetPress Talk-enabled boxes.

Create a User-Defined Emulation

When a user-defined emulation is used withmetadata, results and behavior are unknown and unsupported. For
instance, refreshing the metadata file may cause the document to crash and/or corrupt. For this reason, it is strongly
advised to create backup copies of your documents beforehand.

You use PlanetPress Talk to write the code that determines how the document treats each line and where it places it in the
data page buffer. When you write a user-defined emulation, youmust define any offset of the first data page in the data
stream, the data page size, the number of data pages in the data page buffer, and any conditions that signal the end of a data
page.

To set up a user-defined emulation:

1. If you have not done so already, associate a sample data file with the document.
2. Choose Tools |Open Active Data.
3. In the Data Selector, in the Emulation box, selectUser-defined.
4. In the Emulation options, click Use PlanetPress Talk Editor.

The Code area of the Editor contains the code for a line printer emulation. The Spy list in the Editor contains spies for
three system variables important in user-defined emulations:
Variable: Type: Contains:
&str string The current line of input data.

¤t.line integer
The line number of the current line of data in the data page. This system variable is read-write
and can be modified using the set() command.

¤t.lpp integer The number of lines per data page in the current data page.
5. Enter the emulation code in the Code area of the PlanetPress Talk Editor. You can use the line printer emulation code as

a starting point or delete it (highlight it and press DELETE or BACKSPACE) and start from scratch.
6. When you finish entering the code for the emulation, click OK to exit the Editor and return to the Data Selector.
7. Click OK.

Creating and using Runpages
A runpage, also called control page, is a normal page in your document that is set not to eject, on which a single PlanetPress
Talk object is placed. This PlanetPress Talk script is meant to control the execution of other pages and can be used for many
purposes such as custom N-Up, repeating and calling overlays and underlays.

To create a runpage:

1. Start with a new, blank page.
2. Open the page's properties (see Set Up a Page).
3. Under Basic Attributes, remove the Page ejects option, then click OK.
4. Add a new PlanetPress Talk object on the page.
5. In the PlanetPress Talk editor, enter your runpage code, then click OK.

Commands that make up a runpage:

©2010 Objectif Lune Inc - 214 -

http://www.objectiflune.com/documentation/en/planetpress-talk/Default.html
http://www.objectiflune.com/documentation/en/planetpress-talk/Default.html
http://www.objectiflune.com/documentation/en/planetpress-talk/Default.html
http://www.objectiflune.com/documentation/en/planetpress-talk/Default.html

l The @page() and execpage() commands are used to execute any page type and place its result in memory, if you do
not need to use any of those page's paper handling.

l The $element (or $page) command is used to execute a page if you want to keep the paper handling intact. It is only
useful if you are using it to call a normal page, as virtual pages and overlays do not contain any paper handling.

l The showpage() command is used to display (print) the pages that are inmemory.

This to keep inmind:

l If any object is placed on the runpage other than a PlanetPress Talk object, these objects will force the page to output
as the last page with this element on it, whether or not the runpage has the Page eject option checked.

l If you have multiple PlanetPress Talk objects on the page, they will execute in order from top to bottom, one at a time.
l You can place multiple pages inmemory using the @page(), execpage() and $page commands, and display them using
a single showpage(). This emulates using overlays and underlays on your page. The first page to be placed inmemory
will be the furthest on the back of the page (underlay), while the last page to be called will be on top of all the others
(overlay).

l Make sure to never call the runpage from itself, as this creates an infinite loop and a stack overflow.

Convert an Object to PlanetPress Talk

You can convert any object on the page to its corresponding PlanetPress Talk version. This can be done to create custom
code, to reproduce specific functionality or simply as an academic exercise.

It is important to understand the conversion is not reversible. Once you convert an object to PlanetPress Talk, it becomes a
PlanetPress Talk object and any modifications to it must be made in PlanetPress Talk.

This procedure applies only to objects. You cannot convert groups or pages to PlanetPress Talk.

To convert an object to PlanetPress Talk:

1. Select the object.
2. Choose Tools | Advanced | Convert to PlanetPress Talk.

©2010 Objectif Lune Inc - 215 -

©2010 Objectif Lune Inc - 216 -

PlanetPress Talk Basics
In this section, you learn to:

l "Learning PlanetPress Talk" (page 218)
l "Integrate PlanetPress Talk into Documents" (page 237)
l "Define and Assign Values to Variables" (page 237)
l "Select Data" (page 238)
l "Use Functions as Arguments" (page 238)
l "Debug Scripts" (page 238)
l "Tips and Tricks" (page 238)

In this section, you find examples of how you can use PlanetPress Talk to do the following:

l "Print a variable number of copies of a page based on a value in the datastream" (page 239)
l "Store two lines of input data on one line of the data page" (page 240)
l "Print a page n-up" (page n)
l "Print a line of text on odd-numbered pages" (page 241)
l "Determine the proper page to print based on the width of the data in the data page" (page 241)

In this section you will be able to answer the following questions:

l "Assumed Knowledge" (page 217)
l "PlanetPress Talk" (page 217)
l "PlanetPress Talk Terminology" (page 219)
l "The Elements of PlanetPress Talk" (page 219)
l "PlanetPress Talk Syntax" (page 220)
l "Data Types" (page 222)
l "Variables" (page 224)
l "Runpage" (page 232)
l "Using Foreign Language Text with PPtalk" (page 232)

Assumed Knowledge

What background does the Planet Press Talk Reference assume?

ThePlanetPress Talk Language Reference does not provide information on the art and science of computer pro-
gramming. It assumes readers already have a solid grasp of programming concepts and techniques.

PlanetPress Talk

PlanetPress Talk is a complete scripting language that opens the door to more powerful and sophisticated documents.

This section introduces the PlanetPress Talk scripting language, describes where and how you can enter PlanetPress Talk
code in PlanetPress, explains its syntax and each of its elements, and offers some tips and tricks for writing PlanetPress Talk
scripts.

In this section, you learn to:

l "Learning PlanetPress Talk" (page 218)
l "Integrate PlanetPress Talk into Documents" (page 237)
l "Define and Assign Values to Variables" (page 237)
l "Select Data" (page 238)

©2010 Objectif Lune Inc - 217 -

l "Use Functions as Arguments" (page 238)
l "Debug Scripts" (page 238)
l "Tips and Tricks" (page 238)

In this section, you find examples of how you can use PlanetPress Talk to do the following:

l "Print a variable number of copies of a page based on a value in the datastream" (page 239)
l "Store two lines of input data on one line of the data page" (page 240)
l "Print a page n-up" (page n)
l "Print a line of text on odd-numbered pages" (page 241)
l "Determine the proper page to print based on the width of the data in the data page" (page 241)

In this section you will be able to answer the following questions:

l "Assumed Knowledge" (page 217)
l PlanetPress Talk Basics
l "PlanetPress Talk Terminology" (page 219)
l "The Elements of PlanetPress Talk" (page 219)
l "PlanetPress Talk Syntax" (page 220)
l "Data Types" (page 222)
l "Variables" (page 224)
l "Runpage" (page 232)
l "Using Foreign Language Text with PPtalk" (page 232)

Learning PlanetPress Talk

One of the most efficient ways to familiarize yourself with PlanetPress Talk is to create an object, convert it to PlanetPress
Talk, and examine the code, consulting the PlanetPress Talk Language Reference as necessary for explanations of
each line of code. You can further verify your understanding by modifying the code and observing the changes that occur in
the object as a result.

As an example of this technique, the following is the code for a converted data selection object. The data selection is from col-
umns 1 through 12 on line 1 of the data page.

moveto(0,0)
setstyle(&Default)
margin(0,0.167)
rmoveto(stringwidth(''),0)
rmoveto(neg(stringwidth('')),0)
show(@(1,1,12))

Consider what each line of the code accomplishes, and notice that parameters to a function or procedure may themselves be
PlanetPress Talk expressions.

Command: Tells the document to:
moveto(0,0) Move the drawing pen to the top left of the object.
setstyle(&Default) Set the style for the data selection to the default style
margin(0,0.167) Set the offset for the text, relative to the top left of the object.

rmoveto(stringwidth('
'),0)

Move the pen forward the width of the data selection. Here, the purpose of this line is to set a
bounding box that appears around the data selection object in the document design window.
The bounding box does not print but is a visual cue that keeps the object visible even when its
contents are empty.

rmoveto(neg(stringwidth('
Move the pen backward the width of the data selection. This resets the pen to its position prior
to executing the previous command. It ensures the previous command does not alter the posi-

©2010 Objectif Lune Inc - 218 -

Command: Tells the document to:
')),0) tion of the data selection.
show(@(1,1,12)) Display the text that appears from columns 1 through 12 on line 1 of the current data page.

At this point youmight want to introduce other commands into the code, or modify some commands and verify the changes
produce the result you expect. Or perhaps you want to create a new data selection that starts in the middle of the data page
and extends over several lines to see how PlanetPress Talk handles multi-line data selections.

PlanetPress Talk Terminology

What terms does the PlanetPress Talk Language Reference use?

The PlanetPress Talk Language Reference uses the following terms:

Term: Definition:
command A generic term that encompasses operators, functions, procedures, condition structures, and loop structures.

expression
A piece of PlanetPress Talk code used in a PlanetPress Talk-enabled input box, which will always return a value of
the type expected by that input box. For example:
=strtoint(@(1,1,4))

statement
A single line of PlanetPress Talk code. For example:
define(&max, integer, strtoint(@(1,1,4)))

script or
program

A sequence of one or more statements, executed sequentially. For example the following script draws a filled
shape:
moveto(1,1)
lineto(1.5,2)
curveto(1,1,1,3,0.5,2)
closepath()
stroke()

The Elements of PlanetPress Talk

What are the elements of the PlanetPress Talk scripting language?

PlanetPress Talk includes all of the features one expects in a scripting language. It has a defined set of data types (see "Data
Types" (page 222)) and the following categories of elements that you use to build scripts:

Category: Description:
Variables A variable is a value that changes over time. See "Variables" (page 224).

System
objects

An object is a set of related system variables. For example the physical system object contains the system var-
iables that describe the current x and y coordinates of the drawing pen on the physical page. You reference one of
the system variables in an object by prefixing the name of the system object to the name of the variable. For exam-
ple&physical.x references the x coordinate system variable in the physical system object.

Operators
and Oper-
ator func-
tions

An operator is a symbol that performs a common operation. For example, the+ is an operator that adds two
numbers together or concatenates two strings. An operator function is an operator that does not use a symbol to
represent its operation. For example the add command is an operator function. Both operators and operator func-
tions operate on one or more operands. For example the add command operates on twomeasure or integer
values (the operands). See "Operators and Operator Functions" (page n) for a complete list of all operators and
operator functions available in PlanetPress Talk.

Procedures

A procedure performs an action. For example the curveto procedure draws a Bezier curve, the rectangle pro-
cedure draws a rectangle, and the setfillcolor procedure sets the fill color. Most procedures require arguments.
For example, the rectangle procedure requires six arguments: the x and y coordinates of the upper left hand
corner of the rectangle, the width and height of the rectangle, and whether it is filled and/or stroked.

©2010 Objectif Lune Inc - 219 -

../../../../../Content/2872.html
../../../../../Content/2872.html
../../../../../Content/2872.html
../../../../../Content/2872.html
../../../../../Content/2872.html
../../../../../Content/2872.html

Category: Description:

Functions

A function performs an action and returns a value. For example the inttostr function converts an integer to a
string, and returns the value of the resulting string. A function thus has a data type that corresponds to that of the
value it returns. You assign the result of a function to a variable or use it as an argument in another command.
Most functions require arguments. For example the inttostr command requires a single argument: the integer
you want to convert to a string; it returns a string and thus the inttostr function is of type string.

Loop struc-
tures

Repeat a sequence of one or more commands until a specified condition is met. See "Loop Structures" (page n).

Condition
structures

Control when a sequence of one or more commands executes. See "Condition Structures" (page n).

Comments
Provide a means for embedding documentation in your code, or for commenting out lines of code during debug-
ging. See "% (procedure)" (page 566).

PlanetPress Talk Syntax

What are the rules for creating PlanetPress Talk scripts?

The rules, or syntax, of the PlanetPress Talk language describe how you combine its elements to create scripts.

Command Syntax

A PlanetPress Talk command has the form:

command_name(arguments)

Arguments can be constants, variables, or functions (see "Use Functions as Arguments" (page 238)).

A command can require no arguments, or one or more arguments. When a command requires more than one argument, you
separate arguments by commas. The following are all examples of valid PlanetPress Talk commands:

fill()
moveto(2.2, 4.5)
mul(4.7,2.1)
rectangle(0,0,3,3,true,true)
curveto(1,1,1,3,0.5,2)
set(¤t.line,¤t.line + 1)
store(¤t.line,trimleft(&str))
strtoint(@(12,30,35))

Spaces are not significant in PlanetPress Talk except between the name of a command and its opening parenthesis. An error
occurs if you leave a space between the name of a command and its opening parenthesis.

show('this syntax is correct')
show ('this syntax produces an error')

Comments

PlanetPress Talk allows the use of comments within the code. To enter an expression, simply enter a percentage sign (%) fol-
lowed by the text you want to comment.

Comments may only be used within a PlanetPress Talk object, or in the "PlanetPress Talk Before" and "PlanetPress Talk After"
sections of any object, and is not supported in PlanetPress Talk-enabled input boxes (for example, conditions and advanced
data selections).

Case

PlanetPress Talk is case insensitive. Thus the following commands are all equivalent:

©2010 Objectif Lune Inc - 220 -

../../../../../Content/2882.html
../../../../../Content/2882.html
../../../../../Content/2882.html
../../../../../Content/2882.html
../../../../../Content/2883.html
../../../../../Content/2883.html
../../../../../Content/2883.html
../../../../../Content/2883.html

showright(@(1,34,64))
ShowRight(@(1,34,64))
SHOWRIGHT(@(1,34,64))

It is important to understand that arguments to commands are case sensitive. For example, the following command returns
False:

eq('bovine','Bovine')

Unit of Measure

Unless otherwise specified, the unit of measure in PlanetPress Talk is inch. Thus, for example, the following line of code
moves the current point to the X coordinate 1.5 inches, and the Y coordinate 2.5 inches.

moveto(1.5,2.5)

Statement or Expression Evaluation

The PlanetPress Talk interpreter uses parentheses to determine the order in which to evaluate the individual parts of an
expression or statement. It evaluates an expression or statement from the innermost to the outermost set of parentheses. For
example, consider the statement:

if((pos('BLACK', strip(' ',@(36,25,58))) > 0), 'old', 'new')

The interpreter first evaluates the data selection function (@), then the strip function (strip), then the start position function
(pos), and finally the if function.

@(36,25,58)
strip(' ',@(36,25,58))
(pos('BLACK', strip(' ',@(36,25,58)))
if((pos('BLACK', strip(' ',@(36,25,58))) > 0), 'old', 'new')

Operator Precedence

The rule that says that multiplications and divisions should be performed before additions and substractions, known as oper-
ator precedence, is not supported in PlanetPress Talk, so you should use parentheses to simulate operator precedence. For
example, if you use the equation 2 + 3 x 4, PlanetPress Talk will calculate a total of 20, but if you use the equation 2 + (3 x 4),
PlanetPress Talk will calculate a total of 14.

Apostrophes and Backslashes within Strings

If you want to use an apostrophe (‘) or a backslash (\) within a string, youmust precede it by a backslash. For example:

show('Don\'t miss this offer!')

Names

The names of any variables, global functions, objects, or styles you create with PlanetPress Talk must meet the following
requirements:

l Names must be unique (no two elements in a document can have the same name).
l Names cannot begin with a number, and can contain only the following ASCII characters: underscore, upper and lower
case letters of the alphabet, all digits 0 through 9. If you use an underscore in the name, it should not appear as either
the first or last character of the name as this may cause internal conflicts in the software.

l Names can be a maximum of 50 characters in length.
l PlanetPress Talk variable and command names are reserved words; you cannot use any of these reserved words as a
name.

©2010 Objectif Lune Inc - 221 -

It is always recommended that you choose a name that reflects the content or purpose of the element you are creating. A
meaningful name makes it easier to distinguish one element from another, and thus makes a document easier to maintain.

Data Types

What data types are available in PlanetPress Talk?

PlanetPress Talk provides the following data types:

Data Type Example
Integer 3
Measure or
Floating
Point

3,2300987

Currency 5.25
String Michel or $4,567.09
Boolean Yes or No
Color Array [100, 100, 0, 0] (for the CMYK color model)

Array
[Monday Tuesday Wednesday Thursday Friday] (a seven-element array of type string) [12 18 103 57] (a
four-element array of type integer) [True True False False True False False] (a seven-element array
of type Boolean)

Directory
[c:\images\house.jpg c:\images\apt.jpg]
(a directory that contains two pathnames)

PlanetPress Talk strictly enforces its data types. For example, the show command accepts a string as its argument; an error
occurs if you attempt to send it an integer as an argument. You can use any of the conversion operators PlanetPress Talk pro-
vides to convert from one type to another. Thus the following show command is correct:

show(inttostr(subreccount()))

See "Conversion Operator Functions" (page n) for a complete list of the operators you can use to convert from one type to
another.

Integers

You use integers for counters and simple calculations. Integers have no decimal precision.

Integer Limit
Smallest on screen -2147483648
Largest on screen +2147483647
Smallest PostScript -2147483648
Largest PostScript +2147483647

Measures

Measures are real numbers and are often called floating-point numbers. Measures have a precision of approximately 8 dec-
imal places, with exact precision implementation dependent. If your document requires complex mathematical computations
in which a greater decimal precision is critical, it is recommended you perform those calculations outside PlanetPress and
include the result in the input data.

Measure Limit
Smallest on screen 1.5 * 10-45
Largest on screen 3.4 * 1038

©2010 Objectif Lune Inc - 222 -

../../../../../Content/2878.html
../../../../../Content/2878.html
../../../../../Content/2878.html
../../../../../Content/2878.html
../../../../../Content/2878.html

Measure Limit
Smallest PostScript10-38
Largest PostScript 1038

Currency

Currency is a specific type of measure intended for use with numbers that represent monetary values. The currency type has
a precision of 4 decimal places, and can take on a minimum value of -99999999999999.9999 and a maximum value of
+99999999999999.9999. The only operations you can perform on a currency type are addition, subtraction, multiplication and
division, and negation.

Strings

A string is a sequence of one or more alphanumeric characters. You often use strings to display information on a page. You
must enclose strings in single quotes, for example 'mystring'.

String Length, in characters
Maximum on screen 2147483647
Maximum PostScript65535

Booleans

Booleans have a value of either True or False. Every condition you define in PlanetPress resolves to a Boolean value.

Color Array

To define the color or shading of object displayed on screen or printed on paper, color values are used, which are typically
based on color models. Models may include a single color (such as for the grayscale model) or multiple colors. The RGB color
model uses three colors (Red, Green and Blue), while the CMYK model uses four (Cyan, Magenta, Yellow and Black). For each
color, a value ranging from 0, for 0% color intensity, to 255, for 100% color intensity, is used. If the Grayscale model is used,
only a single value is required. For the RGB model, three values are used, while four are needed for the CMYK model. These
values are stored in an array, which can store as many as four values.

Color arrays are primarily used internally by the PlanetPress Talk interpreter. However there are a handful of commands that
expect a color array as an argument (setfillcolor for example).

Arrays

An array is a table of values of the same data type. You reference each element of the array (each cell of the table) inde-
pendently. Arrays can be of type Boolean, integer, measure, currency, or string. The type of the array defines the type of
values each of its elements can contain. Thus in a Boolean array, the value of each element is either True or False, and in a
string array each element is a string value.

Arrays in PlanetPress Talk are one-dimensional. If you are not familiar with arrays from other programming or scripting lan-
guages, you can think of a one-dimensional array as a single row of a table. You specify the number of elements you want the
array to contain, and initialize each of the elements, when you define the array. Note that you cannot subsequently increase or
decrease the number of elements in an array. If you are uncertain of the exact number of elements the array may need to con-
tain at runtime, youmay want to create an array that can handle the most extreme case you expect the document to
encounter at runtime. Note however that increasing the size of the array increases the memory required for the document,
and that it is good programming practice not to create arrays that are larger than what the document requires to execute prop-
erly. An array in PlanetPress can have a maximum of 65,535 elements.

You define an array using the define() command, and assign values to individual elements using the assignment operator
(:=), the set() command or the put() command. You retrieve the value of an individual element using either the get() com-
mand, or the name of the array followed by the position of that element in the array. The position is an integer value starting at

©2010 Objectif Lune Inc - 223 -

0 for the first element of the array, and incrementing by one for each additional element. See "Define (procedure)" (page 561),
"Set (procedure)" (page 563), "Put (procedure)" (page 562), and "Get (function)" (page 543).

As an example, consider &tax_rates, an integer array containing five elements (10 20 30 40 50). You define the array as fol-
lows:

define(&tax_rates,arrayinteger,[10,20,30,40,50])

You can use any of the following to change the value of the third element from 30 to 32.

&tax_rates[2] := 32
&tax_rates, 2, 32
put(&tax_rates, 2, 32)

You can use any of the following to reference the third element in the array:

&tax_rates[2]
get(&tax_rates, 2)

For example:

&due := mul(&gross,&tax_rates[2])
&due := mul(&gross,get(&tax_rates,2))

Directory

The directory type is a type of string array in which each element in the array contains a pathname. All pathnames in the array
reference a file in the same folder. The number of elements in the array, and the initial value of each element are both deter-
mined dynamically at the time the array is created. You specify the folder, and the filter you want to apply to the list of files in
that folder. When PlanetPress Talk creates the array, it locates the folder you specified, applies the filter to the list of files that
folder contains, and then for each file that meets the filter criteria, adds its pathname to the directory array. Pathnames may
be either printer pathnames or host pathnames.

You can subsequently set the value of any of the elements in the array, as you would for any element in an array of type
string.

Variables

What are variables?

A variable is a value that changes over time, that has a specific type, and a defined scope. Variables have names to make it
possible to reference them. All variable names in PlanetPress begin with an ampersand. For example,&printermode.

Type The type of a variable defines what kind of data it contains and consequently what kinds of operations you can perform
on it. The following are the data types available in PlanetPress Talk: integer, measure, currency, string, boolean, array, color
array, and directory. See "Data Types" (page 222).

Scope The scope of a variable is the context in which it is available. There are two possible scopes: local and global. A local
scope means the variable is available only in the specific area of an object or group in which it is defined, and a global scope
means the variable is available anywhere you can enter PlanetPress Talk code. The way you define a variable determines its
scope. The variables you define using the define command have a local scope limited to the area of the object or group in
which you define them. The variables you define as global variables in PlanetPress have a global scope. Global variables in
PlanetPress appear in the Global Variables area of TreeView.

There are a number of ways to use variables in documents. See the PlanetPress User Guide for examples of some of the
most common uses people make of variables.

©2010 Objectif Lune Inc - 224 -

Common Uses of Variables

The following are several common uses for variables:

l Store values that you want to reference at various places in the document.
l Concatenate strings For example, you want to create a footer for each page of a patient record document that con-
tains the patient’s name, physician’s name, file number, and date the record was last updated. All the pieces of infor-
mation are available in the input data.

l Perform calculations For example, the input data for your financial statement document does not include a figure
for year-to-date earnings, but does include earnings per month.

l Create counters For example, the input data for your invoice document contains a variable number of line items for
each invoice.

Create a Global Variable

To create a global variable:

1. ChooseHome |Document |Global Variable.
2. Enter the name and type of the global variable you want to create.
Name: Enter a name for the global variable.
Variable type: Select the type of the global variable (string, integer, measure, currency, Boolean, integer array,
measure array, string array, Boolean array, or directory array).

String Variables are limited to 65534 characters.

3. Define the properties specific to the type of variable you selected. Consult the PlanetPress Talk Language Reference
for help understanding the various types.

l If you selected a variable type of string, integer, measure, currency or Boolean, enter an initial value for the var-
iable in theDefault value box. Note that you cannot use PlanetPress Talk code to define an initial value.

l If you selected a variable type of color array, click the Color button to use the Color Picker to select an initial
color for the color array. The Color box updates to reflect the selected color.

l If you selected a variable type of integer array, measure array, string array, or Boolean array, enter the
number of elements you want the array to contain in the Array size box, or use the spin buttons to adjust the
value.

l If you selected a variable type of directory array, enter the path to the folder containing the files you want to ref-
erence, and any filter you want to apply to names of the files in that folder, in the Path and filter box.

4. Click OK.
The new global variable appears in the Global variables folder in the Structure area.

It also appears on the Global variables submenu available from the Code area of the PlanetPress Talk Editor, from the
PlanetPress Talk properties of an object, and from any text box that accepts PlanetPress Talk expressions

To reference a global variable:

l Enter the name of the global variable by hand, preceding it by an ampersand. For example, to reference the global var-
iable subtotal, enter &subtotal. In the case of an array element, youmust include the position of the element in the
array.

To set a global variable:

l Use either the PlanetPress Talk assignment operator (:=) or set() command. For example:
&code := &code + 1

©2010 Objectif Lune Inc - 225 -

set(&code, (&code + 1))
set(&imagefiles[0], 'c\\images\\sushi.png')
See the PlanetPress Talk Language Reference for complete information on the assignment operator and the
set() command.

View or Edit a Global Variable

To view or edit the properties of a global variable using the Object Inspector:

1. In the Structure area, select the global variable.
2. In the Object Inspector, make any necessary modifications to the properties.

If youmade a modification that may cause execution problems in the document, PlanetPress Design reports an error in
the Messages area.
If youmake a modification that may cause execution problems in the document , PlanetPress Design requests con-
firmation before proceeding with the modification.

To view or edit the properties of a global variable using the Global Variable dialog box:

1. In the Structure area, double-click the global variable. Use the Global Variable dialog box to edit the properties of the
global variable, if necessary.

2. Click OK.
If you edited the properties of the global variable andmade a modification that may cause execution problems in the
document, PlanetPress Design requests confirmation before proceeding with the modification.

Delete a Global Variable

To delete one or more global variables:

1. Select the global variables you want to delete.
2. ChooseHome | Clipboard | Delete.

If no elements in the document reference any of the selected global variables, PlanetPress Design performs the dele-
tion.
If any elements in the document reference any of the selected global variables, PlanetPress Design prompts you to
define how youwant to handle the deletion of each of the referenced global variables. More precisely, for each ref-
erenced global variable, it displays the Global Variable Deletion dialog box.

To use the Global Variable Deletion dialog box:

1. Adjust the options to reflect how youwant PlanetPress Design to handle the deletion request. The name of the global
variable you selected for deletion appears in the title bar of the Global Variable Deletion dialog box, and the list of ele-
ments that reference it appear on the right of the dialog box.

©2010 Objectif Lune Inc - 226 -

A. Global Variables button
Replace all references with: Select to delete the global variable and to replace all references to it with a reference
to another global variable in the document.
Global variables available: Select the global variable you want to use as the replacement reference. When you
delete the global variable, PlanetPress Design replaces all references to the deleted global variable with a reference to
the global variable you select here. You can use the Global Variables button to create a new global variable to add to
this box.
Global Variables button: Click to create a new global variable. PlanetPress Design creates the new global variable,
and selects it in the Global variables available box.
Delete all elements: Select to delete the global variable, and all document elements that reference it. All document
elements that reference this global variable appear in the list on the right of the Global Variable Deletion dialog box.

2. Click OK.

Local, Global, and System Variables

There are three categories of variables in PlanetPress Talk: system, global, and local.

1. System Variables
System variables are variables that the system defines. There are two types of system variables: system variables
with a global scope and system variables with a local scope.
System variables with a global scope System variables with a global scope are available anywhere you can
insert a PlanetPress Talk expression in PlanetPress. You can use the value of a system variable with a global scope but
you cannot, except in one or two cases, modify it.
System variables with a local scope System variables with a local scope are available only within a well-defined
context. There are currently two system variables with a local scope: &height and&width. Both are local to a spe-
cific object, group, or page. The system initializes&height and&width to, respectively, the values of the Height and
Width properties of the object, group, or page, as they appear in the Basic Attributes of that object, group, or page.
See "System Variables with Global Scope" (page 228) for a complete list of the system variables available in Plan-
etPress Talk.

2. Global Variables

©2010 Objectif Lune Inc - 227 -

Global variables are variables that you define using the Global Variable Properties dialog box in PlanetPress. Global var-
iables appear in TreeView in PlanetPress. Global variables have a global scope; you can reference global variables any-
where you can insert a PlanetPress Talk expression in PlanetPress.
You cannot define a global variable with the same name as a system variable.

3. Local Variables
Local variables are variables that you define using the PlanetPress Talkdefine command. Local variables have a local
scope; you can reference them only within the area of the object in which you create them. You can create local var-
iables within the PlanetPress Talk properties of an object or group, within the Text property of a text/box object, and
within the PlanetPress Talk Code property of a PlanetPress Talk object.
You should never define a local variable with the same name as a system variable.

System Variables with Local Scope

Name: Description:

&Height
System variable with a scope local to a specific object, group, or page. The system initializes this variable to the
value of the Height property of the object’s, group’s, or page’s Basic Attributes. You can reference and set this var-
iable in any PlanetPress Talk code you enter in the object, group, or page.

&Width
System variable with a scope local to a specific object or group. The system initializes this variable to the value of
the Width property of the object’s or group’s Basic Attributes. You can reference and set this variable in any Plan-
etPress Talk code you enter in the object, group, or page.

System Variables with Global Scope

Name: Description:

&EOJob
Read-only variable that returns True if the document has processed the last line of data or if the line that fol-
lows the last form feed character (ASCII 12) is empty.

&FirstSide
Read-only variable that returns True when a page is printing on the first side of a page in duplex mode (dou-
ble-sided printing). In simplex mode (single-sided) &firstside always returns True.

&PrinterMode
Returns the current output mode for the document. This allows you to test for a specific value and react
accordingly.

&Str Contains a line of input data.

©2010 Objectif Lune Inc - 228 -

System Objects with Global Scope

Current System Object
Name: Description:

&Current.DataPage
Integer value containing the page number of the current data page, or the number of the current rec-
ord set in the case of a database emulation.

&Current.Line
Integer value containing the line number of the current line of data within the data page, or the
number of the current record within the record set. This value is read-write and can be modified
using the set command.

&Current.LPP Integer value containing the number of lines per page in the current data page.

&Current.MediaColor

String value containing the color set in the Media color box of the Page dialog box for the current doc-
ument page, or, if no value is set in that box, the color set in the Media color box in the Document
dialog box for the document. The Media color box appears when you select Media selection in the
Selection type box. Recall that the Media color box specifies the color of paper. "Current (system
object)" (page 378)

&Current.MediaType

String value containing the type set in the Media type box of the Page dialog box for the current doc-
ument page, or, if no value is set in that box, the type set in the Media type box in the Document
dialog box for the document. The Media type box appears when you select Media selection in the
Selection type box. Recall that the Media type box specifies the type of paper (plain, coated,
etc.)."Current (system object)" (page 378)

&Current.MediaWeight

Integer value containing the weight set in the Media weight box of the Page dialog box for the current
document page, or, if no value is set in that box, the weight set in the Media weight box in the Doc-
ument dialog box for the document. The Media weight box appears when you select Media selection
in the Selection type box. Recall that the Media weight box specifies the weight of paper, in grams
per square meter. "Current (system object)" (page 378)

&Current.MinFeature

Measure value containing the width of a single pixel at the current zoom level. Precise to 1/65536
inch. This is the minimum size you can use in PlanetPress Talk code. If you use a smaller value (for
example as an argument in a command), PlanetPress Talk automatically replaces that value with the
value of minfeature."Current (system object)" (page 378)

&Current.Orientation
Integer value containing the orientation of the current document page (0=portrait, 1=landscape,
2=Rotated portrait, 3=Rotated landscape). "Current (system object)" (page 378)

&Current.PageHeight
Measure value containing the physical page height, in inches, of the current page in the
document."Current (system object)" (page 378)

&Current.PageWidth
Measure value containing the physical page width, in inches, of the current page in the
document."Current (system object)" (page 378)

&Current.PrintPage
Integer value containing the current page number in the document."Current (system object)" (page
378)

&Current.x
&Current.y

Measure value containing the current horizontal (x) or vertical (y) position of the drawing pen on the
current page. This value is relative to the top left corner of the current page - whose coordinates are
(0,0) - andmay not necessarily be equal to the current physical position on the page (for instance, if
the page is called from a PlanetPress Talk object located on the middle of the physical page)."Current
(system object)" (page 378)

©2010 Objectif Lune Inc - 229 -

Current (system object)

This object includes a set of system variables reflecting the current state of the document. All of these variables are read-only
and therefore cannot be changed using the set command, except where noted. You can access each property individually
using the same syntax.

Syntax

¤t.property integer, measure value

Properties

datapage

Integer value containing the page number of the current data page, or the number of the current record set in the case of a
database emulation.

line

Integer value containing the line number of the current line of data within the data page, or the number of the current record
within the record set. This value is read-write and can be modified using the set command.

lpp

Integer value containing the number of lines per page in the current data page. In database emulation, this value can also be
used in place of the subreccount() function to determine how many records a record set contains.

mediacolor

String value containing the color set in the Media color box of the Page dialog box for the current document page, or, if no
value is set in that box, the color set in the Media color box in the Document dialog box for the document. The Media color box
appears when you select Media selection in the Selection type box. Recall that the Media color box specifies the color of paper.

mediatype

String value containing the type set in the Media type box of the Page dialog box for the current document page, or, if no value
is set in that box, the type set in the Media type box in the Document dialog box for the document. The Media type box appears
when you select Media selection in the Selection type box. Recall that the Media type box specifies the type of paper (plain,
coated, etc.).

mediaweight

Integer value containing the weight set in the Media weight box of the Page dialog box for the current document page, or, if no
value is set in that box, the weight set in the Media weight box in the Document dialog box for the document. The Media weight
box appears when you select Media selection in the Selection type box. Recall that the Media weight box specifies the weight
of paper, in grams per square meter.

minfeature

Measure value containing the width of a single pixel at the current zoom level. Precise to 1/65536 inch. This is the minimum
size you can use in PlanetPress Talk code. If you use a smaller value (for example as an argument in a command), Plan-
etPress Talk automatically replaces that value with the value ofminfeature.

orientation

Integer value containing the orientation of the current document page (0=portrait, 1=landscape, 2=Rotated portrait, 3=Rot-
ated landscape).

overflowcount

©2010 Objectif Lune Inc - 230 -

Integer variable storing the number of times that a data page overflowed and that a new document page was added to accom-
modate the overflowing data. Initially set to 0, is incremented by 1 every time the page overflows.

overflowing

Boolean variable set to False by default. When the current data page contains more lines than can be printed by the current
object, or technically speaking when the object’s condition to exit and overflow has beenmet, this variable is set to True. It is
set back to False with every new overflowing page, the logic being that the current overflowing page will be the last, unless if
the condition to exit and overflow is met yet again.

lastoverflowrepetition

Integer variable storing the number of the last iteration value when the condition to exit and overflow has beenmet.

pageheight

Measure value containing the physical page height, in inches, of the current page in the document.

pagename

String value containing the name of the page that is actually printing. This allows conditional processing to take place within a
PPTalk object according to the name of the page being executed. Note that the value always corresponds to the name of the
actual document page being printed, even if the call comes from a virtual or overlay page (in other words, the name of the
page onwhich the overlay is layed out).

pagewidth

Measure value containing the physical page width, in inches, of the current page in the document.

printpage

Integer value containing the current page number in the document.

x,y

Measure value containing the current horizontal (x) or vertical (y) position of the drawing pen on the current page. This value
is relative to the top left corner of the current page - whose coordinates are (0,0) - andmay not necessarily be equal to the cur-
rent physical position on the page.

Physical (system object)

The physical object contains system variables that reflect the current state of the document. These system variables are
read-only and therefore cannot be changed using the set command. You can access each system variable using the same syn-
tax.

Syntax

&physical.x measure value

&physical.y measure value

Variables

x,y

Measure value containing the current horizontal (x) or vertical (y) position of the drawing pen, relative to the upper left corner
of the physical page, whose coordinates are (0,0). This system object can be used to assess the amount of space left on a
page.

©2010 Objectif Lune Inc - 231 -

System (system object)

The system system object contains system variables related to the Raster Image Processor (RIP) the document is using to
execute, and document versioning. These system variables are read-only.

Syntax

&system.product string value

&system.version string value

&system.formversion integer value

Properties

product

String value containing the name of the RIP the document is using to execute. For example,

PlanetPress Alambic is the name of the RIP built in to PlanetPress (the RIP PlanetPress uses when you perform a preview and
select Internal interpreter as the PostScript interpreter).

version

String value containing the version number of the RIP the document is using to execute. For example, 4.0.

formversion

Integer value containing the version number of the document requested by the trigger. Recall that you can assign a version
number to a document and increment the number each time you update and reinstall the document. When you execute a doc-
ument that uses a version number, the document verifies its version number against the one you specify in the trigger, and it
proceeds with execution only if the two version numbers match. See the PlanetPress User Guide for more complete infor-
mation on versioning.

Runpage

What is a runpage?

A runpage is a normal page containing a PlanetPress Talk object that controls the execution of the pages in the document.
Although nothing prevents a runpage from containing printable elements, in most cases it serves only to control the execution
of the other pages in the document and does not itself print.

Using Foreign Language Text with PPtalk

Can PlanetPress Talk let me use foreign language text in PlanetPress?

You can use Text objects to display both static text and variable content, such as data selections, in the same object. Text
objects also let youmix foreign language text, such as Arabic, and European language styles within the same object, although
not in the same paragraph.

Adding Foreign Text

The Text objects dialog box lets you enter foreign language text, such as Arabic, directly in the Text area (granted that the cor-
responding foreign language text feature is enabled inWindows).

©2010 Objectif Lune Inc - 232 -

Using Global Variables

If you use a Global variable containing a foreign language text string within a Text object, youmust map the characters
included in that non-Unicode text string to UTF8. To do this, youmust use themapUTF8 function. You can do this by placing a
PlanetPress Talk object above the Text object in the Document Structure or in the Text object itself using the PlanetPress Talk
Before properties.

Using Dynamic Data within Local Text Variables

You can add dynamic data to a Text object by using custom data selections. If you do so , youmust use themapUTF8 func-
tion within the definition of each custom data selection.

Text Direction

A new setting was added to the paragraph options to enable right-to-left text display for paragraphs associated with a foreign
language text style.

A. Arabic style ; B. Right to left text option available when an Arabic style is selected ; C. Static text and data selection as
edited within the Text objects dialog box.

©2010 Objectif Lune Inc - 233 -

Foreign Language Text within PlanetPress Objects

You can use PlanetPress Talk objects to display either static text or variable content. You would typically add a paragraph for
static text or a simple field for variable information, such as a client’s name or address.

A. A PlanetPress Talk object created without defining a UTF8 paragraph ; B. Another PlanetPress Talk object, created this time
with UTF8 paragraph properties (the paragraph is justified on both sides)

If you need a string, that may contain variable content, you can use the ShowUTF8Left, ShowUTF8Center and Sho-
wUTF8Right commands. Note that if you choose to display a box around objects that include any of these commands, the
box may not be perfectly drawn. Pages that includemany objects with these commands will not display as fast as other
pages.

If you need a paragraph, that may only contain static text, youmust use the BeginUTF8Paragraph and EndUTF8Pa-
ragraph procedures along with the ShowUTF8 command.

The following illustration shows the properties of a PlanetPress Talk object that creates a paragraph containing Arabic text.
The code associated with this object is also displayed in the PlanetPress Talk Editor.

©2010 Objectif Lune Inc - 234 -

A. The properties of a PlanetPress Talk object created to display Arabic text; B. The complete PlanetPress Talk code, as dis-
played in the PlanetPress Talk Editor; C. All the characters included in the text string, with the exception of the basic ASCII
characters, are converted to their Unicode reference by the Ansi/UTF8 Converter dialog box

The illustration below shows the properties of a PlanetPress Talk object that creates an Arabic text string.

©2010 Objectif Lune Inc - 235 -

The code of a PlanetPress Talk object that displays a UTF8 static text string

A dialog box that lets you enter arabic text has also been added. If you place the cursor within a text string and press CTRL+N,
the Arabic Converter dialog box will be displayed. When you are finished, click OK. The dialog box will be closed and the Ara-
bic characters will be converted to their Unicode equivalent.

The Arabic Converter dialog box also includes number conversion options that can be used to convert numbers to either Arabic
or Farsi.

To enter variable content, you can use a data selection. Use the right-click menu to display the Data Selector and select either
a location within the data or a given field in the case of a database.

Once the data has been selected, the data reference appears as a parameter.

Learning PlanetPress Talk

An efficient way to learn PlanetPress Talk is as follows. Consult the PlanetPress User Guide for an example of this
approach using a data selection object.

1. Get a feel for the different system variables, operators, and commands PlanetPress Talk provides (read through the
"PlanetPress Talk Summary" (page n)).

2. Create an object in PlanetPress, convert it to PlanetPress Talk and examine the code, consulting the PlanetPress
Talk Language Reference as necessary for explanations of each line of code.

3. Once you understand code for that object, verify your understanding by modifying it and observing the changes that
occur in the object as a result.

©2010 Objectif Lune Inc - 236 -

../../../../../Content/2864.html
../../../../../Content/2864.html
../../../../../Content/2864.html
../../../../../Content/2864.html
../../../../../Content/2864.html

Note that PlanetPress Talk has many similarities to the PostScript language, and programmers familiar with PostScript should
find PlanetPress Talk easy to learn and use. This should also hold for programmers familiar with the Windows Application Pro-
gramming Interface (API).

Integrate PlanetPress Talk into Documents

You can enter PlanetPress Talk code in any of the following places in PlanetPress. Note that in all places except a text box that
accepts PlanetPress Talk code, you can use the PlanetPress Talk Editor to enter your scripts. The PlanetPress Talk Editor pro-
vides a rich set of features that make entering, executing, and debugging scripts fast and efficient. For complete information
on the PlanetPress Talk Editor, consult the PlanetPress User Guide.

Location: Accepts:
PlanetPress Talk-ena-
bled input box (any
box for which the title
or label is colored in
maroon/dark red)

A single line of PlanetPress Talk code preceded by an equal (=) sign.

PlanetPress Talk
properties of an
object, group, page,
document, or con-
dition.

A PlanetPress Talk script. You can enter the script directly in the appropriate Properties dialog box, or
using the PlanetPress Talk Editor.

PlanetPress Talk
code property of a
PlanetPress Talk
object.

A PlanetPress Talk scripts. You can enter the script directly in the PlanetPress Talk Object Properties
dialog box, or using the PlanetPress Talk Editor.

PlanetPress Talk
properties of a par-
agraph in a text/box
object

A PlanetPress Talk script. You enter the script using the PlanetPress Talk Editor.

User-defined emu-
lation selection in the
Data Selector.

A PlanetPress Talk script. You can enter the script using the PlanetPress Talk Editor. Important note:
When a user-defined emulation is used withmetadata, results and behavior are unknown and unsup-
ported. For instance, refreshing the metadata file may cause the document to crash and/or corrupt. For
this reason, it is strongly advised to create backup copies of your documents beforehand.

Global Function Prop-
erties dialog box

A PlanetPress Talk script that defines a new PlanetPress Talk function.

Import command in
the PlanetPress Talk
Editor

A file containing a PlanetPress Talk script. For example you can write a PlanetPress Talk script in an
external text editor, save it as a .ptk file. You use the PlanetPress Talk Editor to import and, if nec-
essary, edit the script. You can also export a script from within the PlanetPress Talk Editor, using the
Export command. This makes it easy to re-use scripts. Consult the information on the PlanetPress Talk
Editor in the PlanetPress User Guide for help importing and exporting scripts.

Define and Assign Values to Variables

You use the following PlanetPress Talk following commands to define and set variables:

Use: To:
defineCreate a local variable.
set Assign a value to a local or global variable.
:= Assign a value to a local or global variable.

©2010 Objectif Lune Inc - 237 -

Select Data

You use the@ function to select data in PlanetPress Talk. This command selects data on a single line of the data page. For
example, the following returns the string of data found on line 3, from column 12 through 30 of the current data page:

@(3,12,30)

Remember that arguments can be variables. The following returns the string of data found on line&line, from column&col1
to column&col2 of the current data page:

@(&line, &col1, &col2)

You usually assign the result of a function to a variable or use it as an argument to another command. For example:

&customer_name := @(&line, &col1, &col2)

You can also use the Data Selector to insert a PlanetPress Talk data selection command. This is often quicker andmore con-
venient thanmanually typing the data selection command. Consult the PlanetPress User Guide, and in particular the area
of the PlanetPress user interface you are using to enter PlanetPress Talk code, for help.

Use Functions as Arguments

You can nest functions so that the value returned by one function becomes the argument for another function. For example, in
the following example, the string returned by the@ function becomes one of two arguments for the strip function:

strip('*',@(36,25,58))

As a more complex example, consider the following:

if((pos('BLACK', strip(' ', @(36,25,58))) > 0), 'old', 'new')

It returns the string ‘old’ if the data selection contains the string ‘BLACK’ and ‘new’ if it does not. When the PlanetPress Talk
interpreter evaluates the statement, it first selects the data on line 36 of the current data page, from columns 25 through 58. It
then sends that data to the strip command which removes all spaces in the data. It then sends the data (which now contains
no spaces) to the pos command, which determines whether it contains the string ‘BLACK’. Finally, it compares the value
returned by the pos command to 0, and returns the value of that comparison to the if command.

Debug Scripts

The PlanetPress Talk Editor has a solid set of features for debugging PlanetPress Talk scripts, including execution control,
breakpoints, spies, expression evaluation, and changing the value of a variable during execution. Consult the PlanetPress Talk
Editor section of the PlanetPress User Guide for a description of these features, and suggestions on other debugging tech-
niques.

PlanetPress Talk includes a breakpoint command that you can enter anywhere you can enter a PlanetPress Talk script. See
"Breakpoint (procedure)" (page 561).

PlanetPress reports errors in PlanetPress Talk code in two places: the status bar of a dialog box when you are entering a Plan-
etPress Talk expression in a text box within that dialog box, and the Messages area of the PlanetPress ProgramWindow (con-
sult the PlanetPress User Guide for a description of the Messages area). You can also use these error reports to
determine and fix problems in your code.

Tips and Tricks

The following are useful to remember as you write your PlanetPress Talk scripts:

©2010 Objectif Lune Inc - 238 -

l Defining program logic As for any coding, when you write programs in PlanetPress Talk you should work through
the logic of the program you intend to create before you start coding. This ensures the program accomplishes what you
intend it to accomplish, andmakes the codingmore straightforward. It can also result in insights into different ways of
accomplishing the same task, or raise issues that were not immediately apparent.

l Test If you are writing a complicated script, it is recommended you use the PlanetPress Talk Editor, and test your code
regularly as you develop it. This helps you discover and solve any problems early on in the development process.

l Simplicity As in any programming language, aim for both simplicity and clarity in your scripts.
l Using mathematical operators Enclose mathematical operators in parentheses () to make your code easier to
read and therefore easier to maintain.

l Performing complex calculations PlanetPress Talk limits its precision to 1/1000 to optimize speed and thus is not
designed to handle complex mathematical computations. If you require greater precision you should perform the cal-
culation outside PlanetPress Talk and include the result in the input data for your document.

l CasePlanetPress Talk is case-insensitive. It is good programming practice to establish case conventions as it enhances
the readability of the resulting code. It is recommended that you use lower case for all PlanetPress Talk reserved
words (names of system variables, operators, and commands) as this is the default case convention of the PlanetPress
Talk Editor.

l Indent Use indents to visually represent the structure of the script. For example, indent the commands a loop struc-
ture encloses to make it apparent where the loop begins and ends.

l Comments Include meaningful comments in your code to make it easier to read andmaintain.

Code Samples
This section presents short samples of PlanetPress Talk code that may be useful, and that may also stimulate your imagination
for the ways in which you can use PlanetPress Talk in your documents. Consult the PlanetPress Talk Language Ref-
erence for help understanding specific commands.

l "Print a variable number of copies of a page based on a value in the datastream" (page 239)
l "Store two lines of input data on one line of the data page" (page 240)
l "Print a page n-up" (page n)
l "Print a line of text on odd-numbered pages" (page 241)
l "Determine the proper page to print based on the width of the data in the data page" (page 241)

Print a variable number of copies of a page based on a value in the datastream

This sample prints a variable number of copies of a page based on an integer value in the data stream. It uses a global integer
variable&nbPage that is initialized to 0, and subsequently set to the value of the data that appears on line 1, columns 1
through 2 of the data page.

The document for which it was written uses two pages: DATA and RUNPAGE. DATA is an overlay page that contains all of the
data selections for the document. RUNPAGE is a runpage and the code that appears here is in a PlanetPress Talk object on
RUNPAGE.

% ==
% PRINT A VARIABLE NUMBER OF COPIES OF A PAGE BASED ON
% A VALUE IN THE DATA STREAM
% ==

if(ne(&printermode,0))
set(&nbPage,strtoint(@(1,1,2)))
define(&it,integer,0)

©2010 Objectif Lune Inc - 239 -

for(&it,1,1,strtoint(@(1,1,2)))
execpage('DATA')
showpage()

endfor()
endif()

Notes:

l The if(ne(&printermode,0)) statement prevents the program from executing during design.
l The local variable&it is a counter.

Store two lines of input data on one line of the data page

This sample is a user-defined emulation that reads two lines of input data, concatenates them, and stores them as a single line
in the data page buffer. It terminates a data page when it encounters a form feed character. The emulation relies on two
global variables:

Variable: Type: Initialized to: Description:

&secondBooleanFalse
The emulation uses this to determine when the current line is a second line of data. It is True
when the current line is a second line of data.

&line string
““ (the empty
string)

Holds the contents of a first line of data.

Code:

% ==
% STORE TWO LINES OF DATA ON ONE LINE OF THE DATA PAGE
% ==
search(&str,'\014')
set(¤t.line,¤t.line + 1)
store(¤t.line,&str)
doform()
set(&second,false)
clearpage()

endsearch()

if(&second)
store(¤t.line,&line + &str)

elseif()
set(&line,&str)
set(¤t.line,¤t.line + 1)

endif()

set(&second,not(&second))
if(ge(¤t.line,¤t.lpp))
doform()
clearpage()
set(&second,false)

endif()

Notes:

©2010 Objectif Lune Inc - 240 -

l The search loop executes when the emulation encounters a form feed character. The form feed signals the end of a
data page.

l The first if statement handles the current line of data. If the current line of data is a second line, the first block of the
statement executes; the emulation concatenates the line with the previous one and stores the result. If the current line
of data is not a second line, it sets&line to the value of this(first) line of data.

l The second if statement executes the data page if the value of¤t.line exceeds the maximum number of lines
in a data page.

l The code toggles the value of&second. after it reads each line of data so it can determine whether the current line of
data is a first or second line.

Print a line of text on odd-numbered pages

This sample prints a line of text only on odd-numbered pages. It uses the system integer variable¤t.printpage, and
assumes you add a PlanetPress Talk object containing this code to every page in your document.

Code:

% ===
% PRINT A LINE OF TEXT ON ODD-NUMBERED PAGES ONLY
% ===
if(eq(mod(¤t.printpage,2),1))
margin(1.5,9.75)
show('See reverse side of this page')

endif()

Notes:

l If you use a runpage, you would integrate this code into the runpage code.

Determine the proper page to print based on the width of the data in the data page

In this sample, the document contains three different pages and a runpage that manages execution of the three pages.

Each document page has a different page width and accommodates data of a specific line length. The code determines which
document page to use with a given data page based on the length of line 5 of the data page. The three page widths are 198 col-
umns, 132 columns, and 80 columns.

Code:

% ===
% SELECT THE PROPER PAGE FOR THE CURRENT DATA
% ===
if(trimleft(@(5,198,1))<>'')
execpage('198ColPage')

elseif()
if(trimleft(@(5,132,1))<>'')
execpage('132ColPage')

elseif()
execpage('80ColPage')

endif()
endif()

©2010 Objectif Lune Inc - 241 -

©2010 Objectif Lune Inc - 242 -

Language Reference
This section provides complete descriptions of all elements of the PlanetPress Talk scripting language.

Elements appear in alphabetical order, and each is illustrated with code samples you can try out in the PlanetPress Talk Editor
of the PlanetPress application.

Language Reference (Alphabetical)
This section contains a comprehensive reference to all PlanetPress Talk functions, variable, system objects and system var-
iables. Recall that the documentation convention for representing an optional argument to a command is to enclose the argu-
ment in square brackets.

% (procedure)

Comments out the line. This is useful for embedding documentation in your code, making it easier to read andmaintain. It is
also useful during debugging, for commenting out lines of code you do not want to execute.

Comments must not appear in the first line of the script you enter in the PlanetPress Talk Editor.

Syntax

%… comment….

Argument

None

Code Sample Example

This example illustrates comments in PlanetPress Talk code.

define(&x,integer,1)
% Creates a new local variable named x that is an
% integer and has a value of 1. The variable is used
% in a loop
for(&x,1,1,10)

show(inttostr(&x))
endfor()

Current (system object)

This object includes a set of system variables reflecting the current state of the document. All of these variables are read-only
and therefore cannot be changed using the set command, except where noted. You can access each property individually
using the same syntax.

©2010 Objectif Lune Inc - 243 -

Syntax

¤t.property => value

Properties

datafilename

String value containing the full path and the internal filename, not the original values, of the currently used data file. Note: This
variable contains an empty string in printer centric mode.

datapage

Integer value containing the page number of the current data page, or the number of the current record set in the case of a
database emulation. Note that if you use Metadata and youmodify it in any way (sorting, filtering, sequencing) you should use
¤t.metadatapage instead.

line

Integer value containing the line number of the current line of data within the data page, or the number of the current record
within the record set. This value is read-write and can be modified using the set command.

lpp

Integer value containing the number of lines per page in the current data page. In database emulation, this value can also be
used in place of the subreccount() function to determine how many records a record set contains.

mediacolor

String value containing the color set in the Media color box of the Page dialog box for the current document page, or, if no
value is set in that box, the color set in the Media color box in the Document dialog box for the document. The Media color box
appears when you select Media selection in the Selection type box. Recall that the Media color box specifies the color of paper.

mediatype

String value containing the type set in the Media type box of the Page dialog box for the current document page, or, if no value
is set in that box, the type set in the Media type box in the Document dialog box for the document. The Media type box appears
when you select Media selection in the Selection type box. Recall that the Media type box specifies the type of paper (plain,
coated, etc.).

mediaweight

Integer value containing the weight set in the Media weight box of the Page dialog box for the current document page, or, if no
value is set in that box, the weight set in the Media weight box in the Document dialog box for the document. The Media weight
box appears when you select Media selection in the Selection type box. Recall that the Media weight box specifies the weight
of paper, in grams per square meter.

metadatapage

Integer value containing the page number of the current metadata page. This corresponds to the filtered, sorted and
sequencedmetadata.

minfeature

Measure value containing the width of a single pixel at the current zoom level. Precise to 1/65536 inch. This is the minimum
size you can use in PlanetPress Talk code. If you use a smaller value (for example as an argument in a command), Plan-
etPress Talk automatically replaces that value with the value ofminfeature.

orientation

©2010 Objectif Lune Inc - 244 -

Integer value containing the orientation of the current document page (0=portrait, 1=landscape, 2=Rotated portrait, 3=Rot-
ated landscape).

overflowcount

Integer variable storing the number of times that a data page overflowed and that a new document page was added to accom-
modate the overflowing data. Initially set to 0, is incremented by 1 every time the page overflows.

overflowing

Boolean variable set to False by default. When the current data page contains more lines than can be printed by the current
object, or technically speaking when the object’s condition to exit and overflow has beenmet, this variable is set to True. It is
set back to False with every new overflowing page, the logic being that the current overflowing page will be the last, unless if
the condition to exit and overflow is met yet again.

lastoverflowrepetition

Integer variable storing the number of the last iteration value when the condition to exit and overflow has beenmet.

pageheight

Measure value containing the physical page height, in inches, of the current page in the document.

printpagename

String value containing the name of the page that is actually printing. This allows conditional processing to take place within a
PPTalk object according to the name of the page being executed. Note that the value always corresponds to the name of the
actual page page being printed, even if the call comes from a virtual or overlay page (in other words, the name of the page on
which the overlay is layed out).

pagewidth

Measure value containing the physical page width, in inches, of the current page in the document.

printpage

Integer value containing the current page number in the document.

x,y

Measure value containing the current horizontal (x) or vertical (y) position of the drawing pen on the current page. This value
is relative to the top left corner of the current page - whose coordinates are (0,0) - andmay not necessarily be equal to the cur-
rent physical position on the page.

¤titeration (variable)

Variable storing the number of times that a line was repeated within an object or group. Initially set to 0 in every object, it is
incremented by 1 with every line repeat. It can also be used to track repetitions within a group of objects.

Syntax

¤titeration (when used as a local variable)

&[GroupName].currentiteration (when used to keep track of repetitions within a group)

©2010 Objectif Lune Inc - 245 -

&Document (system object)

This object includes a set of system variables reflecting the current state of the document. All of these variables are read-only
and therefore cannot be changed using the set command. You can access each property individually using the same syntax.

Syntax

&document.property => value

Properties

name

String value containing the name of the PlanetPress Document.

picturecolores

Integer value containing the default resolution of color pictures, in DPI.

picturegreyres

Integer value containing the default resolution of greyscale pictures, in DPI.

picturemonores

Integer value containing the default resolution of monochrome pictures, in DPI.

&EOJob (system variable)

Read-only variable that returns True if the document has processed the last line of data or if the line that follows the last form
feed character (ASCII 12) is empty.

This variable always returns True at design-time when using a user-defined emulation.

Thus if a file ends with the sequence:

FF CR LF

&eojob becomes true before the last line (CR LF) since the last line is empty.

Syntax

&eojob Boolean value

&FirstSide (system variable)

Read-only variable that returns True when a page is printing on the first side of a page in duplex mode (double-sided printing).
In simplex mode (single-sided)&firstside always returns True.

This variable is based on PostScript’s firstside command as implemented in your printer. If your printer does not support
firstside, the document attempts to detect which side of the page is currently printing. Passthrough commands can hamper
the document’s ability to return the correct value for &firstside.

Syntax

&firstside Boolean value

©2010 Objectif Lune Inc - 246 -

&Height (system variable)

System variable with a scope local to a specific object, group, or page. The system initializes this variable to the value of the
Height property of the object’s, group’s, or page’s Basic Attributes. You can reference and set this variable in any PlanetPress
Talk code you enter in the object, group, or page.

Syntax

&height measure value

&iterationcount (variable)

Integer variable local to the current object that is incremented each time the iteration is executed (when the iteration condition
is True).

This variable is generally used to determine when an overflow will be triggered within a simple repeat & overflow.

Syntax

&iterationcount integer value

Example

This example would be put in the Exit and Overflow box found in the Repeat section of an object or group's properties. In this
example, an overflow is triggered whenever the number of repeating lines reaches 15.

=&iterationcount >= 15

lastoverflowcount (variable)

Integer variable containing the number of repeats in the previous page of an overflow. For example if you are on the second
page of an overflow that contains 6 items each, &lastoverflowcount will be 6 at the beginning of the page, and 12 at the end of
the page (after the repeating object).

Note that this variable is not reset when the overflow finishes, meaning on a datafile that has no overflow, its value will still be
the one from the last overflow to occur.

Example:

if(¤t.overflowing)
show('Showing '+inttostr(&lastoverflowcount) + ' to ' + &totalitemsonpage)

endif()

&Metamode (variable)

This variable is only available in PlanetPress Suite 7.3 and higher.

The &metamode boolean variable will indicate whether the script is being run while metadata is being created (for example,
with the Create Metadata task in PlanetPress Worfklow) or simply being read (withmetadata conditions, etc).

Syntax

&metamode integer value

©2010 Objectif Lune Inc - 247 -

Return Values:

l 0: No metadata, for example a Design document with no data file.
l 1: Metadata is being generated (Create Metadata / Refresh Metadata).
l 2: Metadata is in readmode, such as in PlanetPress Design's workspace.

Use Cases:

l Prevent circular logic when adding a page based on the metadata page count. For example, whenmanually adding a
blank page on duplex jobs when the page number is odd, you could add a condition so that this page only "prints" when
the &metamode <> 1.

l Prevent pages from being added to the metadata. Other than blank pages, youmay want to exclude certain pages from
the metadata, for example a "Terms and Conditions" page, a header or footer page, separators, etc. By setting its con-
dition to =&metamode <> 1, these pages will still print but will not affect metadata page counts.

Physical (system object)

The physical object contains system variables that reflect the current state of the document. These system variables are
read-only and therefore cannot be changed using the set command. You can access each system variable using the same syn-
tax.

Syntax

&physical.x measure value

&physical.y measure value

Variables

x,y

Measure value containing the current horizontal (x) or vertical (y) position of the drawing pen, relative to the upper left corner
of the physical page, whose coordinates are (0,0). This system object can be used to assess the amount of space left on a
page.

&PrinterMode (system variable)

Returns the current output mode for the document. This allows you to test for a specific value and react accordingly.

Syntax

&printermode integer value

©2010 Objectif Lune Inc - 248 -

Possible Values

Value: Description:
0 PlanetPress during document design
1 Preview or Softproof as Printer Queue
2 Preview or Softproof as PlanetPress Image
3 Preview or Softproof as PlanetPress Fax
4 Printer Preview
5 Printer Hard Disk
6 Printer Memory
7 Host Computer
8 Flash Memory
9 PlanetPress Image
10 PlanetPress Fax
11 PlanetPress Suite Workflow Tools

Code Sample Example

This example changes some colors to shades of gray for greater legibility on a fax.

Example

setlinewidth(0.1) %Select a thick pen
if(&printermode=10) %If Destination is Fax

setfillcolor([5,5,5,5]) %Set fill to light gray
setstrokecolor([0,0,0,100]) %Set pen to black

elseif()
%Otherwise,set fill colour to yellow
setfillcolor([0,0,50,0])
setstrokecolor([100,100,0,0]) %Set pen colour to blue

endif()
rectstroke(0,0,3,3) %Display rectangle
rectfill(0,0,3,3)

Script (system object)

The script system object is available in both PlanetPress Design and PlanetPress Suite Workflow Tools scripting environments.
It contains properties describing the current external script.

&script is not used within PlanetPress Design and is not a PlanetPress Talk variable. It is a variable used within scripts
in JScript, VBScript, Perl or Python called from PlanetPress Talk in a PlanetPress Design Document, using the "Exec-
ScriptFile (function)" (page 486) command.

Syntax

l &script.filename string
l &script.paramstring string
l &script.returnvalue string

©2010 Objectif Lune Inc - 249 -

Properties

filename

Read-only string value containing the fully qualified path and filename of the current script.

paramstring

Read-only string containing additional information passed by the document to the script.

returnvalue

Read-write integer containing a coded value for the result of the "ExecScriptFile (function)" (page 486) command.

Accessing custom PlanetPress Suite Workflow Tools variables from a currently running script within PlanetPress
Design will yield unknown results, simply because PlanetPress Design does not have any access to the PlanetPress
Suite Workflow Tools custom variables. Users should therefore be careful to use conditional statements within the
script if needing to access custom variables.

&Str (system variable)

Contains a line of input data.

Syntax

&str string

Code Sample Example

This example illustrates a few lines of code from a user-defined emulation. In these lines, if the line of input data (minus any
leading spaces)begins with the code ‘5’, the emulation advances to the next line of the data page and stores the line of input
data on that line. Notice the ¤t.line system variable—one of the variables in the current system object.

Example

if(eq(mid(trimleft(&str),1,1),'5'))
set(¤t.line,¤t.line + 1)
store(¤t.line,trimleft(&str))

endif()

&system (system object)

The &system system object contains system variables related to the Raster Image Processor (RIP) the document is using to
execute, and document version. These system variables are read-only.

Syntax

l &system.product string value
l &system.version string value
l &system.formversion integer value

Properties

product

String value containing the name of the RIP the document is using to execute. For example,

©2010 Objectif Lune Inc - 250 -

PlanetPress Alambic is the name of the RIP built in to PlanetPress (the RIP PlanetPress uses when you perform a preview and
select Internal interpreter as the PostScript interpreter).

version

String value containing the version number of the RIP the document is using to execute. For example, 4.0.

formversion

Integer value containing the version number of the document requested by the trigger. Recall that you can assign a version
number to a document and increment the number each time you update and reinstall the document. When you execute a doc-
ument that uses a version number, the document verifies its version number against the one you specify in the trigger, and it
proceeds with execution only if the two version numbers match.

&watch (system object)

The &watch object currently contains a single property, the JobInfos array. This array contains the 9 job information variables
that are sent to the document from PlanetPress Workflow, when the document is executed in a PlanetPress Workflow process.

Syntax

l &watch.JobInfos[n] string value

Note: n is a digit from 1 to 9, corresponding to the PlanetPress Workflow Job Info.

Properties

JobInfos[n]

String value equal to the value of job info n, as set in PlanetPress Workflow.

&Width (system variable)

System variable with a scope local to a specific object or group. The system initializes this variable to the value of the Width
property of the object’s or group’s Basic Attributes. You can reference and set this variable in any PlanetPress Talk code you
enter in the object, group, or page.

Syntax

&width measure value

@ (function)

Returns a selection within the current data page for text emulations.

The @ character can be the beginning of a data selection, a page call or a procedure or function call.

Syntax

@(line, startcolumn, endcolumn) string value

Arguments

line

Integer value specifying the line on which to read the data in the current data page.

startcolumn, endcolumn

©2010 Objectif Lune Inc - 251 -

Integer values specifying the start/end columns of the chunk of data to read from the current data page.

Code Sample Example

The first line of code assigns data from the current data page to a variable. The second line of code checks for the presence of
a value inside the data page and sets a Boolean variable according to the results.

define(&invnum,string,@(7,50,59))
define(&isfirstpage,boolean,(strtoint(@(1,60,70))=1))

@name (function/procedure)

Executes a global function or procedure created using the function() command.

The @ character can be the beginning of a data selection, a page call or a procedure or function call.

Syntax

@functionname(parameters) integer, measure, currency, string, Boolean or no return value

Arguments

functionname

String value specifying the name of the function or procedure.

parameters

Comma separated list of parameters required by the specified function or procedure.

@page (procedure)

Executes the content of the specified document page, as if it were part of the calling page. The content of the page in this case
excludes the paper handling properties of the page. The height and width of the page content thus becomes the height and
width of the group that would result if you created a single group of all of the page elements. If you want to include the paper
handling properties in the page execution, use the $element syntax instead.

The @ character can be the beginning of a data selection, a page call or a procedure or function call.

The@page() and execpage() commands are functionally equivalent. However, the execpage() command has the
added ability of calling variable page names.

Syntax

@pagename()

Arguments

pagename

String value specifying the name of the page you want to execute.

©2010 Objectif Lune Inc - 252 -

Example

The following two lines of code are functionally equivalent and display the content of a page namedMyFirstPage:

@MyFirstPage
execpage('MyFirstPage')

$element (procedure)

Executes the specified document element (object, page, resource, etc.). Note that in the case of a page, this procedure
executes both the content of the page and the paper handling properties of the page. The height and width of the calling page
are therefore set to the same values as those set by the called page.

Recall that every element in a document has a unique name. You can therefore call any element in the document at any time.
For example, the first page of a medical record documentmay contain a header listing all of the patient information, while
other pages in the document scale that same header to fit in the lower left corner of each page. Any modification you sub-
sequently make to the header is automatically reflected throughout the document.

Syntax

$element

Arguments

element

String value specifying the name of the element you want to execute.

Examples

Example 1 illustrates basic usage of the syntax.

$my_square
$page1
$box5

Example 2 scales the $header element to one quarter of its original size, and rotates it 90 degrees.

scale(0.25, 0.25)
setangle(90)
$header

Example 3 creates a thumbnail of each of the first two pages and positions the thumbnails side-by-side.

scale(0.10, 0.10)
$page1
translate(8.5, 0)
$page2

+ (operator & function)

Either concatenates two or more strings or adds two numerical expressions, depending on its context.

©2010 Objectif Lune Inc - 253 -

This description details how to use it to concatenate two strings. See "Add (function)" (page 551) for help using it to add two
numerical expressions.

Syntax

string1 + string2 + ... string

Arguments

string1, string2,...

String values.

Code Sample Example

The following code sample concatenates five strings into a single string that contains the first and last name of a customer.

Code Sample

show('First Name: ' + @(2,12,36) + ' ' + 'Last Name: ' + @(3,12,36))

– (operator)

See "Sub (function)" (page 539) and "Neg (function)" (page 535).

Asterisk (*) operator

See "Mul (function)" (page 535).

/ (operator)

See "Div (function)" (page 532).

Greater than (>) operator

See "GT (function)" (page 554).

Greater or equal to (>=) operator

See "GE (function)" (page 553).

Less than (<) operator

See "LT (function)" (page 556).

Less or equal to (<=) operator

See "LT (function)" (page 556).

= (operator)

Assign a value to a variable. This provides a more convenient alternative to the set() command. Note that spaces between
the operator and its operands are optional.

©2010 Objectif Lune Inc - 254 -

Code Samples

&price := 18.53
&day[4] := 'Friday'
&last:=True
&mustard := [0,20,90,16]

<> (operator)

See "NE (function)" (page 557)

Add (function)

Adds two numerical expressions. This is the functional equivalent to the + operator, when you use the + operator with numer-
ical expressions.

Syntax

add(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure, or currency values. Both expressions must be the same type. The returned value is set according to the
type of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of adding numbers.

Example 1

show(inttostr(2+2)) %Displays 4

Example 2

show(floattostr(add(4.7,2.1))) %Displays 6.8

And (Boolean operator function)

Returns true if both specified expressions are true, otherwise it is false.

Syntax

and(expression1, expression2) Boolean value

expression1 and expression2 Boolean value

Arguments

expression1, expression2

©2010 Objectif Lune Inc - 255 -

Boolean values.

Code Sample Examples

These examples illustrate the possible values for AND.

and(true, false) %Returns false
and(false, true) %Returns false
and(false, false) %Returns false
and(true, true) %Returns true

Arc and ArcN (procedures)

Arc() draws an arc in a counter-clockwise direction, while ArcN() draws an arc in a clockwise direction. If there is a current
point set, the command draws a straight line from the current point to the start point of the arc. Whether or not a current point
is set when the command executes, after execution the current point is the end point of the arc.

You define the arc you want to draw by specifying the x and y coordinates of the center of the circle, the radius of the circle,
and the start and end points for the arc. You specify each of the start and end points of the arc as an angle; the command uses
the angle to position the point. For example, to position the start point, the command draws an invisible line at the specified
start angle from the center of the circle, the length of the radius; it positions the start point at the end of that line.

Example using Arc() Example using ArcN().

Example of an arc drawn from start point D to end point F: A. Center of circle (x,y) B. Radius C. Start angle D. Start point of arc
E. End angle F.

Syntax

arc(x, y, arc_length, start_angle, end_angle)

Arguments

x, y

Measure values representing the x and y coordinates respectively of the center of the circle.

arc_length

Measure value representing the length of the arc.

start_angle

©2010 Objectif Lune Inc - 256 -

Measure value representing the start angle, in degrees, for the arc. Degrees are relative to a standard X, Y axis, with a value
of 0 degrees lying flush with the X axis. The value of the start angle can be either positive or negative.

end_angle

Measure value representing the end angle, in degrees, for the arc. Degrees are relative to a standard X, Y axis, with a value of
0 degrees lying flush with the X axis. The value of the end angle can be either positive or negative.

Code Sample Examples

Example 1

Example 1 draws a 180 degree arc 3 inches in length. The center of the circle is at (0,0). The rmoveto() command that pre-
cedes the arc() command ensures the current point is set at the center of the circle and prevents a line from being drawn from
the current point to the start point of the arc.

rmoveto(3,0)
arc(0,0,3,0,180)
stroke()

Example 2

Example 2 draws an arc 2.5 inches in length. The center for the arc is four inches from the left edge of the page and three
inches from the top edge. The arc starts at 30 degrees and ends at 60 degrees. The rmoveto() command that precedes the
arc() commandmoves the current point to the center of the circle, resulting in a line that is drawn from the center of the circle
to the start point of the arc.

rmoveto(4,3)
arc(4,3,2.5,30,60)
stroke()

BeginDocument/EndDocument (procedure)

Delimits the boundaries of a metadata document within a PlanetPress Design document.

Syntax

begindocument()

or

enddocument()

Arguments

None

Code Sample Examples

if (&is_FirstPage)
begindocument()

EndIf()
if(&is_LastDocPage)

©2010 Objectif Lune Inc - 257 -

enddocument()
EndIf()

BeginGroup/EndGroup (procedure)

Delimits the boundaries of a metadata group within a PlanetPress Design document.

Syntax

begingroup()

or

endgroup()

Arguments

None

Code Sample Examples

if(&is_FirstInvPage)
begingroup()

EndIf()
if(&is_LastInvPage)

endgroup()
EndIf()

BeginParagraph … EndParagraph (procedure)

Delimits a paragraph of formatted text.

The beginparagraph … endparagraph structure can contain only the following commands: setstyle(), setstyleext(),
show(), and% (indicating a commented line). Any other command included within this structure will yield unpredictable
results. Amargin() command should precede the beginparagraph...endparagraph structure, and each variable you ref-
erence within the structure must have its own procedure., as demonstrated in the second of the examples below. Also note
that the first command within a beginparagraph...endparagraph structure must be the setstyle() command.

No crlf procedures are permitted inside a paragraph structure, since crlfs are paragraph delimiters.

If you do not need to change fonts or use variables within a paragraph, it is strongly recommended you use the text object in
PlanetPress, as PlanetPress optimizes text objects to improve performance.

When a long string containing no spaces between its characters appears in the context of a show() command and the begin-
paragraph ... endparagraph() command, the line of text will not wrap. The same is true for a text object; no wrapping
occurs when a long string has no spaces between its characters.

Note that when a Text object is converted to PlanetPress Talk, an extra argument is is added to the beginparagraph … end-
paragraph syntax. Ignore this argument since it is strictly for internal use.

Syntax

beginparagraph(lmargin, rmargin, firstindent, align, leading,[opt, forcedwordwrap])

…

©2010 Objectif Lune Inc - 258 -

endparagraph()

Arguments

lmargin

Measure value specifying the left margin, in inches, of the text relative to the left border of the object.

rmargin

Measure value specifying the right margin, in inches, of the text relative to the left border of the object.

firstindent

Measure value specifying the indent, in inches, of the first line of the paragraph, relative to the lmargin parameter.

align

String value specifying the text alignment within the paragraph. Possible values are 'left', 'right', 'center' and 'leftright' (for
both left and right justification of text).

leading

Measure value specifying the amount of vertical space, in inches, between each line of the paragraph.

opt

Optional boolean value used internally. Default value is false.

forcedwordwrap

Optional boolean value that forces wordwrap at the defined paragraph size. Default value is false.

Code Sample Examples

Example that displays a paragraph aligned to the right.

Example 1

beginparagraph(1,3,0,'right',0.16)
setstyle(&Default)
show('This long line of text should wrap around')
show('This long line of text should wrap around')

endparagraph()

Example that shows how to include a variable within a formatted paragraph.

Example 2

define(&var,string,'very')
beginparagraph(1,3,0,'left',0.16)

setstyle(&Default)
show('This ')
show(&var)
show(' long line of text should wrap around')

endparagraph()

©2010 Objectif Lune Inc - 259 -

BeginUTF8Paragraph … EndUTF8Paragraph (procedure)

Delimits a paragraph of formatted UTF8 text.

This procedure is based on BeginParagraph… EndParagraph (procedure), with the following differences:

l ShowUTF8 (procedure) must be used instead of show()
l SetStyleExt (procedure) must use a style that has been associated with the True Type Font "TT Host UTF8Arabic".
l Only UTF8 text can be displayed in a PlanetPress Talk object defined using the beginUTF8paragraph …
endUTF8paragraph structure. Non-UTF8 static text should therefore be converted to its UTF8 reference using the
Ansi/UTF8 Converter (place the cursor within the string and press CTRL+N). Variable text should be converted using
MapUTF8 (function).

Syntax

beginUTF8paragraph(lmargin, rmargin, firstindent, align, leading, majormode, [forcedwordwrap])

% Your Paragraph data here

endUTF8paragraph()

Arguments

Same as BeginParagraph… EndParagraph (procedure).

Code Sample Example

This example displays a justified paragraph with the UTF8 text running from right to left.

Example

setlinewidth(0.007)moveto(0,0)
rlineto(&width,0)
rlineto(0,&height)
rlineto(neg(&width),0)
rlineto(0,neg(&height))
closepath()
stroke()
moveto(&width/2,&height/18)
BeginUTF8Paragraph(0.0000,&width,0.0000,'leftright',0.1667,'rtl')

SetStyleExt(&Style1,12.0000,0,[100],100)
ShowUTF8('\u0623\u0633\u0627\u0633\u064B\u0627\u060C')

EndUTF8Paragraph()

BitmapWidth/BitmapHeight (function)

Returns the width or height, in inches, of a bitmap image resource, at the specified resolution.

Syntax

Bitmapwidth(name, resolution) measure value

Bitmapheight(name, resolution) measure value

Argument

name

©2010 Objectif Lune Inc - 260 -

String value that specifies the name of the bitmap image resource.

resolution

Integer value that specifies the resolution at which you want to measure the width or height of the bitmap.

Code Sample Example

This example sets the variable maxwidth to the width of the bitmap 'fingerprint' at a resolution of 150 DPI, and the variable
maxheight to the height of the same bitmap at a resolution of 200 DPI.

Example

&maxwidth := bitmapwidth('fingerprint', 150)
&maxheight := bitmapheight('fingerprint', 200)

Breakpoint (procedure)

Stops the execution of a PlanetPress Talk object when the specified expression is True. This breakpoint is effective only when
running in debugmode in the PlanetPress Talk editor.

Syntax

breakpoint(expression1)

Argument

expression1

Boolean value.

Code Sample Example

This example sets up a loop, stops the loop on its 5th iteration, and then displays the value.

Example

define(&x,integer,1)for(&x,1,1,10)
breakpoint(&x = 5)
show(inttostr(&x))

endfor()

C128 (function)

This function is deprecated and should be replaced by ShowBarcodeCode128 (procedure) whenever encountered. It
is kept for backwards compability.

Converts a two-character string to Code 128 bar code, character set C data.

Syntax

c128(string) string value

Argument

string

©2010 Objectif Lune Inc - 261 -

String value composed of two characters.

Code Sample Example

This example converts the data on line 5, columns 12 to 13, to Code 128 bar code C character set data.

Example

c128(@(5,12,13))

CallPPD (procedure)

Calls a section of the PostScript Printer Description (PPD) file and executes it on the printer. Use this to set printer options such
as the input tray or duplexing options. The tokens and subtokens you use as arguments with this functionmust be defined in
the PPD file associated with your document or page in the document’s or page’s Basic Attributes. PlanetPress searches the PPD
file for the token-subtoken combination and then prompts the printer to execute the corresponding code.

Syntax

callppd(token, subtoken)

Arguments

token

This is the string to search for in the PPD file (for example, Duplex).

subtoken

This is string to search for that is a setting for the token (for example, None).

Example

if((&Condition1) or (&Condition2))
callppd("Tray", "2")

elseif()
if((&Condition3) or (&Condition4))

callppd("Tray", "3")
elseif()

callppd("Tray", "4")
endif()

endif()

Ceil (function)

Returns the smallest integer greater than or equal to the specified measure value.

Syntax

ceil(value) integer value

Argument

value

©2010 Objectif Lune Inc - 262 -

Measure value. The absolute value of the measure value must be less than the maximum value of an integer in PostScript
(2,147,483,647).

Code Sample Examples

These examples illustrate various applications of ceil().

ceil(-2.8) %Returns -2
ceil(2.8) %Returns 3
ceil(-5.0) %Returns -5

Char (function)

Returns the character whose ASCII value is specified.

Syntax

char(value) string value

Argument

value

Integer value between 0 and 255, specifying the ASCII index of the character.

Example

show(char(84)+char(97)+char(108)+char(107))
% This displays the word "Talk"

CharPath (procedure)

Creates a path in the shape and size of a text string, in the currently active style.

Syntax

charpath(string)

Argument

None

Example

This example creates a path of the word "Text" and applies it as a clipping path on the coffee_time bitmap. This creates the
word Text where the filling texture is the cofee_time image.

moveto(&width / 2, &height / 2)
charpath('TEST')
clippath()
moveto(0,0)
showbitmap('coffee_time',&document.picturecolorres,&width,&height)

©2010 Objectif Lune Inc - 263 -

Result:

ClearPage (procedure)

Clears the current data page and loads the next one. This command should only be used before reading the next page of data
from the input stream. It is strictly for use within a User-Define Emulation and generally follows DoForm (procedure).

Syntax

clearpage()

Argument

None

Example:

This example the default User-Defined Emulation that corresponds to a Line Printer data file.

search(&str,'\014')
set(¤t.line,¤t.line + 1)
store(¤t.line,&str)
doform()
clearpage()

endsearch()
set(¤t.line,¤t.line + 1)
store(¤t.line,&str)
if(ge(¤t.line,¤t.lpp))

doform()
clearpage()

endif()

ClipPath (procedure)

The Clippath() command takes the last drawn path and selects it as the clipping region. Any subsequent drawing will only be
visible inside that clipping region. The clipping will stop at the next call to GRestore(). All PlanetPress objects are natively
wrapped in a GSave/GRestore(), so clipping between objects will not work.

©2010 Objectif Lune Inc - 264 -

Syntax

clippath()

Argument

None

Example

This example displays the coffee_time image partially, where only a square defined by the rlineto() is visible.

moveto((2.0000/(6.6529)) * &width, (0.2000/(4.9897)) * &height)
rlineto(0, (3.0000/(4.9897)) * &height)
rlineto((3.0000/(6.6529)) * &width, 0)
rlineto(0, neg((3.0000/(4.9897)) * &height))
closepath()
clippath()
moveto(0, 0)
showbitmap('coffee_time',&document.picturecolorres,&width,&height)

ClosePath (procedure)

Closes any open path and completes the current shape, if need be, by drawing a line from the last point in the shape to the
starting point. This ensures the shape is closed, thus enabling filling to take place if specified. Only closed shapes can be filled.

Syntax

closepath()

Argument

None

Code Sample Example

The first line of code sets the starting point of a triangle, the second and third lines of code draw the first and second lines (or
sides) of the triangle, the fourth line of code closes the triangle shape by implicitly issuing amoveto command.

Example

moveto(1.0,1.0)lineto(1.5,2.0)
lineto(0.5,2.0)
closepath()
fill()

Cos (function)

Returns the cosine value of the specified angle.

Syntax

cos(value) measure value

©2010 Objectif Lune Inc - 265 -

Argument

value

Measure value specifying the angle whose cosine is returned.

Code Sample Example

This example displays a sinusoidal graph.

Example

moveto(0,0)
define(&i,integer,0)
for(&i,1,10,360)

lineto(cos(inttofloat((&i)/ 4)),sin(inttofloat(&i)))
endfor()
closepath()

CRLF (procedure)

Moves the current point by simulating a carriage return/line feed combination. The horizontal position is reset to the value of
the current left margin, while the vertical position is offset by the leading value specified.

Syntax

crlf([leading])

Argument

leading

Measure value setting the vertical distance, in inches, between two lines. If you do not provide this argument, the value by
default is 0.167 inches, which is roughly equivalent to a 6 LPI (lines per inch) setting.

Code Sample Example

This example demonstrates how to change the vertical spacing of lines within an object.

Example

margin(1,1)
show('These lines are displayed')
crlf(0.125)
show('at 8 LPI.')
crlf(0.5)
show('While these lines are displayed')
crlf(0.5)
show('at 2 LPI')

CurToStr (function)

Converts a currency expression into a string value.

©2010 Objectif Lune Inc - 266 -

Syntax

curtostr(expression) string value

Argument

expression

Currency value to convert.

CurToFloat (function)

Converts a currency expression into a measure value.

Syntax

curtofloat(expression) measure value

Argument

expression

Currency value to convert.

CurveTo/RCurveTo (procedure)

Creates a Bezier curve. Bezier curves are shapes defined using 4 points: the starting and ending points are physical posi-
tioning points while the second and third points are control points on the curve. In PlanetPress Talk, the starting point is implicit
and automatically set to the current cursor position. The first control point defines the direction the curve takes whenmoving
from the starting point, and before shifting to the second control point, which defines a second curve before reaching the end-
ing point.

A complete explanation of Bezier curves is beyond the scope of this document. Feel free, however, to try out this command
using the PlanetPress Talk Editor in PlanetPress in order to study its possibilities.

To draw a simple curve, use the same (x,y) coordinates for both control points.

Syntax

curveto(x1, y1, x2, y2, x3, y3)

Arguments

x1, y1, x2, y2, x3, y3

Pairs of measure values representing the horizontal/vertical position, in inches, of each point defining the Bezier curve. When
using rcurveto, these values are relative to the current point of origin. When using curveto, they are absolute values.

Code Sample Example

This example draws a triangle with a twisted bottom side. The triangle has a blue outline and is filled with yellow.

Example

setstrokecolor([100,100,0,0])
setfillcolor([0,0,100,0])
moveto(1,1)
lineto(1.5,2)

©2010 Objectif Lune Inc - 267 -

curveto(1,1,1,3,0.5,2)
closepath()
strokeandfill()

Result:

Date (function)

Returns the print date. Note that this function does not work in Printer-Centric mode, since it is impossible for the document to
get the current date from a printer. So if you send your document to a printer and then simply send data with the appropriate
trigger to that printer, the document will run on the printer and the function will return an empty string. Use the Run locally
option, available in the PlanetPress Suite Workflow Tools, to ensure that the document runs on a computer rather than on a
printer.

Syntax

date(longdate)

Argument

longdate

Boolean specifying whether to use short or long date. True returns the date in long format, False, in short format. The precise
format of the short and long date value strings are set in the Windows Regional options.

Code Sample Example

This example shows how to add the current date in long form on a document page.

Example

show(date(true))

Result

On a system set to French (Canada), returns .

©2010 Objectif Lune Inc - 268 -

Define (procedure)

This command creates a new local variable, or redefines an existing one. The define procedure must appear before the var-
iable is actually used. PlanetPress Talk scripts require all variables to be defined either as a global variable in your document,
or a local scope variable within your PlanetPress Talk script.

Syntax

define(name, type, value)

Arguments

name

The name of the variable, prefixed with the ampersand (&) character. The name must conform to the rules for names
described in "Names" (page 221).

type

Constant value specifying the variable type, either integer, measure, string, Boolean, or an array type. The array types are
color, arrayinteger, arraymeasure, arraycurrency, arrayBoolean, arraystring or directory. Once a type is assigned to a var-
iable, it cannot be changed, unless the variable is redefined.

value

An initial value for the variable, of the same type as the variable (for example if the variable is of type integer, this value must
be an integer). This value can also be a valid PlanetPress Talk expression. In the case of any array variable other than a color
array or an array of type directory, the initial value can be either the number of elements you want the array to contain, or the
set of values you want the array to contain. In the former case you assign values to the array elements in subsequent com-
mands. In the latter case, you separate each value by a comma, and enclose the complete set of elements in square brackets.
In the case of a string array, youmust also quote each of the array elements. In an array of type directory, you specify the
pathname to the folder and the file name filter you want to apply to each of the files in that folder; this in turn determines the
number of elements in the array.

Code Sample Example

define(&customer_name, string, 'Smith')
define(&invoice_number, integer, strtoint(@(1,1,10)))
define(&left_margin, measure, 1.5)
define(&is_bottom, boolean, (¤t.line > 50))
define(&my_array,arrayinteger,[12,3,76,109,4])
define(&my_array,arrayinteger, 5)
define(&prices,arraycurrency, 6)
define(&greetings,arraystring,['hello','bonjour','ola'])
define(&mustard,color,[0,12,84,16])
define(&image_paths, directory, 'c:\\images*.JPG')
define(&cost, currency, 0.00)

DefineData (procedure)

Change the active data file to the one specified in the path parameter.

Changing the data file in the middle of document processing can have unexpected consequences and should only be

©2010 Objectif Lune Inc - 269 -

used if you understand the implications of doing so.

Syntax

definedata(path)

Argument

path

String value specifying the path of the data file.

DefineImageIndex (procedure)

Defines a PlanetPress Search index term. PlanetPress Image uses this information to generate the .PDI file it creates for each
PDF file it creates. You use SetImageIndex (procedure) to associate a data value with the index term.

Syntax

defineimageindex(name, [length])

Arguments

name

String value specifying a name for the index term.

length

String value specifying a length for the index term.

Code Sample Examples

Example 1

This example defines the index term 'PONumber' and assigns it a length of 8 characters. The PDI file generated by PlanetPress
Image contains the line: ~IndexName=PONumber,8.

defineimageindex('PONumber', '8')

Example 2

This example defines the same index term, this time without defining a length for the term. In this case the line in the PDI file
becomes: ~IndexName=PONumber

defineimageindex('PONumber')

Definemeta (function)

Defines a field when running a PlanetPress Design Document withmetadata file creation. In every cases, the name of the field
is case-insensitive andmust begin with a letter (A-Z, a-z), followed by any number of letters, numbers (0-9), underscore ('_')
or dash ('-') characters.

Syntax

definemeta(name: string, data: string, [flags: integer, path: string])

©2010 Objectif Lune Inc - 270 -

Argument

name

The name of the metadata field to define. Unless the path argument specifies otherwise, the new field is defined at page
level.

data

An initial string value of the definedmetadata field. This value can also be a valid PlanetPress Talk expression.

flags

Optional integer value to define the behavior of the command when a field with the same name already exists in the current
level. The default behavior uses 0 and overwrites the old value with the new one.

Name Value Behavior

DefineOverwrite 0
The content of the value parameter overwrites the current value of the field if it exists, or creates it if
it does not.

DefineAppend 1 The content of the value parameter is appended to the existing field.
DefineDuplicate 2 A new field with the same name is created, appending an index at the end of its name.

DefineError 3 The command fails and the job crashes, yielding an error dialog.

path

Optional string value to specify the level where to create the metadata field. Path components cannot be indexed, and if no
path is provided, the field is created at the current page level.

The node names of the path argument can have an optional zero-based index, indicated between square brackets ('[
]'), to access a specific node. If no index is provided, the first node is used.

Code Sample Example

This example illustrates how to assign data from the current line printer data file to a document-basedmetadata field, spec-
ifying the level where the field will be created.

% Create simple 'InvoiceNumber' holding the value found on line 10,
% between columns 35 and 42 of a line printer emulation data file.
definemeta('InvoiceNumber', @(10,35,42))
% Create the same 'InvoiceNumber' field but duplicating it if it already exists.
definemeta('InvoiceNumber', @(10,35,42), 2)
% Create the same 'InvoiceNumber' field but at the Document level this time,
% and raising an error if it already exists.
definemeta('InvoiceNumber', @(10,35,42), 3, 'Job.Group.Document')

Div (function)

Divides an expression with another. This is the functional equivalent to the / operator.

Syntax

div(expression, expression2) integer, measure, currency value

©2010 Objectif Lune Inc - 271 -

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be the same type. The returned value is set according to the type
of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of dividing numbers.

Example 1

show(inttostr(2/2)) %Displays 1

Example 2

show(floattostr(div(4.7,2.1))) %Displays 2.2381

DoForm (procedure)

Runs the current document. This command is usually issued once a complete data page has been received and committed to
buffer. This command should only be used before reading the next page of data from the input stream. It is strictly for use
within a User-Define Emulation.

Syntax

doform()

Argument

None

Code Sample Example

This example is an extract from a user-defined emulation. The search() command looks for a formfeed and adds its line
number. The line number is stored as a string and the document is run. The data page is cleared and the search is over.

Example

search(&str,'\014')
set(¤t.line,¤t.line + 1)
store(¤t.line,&str)
doform()
clearpage()

endsearch()

endpageset (procedure)

Ends any page set and subset when printing using a Windows driver. When creating a VDX PlanetPress Design document, this
command signals the end of a booklet rather than a simple page subset.

©2010 Objectif Lune Inc - 272 -

Syntax

endpageset()

Argument

None

Code Sample Examples

In bothmodes, the command is called the same way.

% Print using a Windows driver mode
if(&is_CA)

endpageset()
selectprinter('MyCanadianPrinter')

else
endpageset()
selectprinter('MyOtherPrinter')

endif()

% Work with VDX
if(&is_LastBookletPage)

endpageset()
endif()

EPSWidth/EPSHeight (function)

Returns the width or height, in inches, of an Encapsulated PostScript (EPS) image resource.

Syntax

epswidth(name) measure value

epsheight(name) measure value

Argument

name

String value that specifies the name of the EPS image resource.

Code Sample Example

This example sets the variable maxwidth to the width, and the variable maxheight to the height of the EPS image resource
wing_nut.

Example

&maxwidth := EPSwidth('wing_nut')
&maxheight := EPSheight('wing_nut')

©2010 Objectif Lune Inc - 273 -

Eq (function)

Compares two expressions of any type and returns true if both are equal, false otherwise. This is the functional equivalent of
the = operator.

Syntax

eq(expression1, expression2) boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Examples

Examples 1 and 2 shows both ways of comparing two expressions.

Example 1

if(eq(¤t.line, 33))
show('Middle of page')

endif()

Example 2

if(¤t.line = 33)
show('Middle of page')

endif()

ExecPage (procedure)

Executes the content of the specified document page, as if it were part of the calling page. The content of the page in this case
excludes the paper handling properties of the page. If you want to include the paper handling properties in the page execution,
see "$element (procedure)" (page 613).

The execpage() and@page() commands are equivalent.

Syntax

execpage(pagename)

Argument

pagename

String value specifying the name of the page to run. The page must exist, and its name is case insensitive.

Code Sample Example

In this example, the current page executes pages 2, 3 or 4 according to a data selection. This allows you to create pages of
'subroutines' that can be called from any other page.

©2010 Objectif Lune Inc - 274 -

Example

define(&x,integer,strtoint(@(7,4,8)))
if(&x < 1000)

execpage('PAGE1')
elseif()

if(&x > 1000)
%This is equivalent to execpage('PAGE3')

@PAGE3
elseif()

execpage('PAGE2')
endif()

endif()

ExecScriptFile (function)

Allows PlanetPress Design documents to execute the content of an external script file. The document waits until the script has
completed before resuming its own execution.

Note: This function does not support printer centric mode; results are undefined.

Syntax

ExecScriptFile(filename: string, parameters: string, scriptlanguage: integer) integer

Arguments

filename

Fully qualified path and name of the script to call and execute.

parameters

User-defined string value allowing a document to pass additional information to the script, such as data selections, PlanetPress
Talk variables, etc..

scriptlanguage

The programming language in which the script is written. The valid values are:

0 Auto-detect based on file extension: VBScript (.vbs) | JavaScript (.js) | Perl (.pl) | Python (.py)

1 VBScript

2 JavaScript

3 Perl

4 Python

Return value

Successful execution of the external script file will return 0 by default, although this value may be set by users through the
"Script (system object)" (page 249) system variable. Note that some negative values are internally used to indicate different
types of failure, always using negative values, whichmeans conflicts may happen when users set the Script.ReturnValue var-
iable with an existing negative value. The proper practice is thus to return only positive values.

Here are the existing negative values:

©2010 Objectif Lune Inc - 275 -

-1 Script file does not exist or is not accessible.

-2 Invalid script language.

-3 Error during script execution.

Use of PlanetPress APIs within called scripts

When a script is called from within PlanetPress Design using ExecScriptFile(), all of the PlanetPress environment is available to
the script, including the Watch, Metadata, Capture and Alambic objects.

Using these objects from a script within a Design document is not supported and can lead to unexpected results. Fur-
thermore, setting a Watch variable or job info from within the script will not return this value to the document, as
these values are always passed once when the document is called, never during execution.

Accessing Parameters from the script

The parameters value is a string which is sent to the executed script. It is available using the Script.Paramstring system var-
iable from within the code. If you want to sendmultiple parameters, you will have to separate themwith a special character
and use this character as a separator to split the string or create an array with it, such as (example in JavaScript):

params = Script.Paramstring.split(";")

Code Example

ExecScriptFile('c:\myScript.vbs', 'name;'+@(1,1,10), 1)

Sample Scripts

2 sample scripts are available with any PlanetPress Suite installation.
They are are located inC:\Documents and Settings\All Users\Application Data\Objectif Lune\PlanetPress Suite N\Scripts,
where N is the PlanetPress Suite version number. These 2 sample scripts are used by PlanetPress Design's Excel Graph func-
tionality, allowing to insert a business graphic from a Microsoft Excel file.

Exit (procedure)

Exits from a for...endfor or repeat...until loop.

Syntax

exit()

Argument

None

Code Sample Example

This example shows how to break from a loop when a specific word, in this case ’Invoice,’ is found somewhere on the data
page.

define(&x,integer,1)
for(&x,1,1,¤t.lpp)

if(pos('Invoice',@(&x,1,80))>0)
exit()

©2010 Objectif Lune Inc - 276 -

endif
endfor()

ExpandString (function)

Returns a string that contains the data from a Workflow tool variable. Any variable available to the Workflow tool can be used
here.

Syntax

ExpandString(stringtoexpand: string) string

Arguments

stringtoexpand

The Workflow tool variable string to expand. This can be local and global variables, job infos, as well as any other variable
such as %o, %j, %y, etc.

Return Value

Returns the resulting expanded string.

Code Sample Example

define(&result, string, '')
&result := ExpandString('%{global.GlobalVar}')
show(&result)
% Also works with system variables
&result := ExpandString('%o')
show(&result)

Field (function)

Returns the contents of the specified field for the current record. This function is only useful in database emulationmode.

Syntax

field(fieldname[, recordnumber]) string value

Argument

fieldname

String value specifying the name of the field whose value you want to retrieve.

recordnumber

Integer value specifying the number of the record, in the current record set, whose value you want to retrieve. If you omit this
argument, the document uses the value of¤t.line.

This argument is case sensitive. Thus the field names OrderNumber and ORDERNUMBER are not equivalent.

Code Sample Example

This example shows how to print the name and content of the current record in a generic fashion.

©2010 Objectif Lune Inc - 277 -

Example

define(&x,integer,1) //Define loop variable
define(&fn,string,'') //Define name variable
margin(0,0)
for(&x,1,1,fieldcount()) //Loop through all fields

set(&fn, fieldname(&x)) //Store field name
show(&fn) //Display field name
moveto(2,¤t.y) //Move right
show(field(&fn)) //Display field contents
crlf() //Move to next line

endfor()

FieldCount (function)

Returns a count of fields in the current database record. Since all records always hold the same number of fields, this value will
not change unless a new sample data file is used. This function is only useful in database emulationmode.

Syntax

fieldcount() integer value

Code Sample Example

"Field (function)" (page 542)

FieldName (function)

Returns the name of the specified field for the current record. This function is only useful in database emulationmode.

Syntax

fieldname(index) string value

Argument

index

Integer value specifying the index of the field whose name should be retrieved. Correct values range from 1 to fieldcount().

Code Sample Example

"Field (function)" (page 542)

Fill (procedure)

Fills the current closed shape, using the colour specified with the setfillcolor command. Only the inside of the shape is filled,
not its outline. To fill and outline the shape, use strokeandfill command instead. If you only want to outline the shape, use
stroke. Only closed shapes can be filled.

Syntax

fill()

Argument

None

©2010 Objectif Lune Inc - 278 -

Code Sample Example

This example draws a yellow filled triangle.

Example

setfillcolor([0,0,100,0])
moveto(1,1)
lineto(1.5,2)
lineto(0,2)
closepath()
fill()

Find (function)

Checks for the presence of a string within a rectangular region of the current data page. If the specified string is found, the
function returns true. This allows you to look for strings within a more general area, rather than at some precise location.

Syntax

find(string1, column1, line1, column2, line2) Boolean value

Argument

string1

String value to look for.

column1, line1

Integer values for the top left corner of the rectangular region to search in the current data page.

column2, line2

Integer values for the bottom right corner of the rectangular region to search in the current data page.

Code Sample Example

This example looks for the word 'Invoice' within a region of the data page.

Example

if(find('Invoice',60,1,80,5))
show('Invoice')

elseif()
show('Sales Order')

endif()

FloatToCur (function)

Converts a measure expression into a currency value.

Syntax

floattocur(expression) currency value

©2010 Objectif Lune Inc - 279 -

Argument

expression

Measure value to be converted. The decimal part is rounded down to 2 decimal points.

Code Sample Example

This example converts a floating point value into a currency value.

floattocur(3.263457) %Returns 3.26

FloatToInt (function)

Converts a measure expression into an integer value.

Syntax

floattoint(expression) integer value

Argument

expression

Measure value to be converted. The decimal part is rounded down to a whole number.

Code Sample Examples

These examples illustrate floattoint().

Example 1

floattoint(3.2) %Returns 3

Example 2

floattoint(11.6) %Returns 12

FloatToStr (function)

Converts a measure expression into a string value.

Syntax

floattostr(expression[, precision]) string value

Argument

expression

Measure value to be converted.

precision

The number of decimal places to include in the result string.

©2010 Objectif Lune Inc - 280 -

Code Sample Examples

These examples illustrate floattostr().

Example 1

floattostr(3.14) %Returns 3.14

Example 2

floattostr(11) %Returns 11.0

Example 3

floattostr(34.6453455, 4) %Returns 34.6453

For… EndFor (procedure)

This command structure allows a series of nested commands to be repeated a specified number of times. Each for statement
must have a corresponding endfor statement in order for PlanetPress Talk to know which commands to include in the loop.
Note that you cannot increment the counter for a for() loop, inside the loop.

If you open a document created a with a version of PlanetPress earlier than 5.2.0, and if that document includes a for() loop
with an increment greater than 1, you will notice that the loop is executed one less time than with your older version software
both in PlanetPress itself and when you use the Optimized PostScript Stream option. The behavior on printers (using the Printer
Centric option), on the other hand, remains unchanged.

Syntax

for(varname, startvalue, increment, stopvalue)

…

endfor()

Arguments

varname

Name of the variable to use for iterations. The variable must already exist.

startvalue

Integer value to initialize varname.

increment

Integer value used to increment varname after each iteration.

stopvalue

Integer value after which iterations stop.

Code Sample Example

This example simply prints 5 lines of text.

©2010 Objectif Lune Inc - 281 -

To cycle backwards through values, make startvalue larger than stopvalue, and specify a negative increment.

Example

define(&x,integer,1)
for(&x,1,1,5)

show('Line nº '+inttostr(&x))
crlf()

endfor()

Function @name (procedure)

Defines a new PlanetPress Talk function or procedure. If you define a function that you want to return a value, you assign that
value to the predefined variable&result on the last line of the function definition. You call the function or procedure you
define using the@name() command. See "@name (function/procedure)" (page 563).

You can reference a global function from within another global function only if the global function you are referencing already
exists.

You cannot reference a function from within itself, so recursive functions are not possible within PlanetPress Talk.

Syntax

Syntax for a function that returns a value:

function@name(arglist): type

...

&result := return-_value

endfunction()

Syntax for a function that does not return a value (procedure):

function@name(arglist)

...

endfunction()

Arguments

name

Name to use for the function, prefixed with the @ character. The name must conform to the rules for names described in
"Names" (page 221). It is good practice to be careful naming functions that you define in different documents, to ensure that if
at some point you want to copy code between documents, the names of functions do not conflict.

arglist

List of arguments the function requires, where each element in the list has the syntax varname : type. For example, &date :
string. An ampersand always precedes the first letter of varname. A comma separates each element in the list. Note that all
arguments are pass by value (as opposed to pass by reference). Pass by value means that the function you define cannot mod-
ify any of the arguments it receives. Any modifications youmake to an argument within the body of the function are made to a
local copy, and do not affect the original.

©2010 Objectif Lune Inc - 282 -

type

Type of value (integer, measure, currency, string, Boolean) the function returns.

Code Sample Example

This example displays a string.

function @showtext(&mystring: string)
moveto(1,1)
show(&mystring)

endfunction()

Code Sample Example

This example illustrates a procedure that creates a 3D pie chart.

Example

function @_3DPie(&W:measure, &H:measure, &HB:measure, &S:measure, &E:measure,
&L:string, &c:color)

%==
% &W is the total width of the pie chart
% &H is the total height of the pie chart
% &HB is the height of the lower band
% &S is the starting angle (0..360)
% &E is the ending angle (0..360 and bigger than &S)
% &L is the label text
%==
%Local variables
%==
define(&SB,measure,0)
define(&EB,measure,0)
define(&Scaling,measure,0)
define(&R,measure,&W/2)
%==
&Scaling := (&H-&HB)/&W
gsave()
if(&Scaling<0.01)

&Scaling := 0.01
endif()
if(&Scaling>1)

&Scaling := 1
endif()
scale(1,&Scaling)
setstyle(&Style1)
&HB := &HB / &Scaling
translate(&R,&R)
if(&E > 180)

if(&E > 360)
&EB := 360

elseif()

©2010 Objectif Lune Inc - 283 -

&EB := &E
endif()
%===
if(&S < 180)

&SB := 180
elseif()

&SB := &S
endif()
%===
set-

fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

moveto(cos(&SB) * &R,neg(sin(&SB) * &R))
rlineto(0,&HB)
arc(0,&HB,&R,&SB,&EB)
rlineto(0,neg(&HB))
closepath()
strokeandfill()

endif()
%==
setfillcolor(&c)
pie(0,0,&R,&S,&E)
strokeandfill()
&SB := (&S+&E)/2
%==
if(gt(&SB,180))

margin(cos(&SB) * &R,neg(sin(&SB) * &R)+&HB+(0.2/&Scaling))
elseif()

margin(cos(&SB) * &R,neg(sin(&SB) * &R)-(0.05/&Scaling))
endif()
%==
scale(1,1/&Scaling)
if(and(gt(&SB,90),lt(&SB,270)))

showright(&L+' ')
elseif()

show(' '+&L)
endif()
grestore()

GE (function)

Compares two expressions of any type and returns true if the first is greater than or equal to the second, false otherwise. This
is the functional equivalent to the >= operator.

Syntax

ge(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

©2010 Objectif Lune Inc - 284 -

Code Sample Examples

Example 1 and Example 2 show both ways of comparing two expressions. Example 2 illustrates the >= operator.

Example 1

if(ge(¤t.line, 50))
show('Bottom of page')

endif()

Example 2

if(¤t.line >= 50)
show('Bottom of page')

endif()

Get (function)

Returns an element of an array.

Syntax

get(array, position) array element

Argument

array

Name of the array.

position

Integer specifying the position in the array, of the element you want to retrieve. Recall that the first position in an array is 0,
the second is 1, the third 2, etc.

Code Sample Examples

Examples 1 and 2 are equivalent representations of using the get() command.

Example 1

&month := get(&MyArray,12)

Example 2

&month := &MyArray[12]

©2010 Objectif Lune Inc - 285 -

GetBlack (function)

Returns the value of the Black component of a color array.

Syntax

getblack(color) integer

Arguments

color

Color array for which you want to determine the Black value.

Code Sample Example

set-
fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

GetCyan (function)

Returns the value of the Cyan component of a color array.

Syntax

getcyan(color) integer

Arguments

color

Color array for which you want to determine the Cyan value.

Code Sample Example

set-
fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

GetMagenta (function)

Returns the value of the Magenta component of a color array.

Syntax

getmagenta(color) integer

©2010 Objectif Lune Inc - 286 -

Arguments

color

Color array for which you want to determine the Magenta value.

Code Sample Example

set-
fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

Getmeta (function)

Returns the value of a metadata attribute or field.

Syntax

getmeta(name: string; [flags : integer; path : string]) string

Arguments

name

The name of the metadata value to retrieve. Unless the GetAttribute flag argument is specified, the function looks for the
name in the field collection.

flags

Optional integer value to define the behavior of the command when a field with the same name already exists in the current
level. The flag value to enter should be the sum of all desired flags. (Eg: GetAttribute and FailIfNotFound would give a flag
value of '5').

The default behavior uses 0.

Name Value Behavior

GetAttribute 1
Search for the name argument in the attribute collection
instead of the default field collection.

NoCascade 2

Search only the level specified by the path argument
(defaults toPage level when path argument is empty),
instead of default behavior, going from the Page levelto
the Job level.

FailIfNotFound 4
Raise an error and crash the job is the specified nameis
not found instead of returning an empty string.

SelectedNodesOnly 8 Returns values from the selected nodes only.

path

Optional string value to specify the level where to start looking for the field or attribute. Path components cannot be indexed,
and if no path

is provided, the search is done from the the Page level.

©2010 Objectif Lune Inc - 287 -

Note: The node names of the path argument can have an optional zero-based index, indicated between square brackets ('[
]'), to access a specific node. If no index is provided, the first node is used.

Important Note: If used from PlanetPress Suite Workflow Tools, every argument ismandatory.

Code Sample Example

These examples show the three different syntaxes for the GetMeta() function.

% Retrieve value for field "mydata". If that field exists in both the current group and
the current datapage collections, for instance,

% this call to the GetMeta() function will return the value of the field from the datap-
age.

GetMeta('mydata')

% Retrieve the second value of the current page, containing two fields called "address",
while the group collection also has four "address" fields.

GetMeta('address[1]')

% Note that using GetMeta('address[2]') would return the third value of the group level.
To prevent the function from cascading up to the group level,

% the NoCascade flag must be provided. And to retrieve the first two "address" fields of
the group collection, the third argument must be used, set to

% the proper path, thusly:

GetMeta('address[1]', 2, 'Job.Group')

Getmetacount (function)

Returns the number of times an attribute or a field is encountered in the current metadata hierarchy. It can also be used to ver-
ify whether a field or attribute exists by comparing the returned value to zero. Note that attributes can only appear once, and
thus can only yield two possible values, either zero or one.

Syntax

getmetacount(name: string[, flags: integer, path: string]) integer

Arguments

name

The name of the metadata value to count.

©2010 Objectif Lune Inc - 288 -

flags

Optional integer value to define the behavior of the command.The default behavior uses 0. The flag value to enter should be
the sum of all desired flags. (Eg: GetAttribute and FailIfNotFound would give a flag value of '5').

Name Value Behavior

GetAttribute 1
Search for the name argument in the attribute instead of
the default field .

NoCascade 2

Search only the level specified by the path argument
(defaults toPage level when path argument is empty),
instead of default behavior, going from the Page levelto
the Job level.

FailIfNotFound 4
Raise an error and crash the job is the specified nameis
not found instead of returning an empty string.

path

Optional string value to specify the level where to start counting the field or attribute. Path components cannot be indexed, and
if no path

is provided, the search is done from the the Page level.

Note: The node names of the path argument can have an optional zero-based index, indicated between square brackets ('[
]'), to access a specific node. If no index is provided, the first node is used.

Also note that , if no attribute nor field is found, the command returns zero, unless the FailIfNotFound flag is specified.

Code Sample Example

This example shows the syntax for the GetMetacount() function.

% Retrieve and count the number of iterations of "address" for the current datapage
Getmetacount('address')

GetNextDataPage(procedure)

Advance to the next data page of the sample data file. Note that this commandmay have unpredicted behavior if not used cor-
rectly in documents that use a user-defined emulation.

This command should only be executed when printermode is not in designmode. The result will be incorrect on screen, but
there will be no
unexpected behaviors. Therefore, the only solution is for end-users to make sure the command doesn't get executed while in
Designmode by bracketing it within a if(&printermode<>0) ... endif()
structure.

Syntax

getnextdatapage()

©2010 Objectif Lune Inc - 289 -

GetYellow (function)

Returns the value of the Yellow component of a color array.

Syntax

getyellow(color) integer

Arguments

color

Color array for which you want to determine the Yellow value.

Code Sample Example

set-
fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

GRestore (procedure)

This command restores all system parameters previously saved with the gsave command. If no gsave command was issued
previously, the results are unpredictable. For more information, refer to the gsave command.

Syntax

grestore()

Argument

None

Code Sample Example

See "GSave (procedure)" (page 567).

GSave (procedure)

This command saves all current system parameters, which can later be restored using the grestore command. By bracketing
parts of your PlanetPress Talk programs with gsave/grestore commands, you canmake sure the current system state is
preserved and remains unaffected by whatever operations your program executes. For instance, each PlanetPress object,
once converted to its PlanetPress Talk scripting language equivalent, begins with a gsave command and ends with a gre-
store, thus ensuring objects do not interfere with each other, or with the system.

The system parameters gsave saves include current line width, current stroke color, and current fill color.

Syntax

gsave()

Argument

None

©2010 Objectif Lune Inc - 290 -

Code Sample Example

In this example, the current position is set first and saved.

gsave and grestore are required to be issued in pairs, meaning that you need the equal number of gsave and grestore
commands to run in any given object. However, an uneven number of commands can be located in the code, if some of them
are within IF statements, so that when the code is actually run, the pairing occurs correctly in all instances.

Example

moveto(1, 1)

%Position is now 1,1

gsave()

%Save current state

lineto(2, 1)

%Position is now 2,1

lineto(2, 2)

%Position is now 2,2

grestore()

%Restore previous state: position is now 1,1

GT (function)

Compares two expressions of any type and returns true if the first is greater than the second, false otherwise. This is the func-
tional equivalent to the > operator.

Syntax

gt(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Examples

Examples 1 and 2 illustrate both ways of comparing two expressions.

Example 1

if(gt(¤t.line, 50))

show('Bottom of page')

endif()

©2010 Objectif Lune Inc - 291 -

Example 2

if(¤t.line > 50)

show('Bottom of page)

endif()

If (function)

Evaluates an expression and returns one of two specified values according to the results of the evaluation.

Syntax

if(expression, trueresult, falseresult) any type

Arguments

expression

Boolean value. If it evaluates to true, the function returns the contents of trueresult, otherwise it returns the contents of falsere-
sult.

trueresult, falseresult

Values of any type, as long as both are of the same type. The return value of the function is therefore of the same type as
trueresult and falseresult.

Code Sample Example

This example changes the text to display according to the current value of a variable.

Example

show(if(&pagenumber=1,'Customer Copy','Store Copy'))

If … ElseIf… EndIf (procedure)

This command structure can define up to two conditional blocks. Statements nested within the first block are executed only if
the condition specified in the if statement returns true. If it returns false, the program branches to the first statement in the sec-
ond block, if one has been defined using the elseif statement. Otherwise, control flows to the first statement following the endif
command.

With PlanetPress Suite version 7.0, the elseif statement has been optimized to evaluate an argument, exactly like an if state-
ment, and elseif statements from other programming languages. In order to complete the if...elseif...endif command struc-
ture, however, an else statement was also added, acting exactly like the previous, empty elseif. Note that the use of the else

©2010 Objectif Lune Inc - 292 -

statement is strongly recommended, as it is optimized by comparison to the elseif statement. Also note that documents
created with previous versions and using the if...elseif...endif structure will not be updated, for full backward compatibility.

Syntaxes

Prior to version 7.0

if(condition)

…

elseif()

…

endif()

Version 7.0 and above

if(condition1)

...

elseif(condition2)

...

else()

...

endif()

Argument

condition, condition1, condition2

Value of type Boolean to evaluate.

Code Sample Example

This example simply prints 5 lines of text, selecting fonts according to line numbers.

Example prior to version 7.0

define(&x,integer,1)

%Define loop variable and then set up loop

for(&x,1,1,5)

if((&x mod 2)=0)

%If &x is an even number

setstyle(&bluefont)

%use the blue font

elseif() %otherwise

setstyle(&Default)

©2010 Objectif Lune Inc - 293 -

%use the default font

endif()

show('Some text to display')

%Display the text

crlf()

%Skip to the next line

endfor()

Example with version 7.0

define(&x, integer, inttostr(@(1, 1, 10)))

if(&x = 1)

setstyle(&bluefont)

elseif(&x = 2)

setstyle(&redfont)

else()

setstyle(&default)

endif()

Related topics:

l "If (function)" (page 554)

InStream... EndInStream (procedure)

Ceate an alias for a resource file (image, data file, attachment, etc.). You can then reference the resource file using the alias
instead of the path. This eliminates the need to repeat a path inmore than one place in your code, and thus makes your code
easier to maintain. For example, if you change the resource, you need only modify the path in the instream() command,
rather than everywhere you reference the original resource.

You cannot use the instream() command inside any function you define using function @name().

©2010 Objectif Lune Inc - 294 -

Syntax

instream external resname

path

endinstream()

If you want to create a reference to a text document (for example a sample data file), replace "external" by "cleartext.”

Argument

resname

String value specifying the alias to use to refer to this resource file.

path

String value specifying the path of the resource file.

Code Sample Example

This example creates the alias 'photo' that refers to the resource file c:\images\employees\JAdler.bmp.

Example

instream external photo

c:\images\employees\JAdler.bmp

endinstream()

%You can then reference the resource using the alias

showbitmap('photo',72,1,1)

IntToCur (function)

Converts an integer expression into a measure value.

Syntax

inttocur(expression) currency value

Argument

expression

Integer value to be converted.

IntToFloat (function)

Converts an integer expression into a measure value.

Syntax

inttofloat(expression) measure value

©2010 Objectif Lune Inc - 295 -

Argument

expression

Integer value to be converted.

Code Sample Example

This example uses a loop to draw a series of blue rectangles.

Example

define(&x,integer,1)

%Define loop variable

setfillcolor([100,100,0,0])

%Fill blue

for(&x,1,1,10)

%Set up loop

%We must convert &x because rectfill

%expects measure values

rectfill(inttofloat(&x)/2,1,0.1,1)

%Draw rectangle

endfor()

IntToStr (function)

Converts an integer expression into a string value.

Syntax

inttostr(expression) string value

Argument

expression

Integer value to be converted.

Code Sample Example

This example prints the iterations of a loop.

Example

define(&x,integer,1)

%Define loop variable

for(&x,1,1,10)

©2010 Objectif Lune Inc - 296 -

%Set up loop

show('Iteration ' + inttostr(&x))

%Show text

crlf()

%Skip line

endfor()

IsNumber (function)

Tests a string and returns true if the string is a measure or integer value.

Syntax

isnumber(string) Boolean value

Argument

string

String value.

Code Sample Example

This example displays the word Yes if the string is either a measure or an integer, and No if it is not.

Example

show(if(isnumber(@(1,1,10)),'Yes','No'))

IsPageEmpty (function)

Returns False if the current data page contains data, or True if it does not.

Syntax

ispageempty() Boolean

LE (function)

Compares two expressions of any type and returns true if the first is less than or equal to the second, false otherwise. This is
the functional equivalent to the <= operator.

Syntax

le(expression1, expression2) Boolean value

Arguments

expression1, expression2

©2010 Objectif Lune Inc - 297 -

Values of any type. Both expressions must be of the same type.

Code Sample Example

This example shows both ways of comparing two expressions.

Example

if(le(¤t.line, 15))

show('Top of page')

endif()

%Same statement, using the <= operator

if(¤t.line <= 50)

show('Top of page')

endif()

Left (function)

Extracts the specified leftmost characters of a string.

Syntax

left(string, number) string value

Arguments

string

String value from which to extract characters.

number

Integer value specifying how many characters to extract from the beginning of the string.

Code Sample Example

This example prints a string up to a certain position.

Example

define(&data,string,'This is a~sample string')

%Define string

define(&x,integer, pos('~', &data))

%Find tilde

%Print the string up to the tilde character, if found

if(&x>1)

show(left(&data,&x-1))

©2010 Objectif Lune Inc - 298 -

endif()

Length (function)

Returns the length of a string, or the number of elements in an array.

Syntax

length(element) integer value

Argument

element

Either a string value, or an array variable.

Code Sample Example

Example 1

This example creates an a string array with the same number of elements as the &parts array.

define(&partnames, arraystring, length(&parts))

Example 2

This example prints part of a string, starting after a specific delimiter.

define(&data,string,'This is a~sample string')

define(&x,integer, pos('~', &data))

%Find tilde

if(&x>1)

show(right(&data,length(&data)-&x))

%Show remainder of string

endif()

LineTo/RLineTo (procedure)

Draws a line starting from the current point up to the specified coordinates.

Syntax

lineto(x, y)

©2010 Objectif Lune Inc - 299 -

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the ending point of the line. When using rlineto,
these values are relative to the current point of origin. When using lineto, they are absolute values.

Code Sample Example

This example draws an empty triangle with a blue outline.

Example

setstrokecolor([100,100,0,0]) %Set pen colour to blue

moveto(1,1) %Set starting point

lineto(1.5,2) %Draw first line

lineto(0.5,2) %Draw second line

closepath() %Close shape

stroke() %Draw shape

LowerCase (function)

Convert a string to all lower case characters.

Syntax

lowercase(string) string

Argument

string

String value you want to convert to lower case. The stringmay be a mix of upper and lower case characters.

Code Sample Example

&partname := lowercase(@(30,16,39))

LT (function)

Compares two expressions of any type and returns true if the first is less than the second, false otherwise. This is the func-
tional equivalent to the < operator.

Syntax

lt(expression1, expression2) Boolean value

©2010 Objectif Lune Inc - 300 -

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Example

This example shows both ways of comparing two expressions.

Example

if(lt(¤t.line, 15))

show('Top of page')

endif()

%Same statement, using the < operator

if(¤t.line < 50)

show('Top of page')

endif()

MapUTF8 (function)

Converts a text string from its original encoding to UTF8. This function can be used within a ShowUTF8, ShowUTF8Left, a Sho-
wUTF8Right, and a ShowUTF8Center procedure.

Syntax

maputf8(text, encoding, reversedmapping)

Arguments

text

Static text string or data selection to be converted.

encoding

String identifying the original encoding or reference to a style defined in the document that identifies the original encoding.

reversedmapping

Boolean specifying whether the text to be converted should be mapped in regular or reversed order. Possible values are true
(reversedmapping) and false (no reversedmapping). In the case of preformated Arabic data, this argument should be set to
false.

Supported Encodings

The following Arabic original encodings are supported for the conversion process:

AL-ARABI ASMO-708 ASMO-708-UNIX IBM-864 ISO-8859-6 (Arabic)
ASMO-449+ASMO-708+HP-ARABIC8 IRAN SYSTEMMS-CP-1256

©2010 Objectif Lune Inc - 301 -

Code Sample Examples

Example 1 illustrates a variable text string that is taken from the data, converted from the MS-CP-1256 encoding to UTF8 and
then displayed from the insertion point to the right. Example 2 illustrates the same variable text string, but this time it is con-
verted from the encoding specified in the style named “MyArabEncoding” to UTF8.

Example 1

setlinewidth(0.007)

moveto(0,0)

rlineto(&width,0)

rlineto(0,&height)

rlineto(neg(&width),0)

rlineto(0,neg(&height))

closepath()

stroke()

moveto(&width/2,&height/2)

SetStyleExt(&Style1,12.0000,0,[100],100)

showUTF8right(maputf8(@(2,15,35), 'MS-CP-1256', False),'normal')

Example 2

setlinewidth(0.007)

moveto(0,0)

rlineto(&width,0)

rlineto(0,&height)

rlineto(neg(&width),0)

rlineto(0,neg(&height))

closepath()

stroke()

moveto(&width/2,&height/2)

SetStyleExt(&Style1,12.0000,0,[100],100)

showUTF8right(maputf8(@(2,15,35), &MyArabEncoding, False),'normal')

©2010 Objectif Lune Inc - 302 -

Margin (procedure)

Offsets text within a series of commands, relative to the original top left position of the object. Margin also sets the horizontal
position to be used when crlf commands are encountered. All text-rendering functions that make use of margins use this set-
ting.

Syntax

margin(x, y)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the starting point for the text within an object.

Code Sample Example

This example displays shadowed text by repeating the same text commands twice, using styles of different colours and
slightly offsetting the margin.

Example

margin(1,1) %Set margins to (1,1)

setstyle(&blackfont) %Blackfont must already exist

show('This is shadowed text')

margin(.98,.98) %Offset margins slightly

setstyle(&bluefont) %Bluefont must already exist

show('This is shadowed text')

Mid (function)

Extracts a specified number of characters from a string, starting at a specific position.

Syntax

mid(string, start, length) string value

Arguments

string

String value from which to extract characters.

start

Integer value specifying where the first character to extract is located.

length

Integer value specifying how many characters to extract, starting from number onwards.

©2010 Objectif Lune Inc - 303 -

Code Sample Example

This example extracts a bracket-delimited word from a sentence.

Example

define(&data,string,'This is a [bracketed] word')

define(&i,integer, pos('[', &data))

%Find the '[' character

define(&j,integer, pos(']', &data))

%Find the ']' character

if((&i>0) and (&j>&i))

%If both were found

show(mid(&data,&i+1,(&j-&i)-1))

%Print the word

endif()

Mod (function & procedure)

Returns the remainder resulting from the division of two numbers.

Syntax

mod(number1, number2) integer value

number1 mod number2 integer value

Arguments

number1

Integer value to be divided.

number2

Integer value with which to divide number1.

Code Sample Example

This example uses MOD to distinguish between odd and even numbers.

Example

define(&i,integer, 1)

%Define loop variable

for(&i,1,1,10) %Set loop

©2010 Objectif Lune Inc - 304 -

show(inttostr(&i)+' is an') %Display number

if(mod(&i,2)=1)

%Determine if number is odd or even

show(' odd ')

elseif()

show(' even ')

endif()

show('number.')

crlf()

endfor()

MoveTo/RMoveTo (procedure)

Moves the current point to the specified coordinates.

Syntax

moveto(x, y)

Arguments

x, y

Measure values representing the new horizontal/vertical position, in inches, of the current point. In rmoveto, these values
are relative to the current point of origin. Inmoveto, they are absolute values.

Code Sample Example

This example displays a triangle within a rectangle.

Example

rectstroke(.5,.5,2,2) %Draw rectangle

moveto(1,1) %Reset current point

lineto(1.5,2) %Draw first line

lineto(0.5,2) %Draw second line

closepath() %Close shape

stroke() %Draw shape

Mul (function)

Multiplies two expressions. This is the functional equivalent of the * operator.

©2010 Objectif Lune Inc - 305 -

Syntax

mul(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be of the same type. The returned value is set accordingly to the
type of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of multiplying numbers.

Example 1

show(inttostr(2*2)) %Displays 4

Example 2

show(floattostr(mul(4.7,2.1))) %Displays 9.87

NE (function)

Compares two expressions of any type and returns true if they are not equal, false otherwise. This is the functional equivalent
to the <> operator.

Syntax

ne(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Examples

Examples 1 and 2 show both ways of comparing two expressions.

Example 1

if(ne(¤t.line, 1))

show('Not a new page')

endif()

Example 2

©2010 Objectif Lune Inc - 306 -

if(¤t.line <> 1) %Same statement, using the <> operator

show('Not a new page')

endif()

Neg (function)

Returns the negative value of the specified expression. This is the functional equivalent to the - sign.

Syntax

neg(expression1) integer, measure, currency value

Argument

expression1

Integer, measure or currency value. The returned value is the same type as expression1.

Code Sample Examples

Examples 1and 2 show both ways of negating a number. Negating negative numbers yields a positive result.

Example 1

-12 %Returns -12

-&max %Returns negative of the value of the variable &max

neg(-12.45) %Returns 12.45

Not (Boolean operator function)

Negates the specified expression. Not to be confused with the neg function: not is a Boolean operator function, not a math-
ematical one.

Syntax

not(expression1) Boolean value

Argument

expression1

Boolean value.

Code Sample Example

This example shows how NOT can be used in place of operators.

©2010 Objectif Lune Inc - 307 -

Example

define(&x,integer,1) %Define loop variable

for(&x,1,1,10) %Set loop

if(not(&x=5)) %Same as if(&x<>5)

show('This is NOT the 5th line') %Show some text

elseif()

show('This IS the 5th line') %Show alternate

endif()

endfor()

Object $name()... EndObject (procedure)

Creates an object. You can reference the object you create using the $ operator. See "$element (procedure)" (page 613).

This command can only be used from within the PressTalk Before and PressTalk After of a PlanetPress Design doc-
ument, and cannot exist within a page's properties or the PressTalk of any object, including

Syntax

object $name(top, left, width, height, condition, angle[, setsnappingpoint[, snap-
toprevious]])
%Object Contents

endobject()

Argument

$name (PressTalk Name)

Name to use for the object, preceded by the dollar sign character ($). The name must conform to the rules for names
described in "Names" (page 221).

top (Measure)

Measure value specifying the distance, in inches, to offset the top edge of the picture object, from the top edge of the doc-
ument page. If you set the snaptoprevious argument to a value other than 0, the value you set for the top argument becomes
the vertical offset for the Snap to previous snapping point.

left (Measure)

Measure value specifying the distance, in inches, to offset the left edge of the picture object, from the left edge of the doc-
ument page. If you set the snaptoprevious argument to a value other than 0, the value you set for the left argument becomes
the horizontal offset for the Snap to previous snapping point.

width, height (Measure)

©2010 Objectif Lune Inc - 308 -

Measure values specifying the width and height respectively, in inches, of the object.

condition (Boolean)

Boolean value, or PlanetPress Talk expression that resolves to a Boolean value, specifying a condition on the object.

angle (Measure)

Measure value specifying the angle of rotation, in degrees. The pivot point for the rotation is the bottom left corner of the
object.

setsnappingpoint (optional, Boolean)

Boolean value (True or False) specifying whether the object has its Set snapping point property set. If you set this argument to
True, the last line of the code for the object must be amoveto() command that moves the current point to the position at
which you want to set the object’s snapping point.

snaptoprevious (optional, Integer)

Integer value specifying whether the object has its Snap to previous property set, and if so, the position of that snapping point.
If you set the Snap to previous property, you can use the top and left arguments to specify, respectively, a vertical and hor-
izontal offset for the snapping point.

l 0 = do not set the Snap to previous snapping point
l 1 = top left
l 2 = topmiddle
l 3= top right
l 4= middle left
l 5 = middle middle
l 6= middle right
l 7 = bottom left
l 8 = bottommiddle
l 9 = bottom right

Code Sample Example

The following creates a rectangle object (2 inches wide by 3 inches high), rotates it 45 degrees, and sets its Snap to previous
snapping point at the top left of the object with a vertical offset of 1 inch and a horizontal offset of 1.5 inches.

object $Box2(1.0,1.5,2.0,3.0,true,45.0,false,1)
setstyle(&Style1)
MoveTo(0,0)
SetLineWidth(0.0070)
SetStrokeColor([0,0,0,100])
SetFillColor([0,0,0,0])
LineTo(&width,0.0)
LineTo(&width,&height)
LineTo(0.0,&height)
LineTo(0.0,0.0)
ClosePath()
Stroke()

endobject()

©2010 Objectif Lune Inc - 309 -

Or (Boolean operator function)

Returns true if either or both specified expressions are true, false otherwise.

Syntax

or(expression1, expression2) Boolean value

expression1 or expression2 Boolean value

Arguments

expression1, expression2

Boolean values.

Code Sample Examples

These examples illustrate the possible values for OR.

Example 1

or(true, false) %Returns true

Example 2

or(false, true) %Returns true

Example 3

or(false, false) %Returns false

Example 4

or(true, true) %Returns true

Ord (function)

Returns the ASCII value of a character.

©2010 Objectif Lune Inc - 310 -

Syntax

ord(string) integer value

Argument

string

String value whose ASCII value is returned. Only the first character is considered.

Code Sample Example

This example shows how to determine if a character is lowercase or uppercase.

Example

define(&data,string,'a') %Define sample string

if((ord(&data)>=97) and (ord(&data)<=122))

%Test lowercase

show(&data+' is lowercase')

elseif()

if((ord(&data)>=65) and (ord(&data)<=90))

%Test uppercase

show(&data+' is uppercase')

elseif()

show(&data+' is not between A and Z or a to z')

endif()

endif()

OutputDebugString (procedure)

Outputs a string to the PlanetPress Talk Messages window in PlanetPress.

Syntax

outputdebugstring(message)

Argument

message

String value to display in the PlanetPress Talk Messages window.

PassThrough (procedure)

Sends a literal PostScript command to the printer.

©2010 Objectif Lune Inc - 311 -

Syntax

passthrough(string, [mode])

Argument

string

String value to be sent to the printer. This string is sent as is, with no further modification.

mode

Integer used as a bitfield to specify when to send the passthrough. Use a value of 1 to send the passthrough in PostScript-
printer centric mode only, a value of 2 to send the passthrough in PostScript-Optimized PostScript Stream only, a value of 3 to
send the passthrough in both PostScript-printer centric AND PostScript-Optimized PostScript Streammodes (default behavior if
the parameter is not present), and a value of 4 to send the passthrough inWindows printingmode only.

Code Sample Example

Refer to your PostScript manual for valid commands.

PDFPageCount (function)

Returns the number of pages in the specified PDF file.

Syntax

pdfpagecount(filename) integer

Argument

filename

String value specifying the path of the PDF file.

PDFWidth/PDFHeight (function)

Returns the width or height, in inches, of a page of a Portable Document Format (PDF) image resource.

Syntax

pdfwidth(name, page) measure value

pdfheight(name, page) measure value

Argument

name

String value that specifies the name of the PDF image resource.

page

Integer value that specifies the page of the PDF

Code Sample Example

This example sets the variable maxwidth to the width of page 3, and the variable maxheight to the height of page 4, of the PDF
named parts_manual.

©2010 Objectif Lune Inc - 312 -

Example

&maxwidth := pdfwidth(‘parts_manual’,3)

&maxheight := pdfheight(‘parts_manual’,4)

Pie (procedure)

Creates a pie slice shape, which can then be rendered using stroke, fill, or strokeandfill.

Syntax

pie(x, y, radius, startangle, endangle)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of a circle's center representing the whole pie from
which to draw a slice.

radius

Measure value representing the length, in inches, of the segments of the pie, i.e. its radius.

startangle, endangle

Measure values representing the angles, in degrees, of both segments of the pie slice. Values increase counter clock wise,
with 0 extending right from the center of the circle.

Code Sample Example

This example draws a whole pie chart with a shadow effect.

Example

setfillcolor([0,0,0,50]) %Set shadow colour to gray

pie(1.5,1.5,1,60,290) %Create shadow for first slice

translate(0.2,0.2) %Separate shadows

pie(1.5,1.5,1,290,420) %Create shadow for second slice

fill() %Display shadows

translate(-0.3, 0.3) %Offset chart from its shadow

setstrokecolor([0,0,100,0]) %Set pen colour to yellow

setfillcolor([0,100,100,0]) %Set fill colour to red

pie(1.5,1.5,1,60,290) %Create first slice

strokeandfill() %Draw first slice

©2010 Objectif Lune Inc - 313 -

translate(0.2,0.2) %Separate slices

setfillcolor([100,100,0,0]) %Set fill colour to blue

pie(1.5,1.5,1,290,420) %Create second slice

strokeandfill() %Draw second slice

PixelHeight (function)

Returns the height, in pixels, of the specified image.

Syntax

pixelheight(image) integer

Argument

image

String value specifying the path of the file containing the image.

PixelWidth (function)

Returns the width, in pixels, of the specified image.

Syntax

pixelwidth(image) integer

Argument

image

String value specifying the path of the file containing the image.

Pos (function)

Returns the starting position of a specified string within another string, or 0 if the specified string cannot be found.

Syntax

pos(string1, string2) integer value

Arguments

string1

String value to search for.

string2

String value in which to search.

Code Sample Example

This example uses POS to look for a word in a data selection.

©2010 Objectif Lune Inc - 314 -

Example

define(&s,string,@(1,10,40)) %Initialize var. with data

if(pos('INVOICE',&s)>0) %Look for the word INVOICE

show('Invoice') %if found, display some text

elseif()

%Otherwise,display something else

show('Sales order')

endif()

Put (procedure)

Assigns a value to an element of an array.

Syntax

put(&array, index, value)

Arguments

&array

Array variable containing the element whose value you want to change.

index

Integer value representing the position of the element in the array.

value

The value you want to assign to the element. The value must be of the same the type as the array. Thus if the array is of type
string, the value must be of type string.

Random (function)

Returns a measure value between 0 and 1, non-inclusive. Since this function uses the current system time when run inside the
printer, it returns a true random value. On the computer, however, the function uses the current data page as its seed to
ensure the returned value is constant when you navigate from page to page on your document.

Syntax

random() measure value

Argument

None

Code Sample Example

This example displays 10 random numbers between 1 and 20.

©2010 Objectif Lune Inc - 315 -

Example

define(&x,integer,1)

for(&x,1,1,10)

show(inttostr(floattoint(random()*20)+1))

crlf()

endfor()

Rectangle (procedure)

Creates and draws a rectangle shape. The rectangle can optionally be filled using the colour specified with the setfillcolor
command. The border can optionally be drawn using the colour specified with the setstrokecolor command.

Syntax

rectangle(x, y, x1, y1, filled, stroked)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the starting point.

x1, y1

Measure values representing the horizontal/vertical position, in inches, of the bottom right corner of the rectangle.

filled

Boolean value specifying whether the shape should be filled using the colour specified with the setfillcolor command.

stroked

Boolean value specifying whether the shape should be outlined using the colour specified with the setstrokecolor command.

Code Sample Example

This example draws a yellow rectangle with a black border.

Example

setstrokecolor([0,0,0,100])

setfillcolor([0,0,50,0])

rectangle(0,0,3,3,true,true)

©2010 Objectif Lune Inc - 316 -

RectFill (procedure)

Creates and draws a filled rectangle shape. The colour used to fill the shape can be specified using the setfillcolor command.

Syntax

rectfill(x, y, width, height)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the starting point.

width, height

Measure values representing the width/height, in inches, of the rectangle shape.

Code Sample Example

This example draws two identical rectangles.

To draw a rectangle that is both stroked and filled, use rectstroke() and rectfill() in succession, or rectfillstroke().

Example

setfillcolor([0,100,100,0])

%Draw first rectangle using rectfill with red

rectfill(1,1,2,2)

%Offset starting position slightly to distinguish

%between each rectangle and fill second one with blue.

translate(.2,.2)

setfillcolor([100,100,0,0])

%Draw second rectangle using conventional commands

moveto(1,1) %Reset current point

lineto(3,1) %Draw first line

lineto(3,3) %Draw second line

lineto(1,3) %Draw third line

closepath() %Close shape

fill() %Draw shape

©2010 Objectif Lune Inc - 317 -

RectFillStroke (procedure)

Creates a rectangle that has both an outline and a fill color. You set the color for the outline using setstrokecolor and the fill
color using setfillcolor.

Syntax

rectfillstroke(x, y, width, height)

Arguments

x,y

Measure values representing the x and y coordinates respectively of the top left corner of the rectangle.

width, height

Measure values specifying the width and height respectively of the rectangle.

RectStroke (procedure)

Creates and draws an empty rectangle shape. The colour of the pen used to draw the rectangle can be set using set-
strokecolor.

Syntax

rectstroke(x, y, width, height)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the starting point.

width, height

Measure values representing the width/height, in inches, of the rectangle shape.

Code Sample Example

This example draws two identical rectangles.

To draw a rectangle that is both stroked and filled, use rectstroke and rectfill in succession.

Example

rectstroke(1,1,2,2) %Draw first rectangle

%Offset starting position slightly to distinguish

%between each rectangle; the second rectangle is blue.

translate(.2,.2)

setstrokecolor([100,100,0,0])

%Draw second rectangle using conventional commands

moveto(1,1) %Reset current point

lineto(3,1) %Draw first line

©2010 Objectif Lune Inc - 318 -

lineto(3,3) %Draw second line

lineto(1,3) %Draw third line

closepath() %Close shape

stroke() %Draw shape

Region (function)

Returns an array of strings, containing the text found inside left-top, right-bottom coordinates.
Note: This function only works inWindows Printing or Optimized PostScript Stream. If used in printer centric mode, it will
return an empty string.

Syntax

region(left, top, right, bottom) array of strings

Argument

left,top,right,bottom

Measure values specifying the coordinates, in inches or centimeters, for the area on which to read the data in the current data
page.
Note that since this function returns an array of string, using region to display data on a page does not make much sense; for
better results, consider using regionline().

Code Sample Example

This example illustrates how to assign data from the current data page to a array of strings variable by using the region() com-
mand. Then, a for() loop is used to show every item in the array of strings&detailarray, followed by a carriage return.

Example

define(&detailarray, arraystring, region(1.92,3.53,4.65,4.39))
define(&i, integer, 0)

for(&i, 0, 1, Length(&detailarray)-1)
show(&detailarray[&i])
crlf()

endfor()

Related topics:

l "Regionline (function)" (page 503)

©2010 Objectif Lune Inc - 319 -

Regionline (function)

Returns an array of strings, containing the text found inside left-top, right-bottom coordinates.
Note: This function only works inWindows Printing or Optimized PostScript Stream. If used in printer centric mode, it will
return an empty string.

Syntax

regionline(x1, y1, x2, y2: measure; [index: integer = 0] string

Argument

x1, y1, x2, y2

Measure values specifying the coordinates, in inches or centimeters, for the area on which to read the data in the current data
page.

index

Integer value specifying the line number to return. If no <>index<> paramter is specified, the default value is 0.

Code Sample Example

This example illustrates how to assign data from the current data page to a string variable by using the regionline() command.

Example

define(&invnum, string, regionline(2.1807,0.3018,3.8843,0.9054, 0))

Related topics:

l "Region (function)" (page 502)

Repeat... Until (procedure)

Repeat a sequence of commands until a condition is true. It is similar to a for... endfor loop in that you can nest the loops. It is
different from a for... endfor loop in that the loop always executes at least once, and that you tie the number of times the
loop repeats to a Boolean condition. For example youmight tie the number of times the loop repeats to the occurrence of a
piece of data in the data stream.

Syntax

repeat

…

until(expression)

Argument

expression

Boolean value. If it evaluates to true, the loop ends. If it evaluates to false, the loop repeats.

©2010 Objectif Lune Inc - 320 -

Code Sample Example

This example prints the string ‘Cheers’ ten times, one underneath the other, with a dashed line above and below the ten
instances.

Example

show('---------------')

crlf(0.16)

&count := 1

repeat

&count := &count + 1

show('Cheers')

crlf(0.16)

until(&count = 10)

show('---------------')

crlf(0.16)

ResourceType (function)

Returns the type of a resource. Recall that resources are either images or attachments.

Syntax

resourcetype(name) integer value

Argument

name

String value that specifies the name of the resource.

Return Values

Return value: Indicates:
0 The resource does not exist or could not be found.
1 A color bitmap.
2 A monochrome bitmap.
3 A grayscale bitmap.
4 An Encapsulated PostScript (EPS) image.
5 A PostScript file.
6 A Portable Document Format (PDF) file.

Code Sample Example

This example sets the variable &resolution to 200 DPI if the resource is a color bitmap, and to 75 DPI if it is not.

©2010 Objectif Lune Inc - 321 -

Example

if(eq(resourcetype(‘employee’), 1))

&resolution := 200

elseif

&resolution := 75

endif

Right (function)

Extracts the specified rightmost characters of a string.

Syntax

right(string, number) string value

Arguments

string

String value from which to extract characters.

number

Integer value specifying how many characters to extract from the end of the string.

Code Sample Example

This example prints part of a string, starting after a specific delimiter.

Example

define(&data,string,'This is a~sample string')

define(&x,integer, pos('~', &data)) %Find tilde

if(&x>1)

show(right(&data,length(&data)-&x))

%Show remainder of string

endif()

©2010 Objectif Lune Inc - 322 -

RunPS (procedure)

This command is typically used to call resources, usually images, downloaded either with the Image Downloader in Plan-
etPress or Send Images to Printer action tasks in the PlanetPress Suite Workflow Tools. Note that this command does not
work with any other PostScript files.

Syntax

runps(filename)

Argument

filename

String value. Name of the resource file.

Scale (procedure)

Scales the result of all commands that follow the scale() command.

Syntax

scale(width, height)

Argument

width

Measure value specifying the factor by which to scale the width.

height

Measure value specifying the factor by which to scale the height.

Code Sample Example

scale(2,0.5)

Search … EndSearch (procedure)

This command structure allows a series of nested commands to be repeated as long as a specific string of characters (the
search string) is found within another string (the target string). After each iteration, the target string contains all the data
between occurrences of the search string, excluding the search string. Once the loop is over, target contains the remaining
characters of the original data.

Syntax

search(target, search)

…

endsearch()

©2010 Objectif Lune Inc - 323 -

Arguments

target

Name of a variable of type string in which to perform the search.

search

String value to search for.

Code Sample Example

This example splits a string delimited with semi-colons.

In theOnReadDataPage event of the user-defined emulation, the&str system variable contains each new line of data
being fed to the document. Also, do not assign anything to the variable while inside the search-endsearch loop; it will get
overwritten.

Example

define(&v1,string,'This;is;a;test') %Create the variable

search(&v1,';') %Start loop

show(&v1) %Show token

crlf() %Skip line

endsearch()

show(&v1) %Show remaining text

SelectMedia (procedure)

On screen, displays the physical page. On a PostScript printer, calls the specified paper.

Variables used as arguments in this command are not parsed when printing using the Optimized PostScript Streammode.

Syntax

selectmedia(width, height, [media], [color], [weight], orientation, mode)

Arguments

width, height

Measure values specifying the width and height of the physical page in inches.

media

A string value specifying the type of paper to use.

color

String value specifying the color of the paper.

weight

©2010 Objectif Lune Inc - 324 -

Measure value specifying the weight of the paper (in grams per square meter). You can convert weight in pounds to weight in
grams by multiplying by the weight in pounds by 3.76.

orientation

Integer representing the orientation of the page (0=Portrait, 1=Landscape, 2=Reverse portrait, and 3=Reverse landscape).

mode

Reserved for future use. Specify 0 for now.

Code Sample Example

define(&mcolor,string,'')

&mcolor := 'White'

selectmedia(8.5,11,'Danny',&mcolor,20,0,0)

The code above will generate the following PostScript code (notice how the variable was
not replaced by its value).

612 792 0 ^SM (Danny) &mcolor 20 ^SPM

SelectPrinter (procedure)

This command is used to select the printer on which the next page set will be sent. It can be used to select the same physical
printer with different options, or a different printer altogether. It is meant to be used with the EndPageSet() command. This
command can currently be used only for Windows Printing.

Syntax

selectprinter(printername)

Arguments

printername

String identifying a printer queue.

Example

Refer to the code example given in the section describing the EndPageSet command on page 1.

Set (procedure)

This command assigns a new value to a variable. Only user-defined variables can be set. System variables are read-only.
Note that you can also use the assignment operator to assign a value to a variable. See "= (operator)" (page 393).

Syntax

set(name, value)

©2010 Objectif Lune Inc - 325 -

Arguments

name

Variable name, prefixed with the ampersand (&) character. The variable name must already exist.

value

New value to store in the variable. This value can be any valid PlanetPress Talk expression, as long as its type is the same as
the variable's original type.

Code Sample Example

set(&invoice_number, (&invoice_number + 1))

set(&is_bottom, (not(&is_top) and not(&is_middle)))

&tax_rates[2] :=32

put(&tax_rates[2], @(1,3,5))

set(&months, ['JAN','FEB','MAR','APR','MAY'])

set(&mustard_color,[0,20,90,16])

set(&prices, [12.5632,18.9932,23.6651,27.0300])

put(&imagefiles[0], 'c\\images\\sushi.png')

SetAngle (procedure)

This command rotates all subsequent commands by the angle specified. Most commands and objects that are dis-
played/printed on the document are affected by the setangle command.

Syntax

setangle(angle)

Argument

angle

Measure value specifying the angle of rotation in degrees for all subsequent commands. Use a positive value for counter-clock-
wise motion and a negative value for clockwise motion. This value is relative to the current angle, not absolute.

Code Sample Example

This example illustrates setangle().

setangle() sets a rotation for all subsequent commands. Consequently, setangle commands are cumulative. Therefore, to
restore the previous angle of rotation, youmust issue a setangle command that negates whatever rotation applied.

Example

setangle(45.00) %Rotate subsequent commands by 45 degrees

show('Some text') %Display at a 45 degree angle

©2010 Objectif Lune Inc - 326 -

setangle(45.00) %Rotate subsequent commands by 45 degrees

show('Some text') %Display at a 90 degree angle

setangle(-90) %Cancel all rotations

SetBodyText (procedure)

Defines the text that appears as the body of an email message sent by PlanetPress Image.

Syntax

setbodytext(bodytext)

Arguments

bodytext

String value specifying the text to use as the body of the email message.

SetDash(procedure)

Set the properties of a dashed line. Any drawing done after setdash() draws dashed instead of solid lines. You can revert to
solid lines by calling setdash()with an empty array as a parameter.

Syntax

setdash([dashlength, spacelength])

Argument

dash

Measure value specifying the length, in inches, of each of the dashes in the dashed line.

space

Measure value specifying the length, in inches, of the space between each of the dashes in the dashed line.

Code Sample Examples

These examples illustrate setdash().

Example 1

setdash([0.5,0.3])

Example 2

setdash([])

©2010 Objectif Lune Inc - 327 -

SetDataPage(procedure)

Specify the data page of the sample data file.

Syntax

setdatapage(pagenum)

Argument

pagenum

Integer value representing the page number of the data page.

SetEmailAddress (procedure)

Defines an email address for PlanetPress Image.

Syntax

setemailaddress(address)

Arguments

address

String value specifying the email address.

SetEmailSubject (procedure)

Defines the subject line of an email message sent by PlanetPress Image.

Syntax

setemailsubject(subjectline)

Arguments

subjectline

String value specifying the subject line.

SetEmulation(procedure)

Sets the emulation to use.

Syntax

setemulation(emulation)

Argument

emulation

Integer value indicating the type of emulation.

©2010 Objectif Lune Inc - 328 -

Value: Emulation:
0 Line printer
1 ASCII
2 Comma Separated Value (CSV)
3 Channel skip
4 Database
5 XML
6 PDF

SetUserCRLF (procedure)

Lets you define a custom global function that will be executed whenever a line return appears in a Text object where this pro-
cedure is added. The SetUserCRLF() procedure is normally added in the PressTalk Before parameter of your Text object.

Syntax

setusercrlf(procedurename:procedure)

Arguments

Procedurename

The name of an existing global function in your PlanetPress Design document, preceded as usual with@.

Example

This example will ensure that multi-line text will never overlap an image on the page (where the image's position and size has
been saved as global variables).

In the PressTalk Before of an object, the following line is added:

setusercrlf(@MyCRLF)

This global function is created:

function @MyCRLF(&Leading:measure)
if(((&physical.y+(&leading*2))>&LogoPos[0]) and ((&physical.y+&leading)<(&LogoPos[0])))
translate(0,(&LogoPos[1]-&LogoPos[0])+&leading*2)

endif()
moveto(0,¤t.Y+&Leading)

endfunction()

SetFaxInformation (procedure)

Defines the fax description that appears in both the PlanetPress Fax dialog box and the PlanetPress Fax log file.

Syntax

setfaxinformation(info)

Arguments

info

String value specifying a description of the fax.

©2010 Objectif Lune Inc - 329 -

Code Sample Example

setfaxinformation('purchase confirmation')

SetFaxNumber (procedure)

Defines a fax number for PlanetPress Fax.

Syntax

setfaxnumber(faxnumber)

Arguments

faxnumber

String value specifying the fax number.

Code Sample Example

setfaxnumber('(514)276-7633')

SetFillColor (procedure)

Sets the colour used to paint the insides of any closed shapes when issuing a fill or a strokeandfill command.

Syntax

setfillcolor(colour)

Argument

colour

Colour array that can be expressed expressed using one, three or four values ranging from 0 to 255. For Grayscale, a single
value is used in the form [K]. For the RGB model, three values are used in the form [R, G, B]. For the CMYK model, four values
are used in the form [C, M, Y, K].

Code Sample Example

This example draws three filled rectangles.

Example

setfillcolor([255]) %Sets fill colour to black using the Grayscale model

rectfill(1, 1, 1, 1) %Draws a black square

setfillcolor([125,0,0]) %Sets fill colour to medium red using the RGB model

rectfill(1, 1, 1, 1) %Draws a medium red square

©2010 Objectif Lune Inc - 330 -

setfillcolor([0,0,25,0]) %Sets fill colour to light yellow using the CMYK model

rectfill(0, 0, 1, 1) %Draws a light yellow square

SetImageIndex (procedure)

Associates a data value with a PlanetPress Search index term defined using theDefineImageIndex() command. Plan-
etPress Image uses this information when it generates the .PDI file it creates for each PDF file it creates.

This function has no effect when the output of the document is not a PDF file generated through PlanetPress Image.

Syntax

setimageindex(name, data)

Arguments

name

String value specifying the name of the index term with which you want to associate a data value.

data

String value specifying the data value you want to associate with the index term.

Code Sample Examples

These examples illustrate setimageindex().

Example 1

setimageindex('PONumber', '2005')

Example 2

setimageindex('PONumber', @(2,24,32))

SetLineWidth (procedure)

Sets the width of the pen used for drawing lines, boxes and other objects. When setting the line width, remember that the
exact location of the pen is on the middle of the line, with the stroke spilling over equally on both sides.

Syntax

setlinewidth(width)

©2010 Objectif Lune Inc - 331 -

Argument

widthSetLineWidth (procedure)

Measure value setting the width, in inches, of the drawing pen.

Code Sample Examples

Example 1

This example sets the pen width to 1/4 inch then draws a 2"x2" rectangle using that pen.

setlinewidth(0.25)
rectstroke(0,0,2,2)

SetLPP(procedure)

Sets the number of lines per data page. This function is only useful when working with User-Defined Emulation, if you have a
method of determining the number of LPP from within your data.

Syntax

setlpp(lines)

Argument

lines

Integer value specifying the number of lines per page.

SetPDFBookmark (procedure)

Creates a PDF bookmark at the current page, for the PDF files PlanetPress Image generates.

This function has no effect when the output of the document is not a PDF file generated through PlanetPress Image.

Syntax

setpdfbookmark(name)

Arguments

name

String value specifying the name of the bookmark that appears in the PDF.

Code Sample Examples

These examples illustrate setpdfbookmark().

Example 1

setpdfbookmark('Table of Contents')

©2010 Objectif Lune Inc - 332 -

Example 2

setpdfbookmark(@(10,23,45))

Example 3

setpdfbookmark(@(10,23,45) + '|' + @(11,23,45))

SetStrokeColor (procedure)

Sets the colour of the pen used for drawing lines, boxes and other objects.

Syntax

setstrokecolor(colour)

Argument

colour

Colour array that can be expressed expressed using one, three or four values ranging from 0 to 255. For Grayscale, a single
value is used in the form [K]. For the RGB model, three values are used in the form [R, G, B]. For the CMYK model, four values
are used in the form [C, M, Y, K].

Code Sample Example

This example draws two empty rectangles of different colors.

Example

setstrokecolor([0,0,100]) %Sets stroke color to medium blue using the RGB model
rectstroke(0,0,1,1) %Draws a medium blue rectangle
setstrokecolor([0,0,255,0]) %Sets stroke color to bright yellow using the CMYK model
rectstroke(1,1,1,1) %Draws a bright yellow rectangle

SetStyle (procedure)

Sets the style to be used for all subsequent commands. The specified style must already exist in the document.

SetStyle() supercedes the SetFont() command. Although PlanetPress Talk still recognizes SetFont(), this behavior is
unlikely to continue in future versions, and it is therefore highly recommended that you use the SetStyle() command in your
scripts.

Syntax

setstyle(stylename)

©2010 Objectif Lune Inc - 333 -

Argument

stylename

Name of the style to use for all subsequent commands. The name of the style must be preceded by an ampersand. You can ref-
erence the bold, italic, or underlined versions of a font by appending the appropriate letter or letters to the name of the style.
Append .b for the bold version, .i for the italic version, .bi for the bold italic version, and .u for the underlined version.

Code Sample Example

This example displays a line of text using two different existing styles called Blackfont and Bluefont.

Example

margin(1,1)
setstyle(&blackfont)
show('The word ')
setstyle(&bluefont.i)
show('blue')
setstyle(&blackfont)
show(' is now in blue italic')

SetStyleExt (procedure)

Select an existing style and set the size, color, style property, or font ratio for its font. This eliminates the need to create sev-
eral styles that use the same font. setstyleext() does not support bold, italic, or underline styles with double-byte character
sets.

Syntax

setstyleext(stylename, fontsize, styleproperty, fontcolor, fontratio)

Arguments

stylename

The name of the style. The name of the style must be preceded by an ampersand. You can set the bold, italic, or bold italic
property of the style by appending .b, .i, or .bi respectively to the name of the style.

The ability to append .b, .i, or .bi to style names that have double-byte character sets is not supported.

fontsize

Measure value representing the point size for the font. A value of -1 use the default font size of the style specified by style-
name.

styleproperty

Integer value representing the style property for the font:

l 0: Normal
l 1: Underline
l 2: Outline

fontcolor

©2010 Objectif Lune Inc - 334 -

Colour array that can be expressed using one, three or four values ranging from 0 to 255. For Grayscale, a single value
between 0 and 100 is used in the form [K], representing percentage of gray (100 is black, 0 is white). For the RGB model,
three values are used in the form [R, G, B]. For the CMYK model, four values are used in the form [C, M, Y, K].

fontratio

Integer value representing the percentage by which to shrink or stretch the font spacing. This value adjusts both the width of
each glyph and the spacing between glyphs. This is in contrast to kerning, whichmodifies the spacing between characters with-
out modifying the width of characters.

Example

setstyleext(&Style2.bi, 25, [100], 100)

Show / ShowCenter / ShowRight (procedure)

These three commands are used to display simple text on the document. They are identical in all aspects, except in the way
they behave relative to the current margin settings: show uses the margin as a starting point to extend the string to the right;
showright uses the margin as the ending point of the string; and showcenter extends the string equally on both sides of
the margin. These commands are equivalent to print, echo or write commands in other scripting languages.

Syntax

show(text)

showcenter(text)

showright(text)

Argument

text

String value to be displayed.

Code Sample Example

This example illustrates the difference between all three variations of using the SHOW command.

Example

margin(3,1)
showright('This line is to the left of the margin')
crlf()
showcenter('This line is centered on the margin')
crlf()
show('This line is to the right of the margin')

ShowBarCode (procedure)

Note: This PressTalk command is deprecated. Use instead the barcode-specific commands.

Displays a specified string as a barcode.

©2010 Objectif Lune Inc - 335 -

Syntax

showbarcode(string)

Arguments

string

Value of type string to display as a barcode.

showbarcode needs 3 additional parameters before it can display the barcode. These parameters must be set before calling
showbarcode, using the following variables:

BarWidth

Measure value setting the width of each bar, in inches.

BarHeight

Measure value setting the height of each bar, in inches.

BarType

Integer value specifying the type of barcode to print. Current possible values include:

BarType: Code:
0 Code 39
1 Code 128
2 UPC_A
3 UPC_E
4 UPC/EAN 8
5 UPC/EAN 13
6 PostNet
7 PDF-417

Code Sample Example

This example prints a Code 128 barcode.

The BarWidth, BarHeight andBarType variables must be created exactly as shown here, with the same case changes in
the variable names.

Example

define(&BarWidth,measure,0.012)

define(&BarHeight,measure,1.000)

define(&BarType,integer,1)

%Set bar color to black and display barcode

setfillcolor([100,100,100,100])

showbarcode('Bar 128')

©2010 Objectif Lune Inc - 336 -

ShowBarcode2of5(procedure)

Displays a specified string as a Standard 2 of 5 barcode.

Syntax

showbarcode2of5(str, barwidth, readable, bearers)

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

readable

Boolean that enables display of the human readable portion of the barcode

bearers

Boolean that enables bearer bars surrounding the barcode

Code Sample Example

showbarcode2of5('123456789',12,true,true)

ShowBarcodeAustPost (procedure)

Displays a specified string as an Australia Post barcode.

Syntax

showbarcodeaustpost(str)

Arguments

str

Value of type string to display as a barcode.

Code Sample Example

showbarcodeaustpost('56439111ABA 9')

ShowBarcodeAztec (procedure)

Displays a specified string as an Aztec barcode.

©2010 Objectif Lune Inc - 337 -

Syntax

showbarcodeaztec(str, mode, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

mode

Mode to use for the barcode.

Value Mode

0 Normal

1 Compact

2 Full Range

errorcorrection

Error correction level to use in the barcode.

Mode Error Correction Range

0 0-99

1 0-4

2 0-32

barwidth

Measure value of the width a a single barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodeaztec('A 12345 B 434343',5,35,24)

ShowBarcodeCodabar (procedure)

Displays a specified string as a Codabar barcode.

Syntax

showbarcodecodabar(str, start, stop, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

Start

The Start character of the barcode

©2010 Objectif Lune Inc - 338 -

A

B

C

D

Stop

The Stop character of the barcode

A

B

C

D

barwidth

Width of one barcode bar, in mils (0.001 inch).

readable

Boolean that enables display of the human readable portion of the barcode

Code Sample Example

showbarcodecodabar('12345','A','A',12,true)

ShowBarcodeCodablockF (procedure)

Displays a specified string as a Codablock F barcode.

Syntax

showbarcodecodablockf(str, barwidth)

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodecodablockf('12345',12)

©2010 Objectif Lune Inc - 339 -

ShowBarcodeCode11 (procedure)

Displays a specified string as a Code 11 barcode.

Syntax

showbarcodecode11(str, barwidth, checksum, readable, readchecksum)

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

Checksum

Boolean allows the automatic calculation of the barcode checksum

readable

Boolean that enables display of the human readable portion of the barcode

readchecksum

Boolean that enables display of the checksum in the human readable portion of the barcode

Code Sample Example

showbarcodecode11('123456789',12,true,true,false)

ShowBarcodeCode128 (procedure)

Displays a specified string as a Code 128 barcode.

Syntax

showbarcodecode128(str, subset, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

subset

Integer specifying the subset of the barcode to use.

Value Subset

0 A

1 B

2 C

©2010 Objectif Lune Inc - 340 -

barwidth

Width of one barcode bar, in mils (0.001 inch).

readable

Boolean that enables display of the human readable portion of the barcode

Code Sample Example

showbarcodecode128('123456789',0,12,true)

ShowBarcodeCode16k (procedure)

Displays a specified string as a Code 16k barcode.

Syntax

showbarcodecode16k(str, mode, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Mode (0-7) of the Code 16k barcode

barwidth

Width of one barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodecode16k('12345',4,12)

ShowBarcodeCode39 (procedure)

Displays a specified string as a Code 3 of 9 barcode.

Syntax

showbarcodecode39(str, barwidth, checksum, readable, readchecksum)

Arguments

str

Value of type string to display as a barcode.

©2010 Objectif Lune Inc - 341 -

BarWidth

Measure value setting the width of each bar, in mils (0.001 inch).

Checksum

Boolean value that indicates if the checksum should automatically be calculated.

Readable

Boolean value that indicates if the human readable should be shown

ReadChecksum

Boolean value that indicates if the checksum value should be included in the human readable

Code Sample Example

showbarcodecode39('123456',12,true,true,false)

ShowBarcodeCode49 (procedure)

Displays a specified string as a Code 49 barcode.

Syntax

showbarcodecode49(str, barwidth)

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodecode49('12345', 12)

ShowBarcodeCode93 (procedure)

Displays a specified string as a Code 93 barcode.

Syntax

showbarcodecode93(str, barwidth, readable)

©2010 Objectif Lune Inc - 342 -

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

readable

Boolean that enables display of the human readable portion of the barcode

Code Sample Example

showbarcodecode93('123456789',12,true)

ShowBarcodeDatamatrix (procedure)

Displays a specified string as a Datamatrix barcode.

Syntax

showbarcodedatamatrix(str, mode, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the Datamatrix Mode to use.

Value Mode

0 Square

1 Rectangular

errorCorrection

Error correction level to use with the barcode.

Mode Allowed Range

Square 1-24

Rectangular 1-6

barwidth

Width of one barcode bar, in mils (0.001 inch).

©2010 Objectif Lune Inc - 343 -

Code Sample Example

showbarcodedatamatrix('12345', 0, 5, 12)

ShowBarcodeEAN8 (procedure)

Displays a specified string as a EAN-8 barcode.

Syntax

showbarcodeean8(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of EAN-8 to use

0 EAN-8

1 EAN-8 ext.2

2 EAN-8 ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

showbarcodeean8('0133558',0)

ShowBarcodeEAN13 (procedure)

Displays a specified string as a EAN-13 barcode.

Syntax

showbarcodeean13(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

©2010 Objectif Lune Inc - 344 -

Subset

The subset of EAN-13 to use

0 EAN-13

1 EAN-13 ext.2

2 EAN-13 ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

showbarcodeean13('977147396801',0)

ShowBarcodeFIM (procedure)

Displays a specified string as a FIM barcode.

Syntax

showbarcodefim(str)

Arguments

str

Value of type string to display as a barcode.

Code Sample Example

showbarcodefim('A')

ShowBarcodeI2of5 (procedure)

Displays a specified string as an Interleaved 2 of 5 barcode.

Syntax

showbarcodei2of5(str, barwidth, checksum, readable, readchecksum, bearers)

Arguments

str

Value of type string to display as a barcode.

©2010 Objectif Lune Inc - 345 -

barwidth

Width of one barcode bar, in mils (0.001 inch).

Checksum

Boolean to add checksum automatically to barcode

readable

Boolean that enables display of the human readable portion of the barcode

readchecksum

Boolean that enables display of the checksum in the human readable portion of the barcode

bearers

Boolean that enables bearer bars surrounding the barcode

Code Sample Example

showbarcodei2of5('123456789',12,true,true,false,true)

ShowBarcodeISBN (procedure)

Displays a specified string as an ISBN barcode.

Syntax

showbarcodeisbn(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of ISBN to use

0 ISBN

1 ISBN ext.2

2 ISBN ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

©2010 Objectif Lune Inc - 346 -

showbarcodeisbn('978-1-86074-271-2-54495',2)

ShowBarcodeJapanpost (procedure)

Displays a specified string as a Japan Post barcode.

Syntax

showbarcodejapanpost(str, barwidth)

Arguments

str

Value of type string to display as a barcode.

BarWidth

Measure value setting the width of each bar, in mils (0.001 inch).

Code Sample Example

showbarcodejapanpost('6540123789-A-K-Z',12)

ShowBarcodeMaxicode (procedure)

Displays a specified string as a Maxicode barcode.

Syntax

showbarcodemaxicode(str, mode)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value (2-6) of the Maxicode Mode to use.

Code Sample Example

show-
bar-
codemaxicode('^059^042^041^059^040<RS>01^02996152382802^029840^029001^0291Z00004951^029UPSN^02906X610^029159^0291234567^0291/1^029^029Y^029634
ALPHA DR^029PITTSBURGH^029PA^030<ET>',2)

©2010 Objectif Lune Inc - 347 -

ShowBarcodeMicroPDF (procedure)

Displays a specified string as a Micro PDF-417 barcode.

Syntax

showbarcodemicropdf(str, mode, columns, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the Micro PDF mode to use.

Value Mode

0 Text

1 Numeric

columns

Integer value (1-4) of the number of columns to use.

barwidth

Integer value of the barwidth of a single bar in the Micro PDF

Code Sample Example

showbarcodemicropdf('123456',0,4,12)

ShowBarcodeMicroQR (procedure)

Displays a specified string as a Micro QR Code barcode.

Syntax

showbarcodemicroqr(str, mode, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the Micro QRmode to use.

Value Mode

©2010 Objectif Lune Inc - 348 -

0 Alpha

1 Numeric

errorcorrection

Integer value of the error correction level to use.

Value Correction Level

0 L

1 S

2 Q

barwidth

Integer value of the barwidth of a single bar in the Micro QR

Code Sample Example

showbarcodemicroqr('123456',0,2,12)

ShowBarcodeMSI (procedure)

Displays a specified string as a MSI barcode.

Syntax

showbarcodemsi(str, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

barwidth

Measure of the width of a single barcode bar, in mils (0.001 inch).

readable

Boolean value determining if the human readable portion of the barcode is visible.

Code Sample Example

showbarcodemsi('1234567')

ShowBarcodeOnecode (procedure)

Displays a specified string as a Onecode/IMB barcode.

©2010 Objectif Lune Inc - 349 -

Syntax

showbarcodeonecode(str)

Arguments

str

Value of type string to display as a barcode.

Code Sample Example

showbarcodeonecode('0123456709498765432101234567891')

ShowBarcodePDF417 (procedure)

Displays a specified string as a PDF 417 Code barcode.

Syntax

showbarcodepdf417(str, mode, columns, truncated, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the PDF 417mode to use.

Value Mode

0 Text

1 ASCII Plus

2 Numeric

columns

Integer value (1-20) of the number of columns to use.

truncated

Boolean value to decide to use the truncated version of the barcode

errorcorrection

Integer value (0-8) of the error correction level to use.

barwidth

Integer value of the barwidth of a single bar in the PDF 417

©2010 Objectif Lune Inc - 350 -

Code Sample Example

showbarcodepdf417('123456',0,2,false,5,12)

ShowBarcodePlessey (procedure)

Displays a specified string as a plessey barcode.

Syntax

showbarcodeplessey(str, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

barwidth

Measure of the width of a single barcode bar, in mils (0.001 inch).

readable

Boolean value determining if the human readable portion of the barcode is visible.

Code Sample Example

showbarcodeplessey('1234567')

ShowBarcodePostnet (procedure)

Displays a specified string as a Postnet barcode.

Syntax

showbarcodepostnet(str, subset)

Arguments

str

Value of type string to display as a barcode.

subset

Subset of the Postnet barcode to use

Subset Zipcode Length

0 5 digits

1 9 digits

2 11 digits

©2010 Objectif Lune Inc - 351 -

Code Sample Example

showbarcodepostnet('12345',0)

ShowBarcodeQRCode (procedure)

Displays a specified string as a QR Code barcode.

Syntax

showbarcodeqrcode(str, mode, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the QR Code mode to use.

Value Mode

0 Numeric

1 Alpha

errorcorrection

Integer value of the error correction level to use.

Value Mode

0 L

1 S

2 Q

3 H

barwidth

Integer value of the barwidth of a single bar in the QR Code

Code Sample Example

showbarcodeqrcode('123456',0,2,12)

ShowBarcodeRoyalMail (procedure)

Displays a specified string as a Royal Mail barcode.

Syntax

showbarcoderoyalmail(str)

©2010 Objectif Lune Inc - 352 -

Arguments

str

Value of type string to display as a barcode.

Code Sample Example

showbarcoderoyalmail('LE28HS9Z')

ShowBarcodeRSS (procedure)

Displays a specified string as a RSS barcode.

Syntax

showbarcoderss(str, mode, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the RSSmode to use.

Value Mode

0 RSS-14

1 RSS-Truncated

2 RSS-Limited

3 RSS-Stacked

4 RSS-Stacked Omni

5 RSS-Expanded

6 RSS-Expanded Stacked

barwidth

Integer value of the barwidth of a single bar in the RSS Code

Code Sample Example

showbarcoderss('123456',0,12)

ShowBarcodeUPCA (procedure)

Displays a specified string as a UPC-A barcode.

©2010 Objectif Lune Inc - 353 -

Syntax

showbarcodeupca(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of UPC-A to use

0 UPC-A

1 UPC-A ext.2

2 UPC-A ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

showbarcodeupca('123456789012',0)

ShowBarcodeUPCE (procedure)

Displays a specified string as a UPC-E barcode.

Syntax

showbarcodeupce(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of UPC-E to use

0 UPC-E

1 UPC-E ext.2

2 UPC-E ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

©2010 Objectif Lune Inc - 354 -

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

showbarcodeupce('123456',0)

ShowBitmap (procedure)

Displays a bitmap resource.

Syntax

showbitmap(resname, resolution, width, height[, transparent[, duotone]])

Arguments

resname

String value containing either the name of the bitmap resource within the document, or the path to a bitmap file.

resolution

Integer value specifying the resolution, in pixels per inch, at which the bitmap displays. A larger number yields a smaller,
clearer image, since more pixels are squeezed into a smaller space. But the bitmap then requires more memory. Except in
some very specific applications, it is rarely desirable to use resolutions exceeding 100 ppi.

width, height

Measure values specifying the width/height, in inches, the bitmap occupies when it displays. Specifying a value of zero for one
but not both of the two dimensions scales the bitmap to fit the non-zero dimension. Specifying both a width and a height scales
the bitmap to the best fit possible with that width and height, while maintaining its aspect ratio. Specifying both a width and a
height of zero displays the bitmap at its default resolution.

transparent

Boolean value specifying whether part of the bitmap is transparent. When set to true, the bitmap image is combined with the
background; otherwise it is pasted on top.

duotone

Colour array specifying the colour to paint all non-white pixels in the bitmap.

Code Sample Examples

Example 1

This example displays the bitmap image street_photo at a resolution of 72 pixels per inch, and a width of 1 inch, as a trans-
parent bitmap image with non-white pixels set to blue.

showbitmap('street_photo',72,1,0,true,[100,100,0,0])

©2010 Objectif Lune Inc - 355 -

Example 2

This example displays the bitmap image sunset at a resolution of 300 pixels per inch.

showbitmap('sunset',300,0,0)

Example 3

This example prints either an image, or, if the image cannot be found, the pathname to the image.

define(&image_paths, directory, 'c:\\images*.JPG')

define(&i, integer, 1)

if(resourcetype(&image_paths[&i]) <> 0)

showbitmap(&image_paths[&i], 300, 0, 0)

crlf(bitmapheight(&image_paths[&i]))

elseif()

show(&image_paths[&i])

crlf(0.16)

endif()

ShowCaptureUserArea (procedure)

Displays a Capture Field object.

Syntax

showcaptureuserarea(name: string, areatype: integer, left: measure,top: measure, width: measure, height: measure,
requiredfield: integer, disablerewrite: boolean, groupid: integer)

Arguments

name

String that defines the name of the Capture Field object (aka "PressTalk ID"). Must be the same as defined in the metadata
and can only be letters or numbers (no spaces or special characters).

areatype

Integer that defines what kind of area type to use, from the following list:

l 0 - Checkbox
l 1 - List Fields

©2010 Objectif Lune Inc - 356 -

l 2 - Text Area
l 3 - Multi-Area Field

left, top

Measure variables that define the position of the Capture Field, in inches, from the left and top of the page.

width, height

Measure variables that define the size, in inches, of the Capture Field.

requiredfield

Integer that defines what kind of requirement this field has, from the following list:

l 0 - Optional Field
l 1 - Mandatory Field
l 2 - Final Field

disablerewrite

Boolean that defines whether the field will accept new ink if some ink is already present in previous processing of the doc-
ument. True prevents rewriting.

groupid

Integer value that defines a group for mandatory fields.

Example

definemeta('CapPatternSequence','', 0, 'job.group.document')
definemeta('CaptureField', 'Capture1;' + IntToStr(0) + ';2;' + FloatToStr((&physical.x *
72),4) + ';' + FloatToStr((&physical.y*72),4) + ';' + FloatToStr(3.7861*72) + ';' +
FloatToStr(1.4223*72) + ';false;0', 2, 'job.group.document.datapage.page')
showcaptureuserarea('Capture1',2,&physical.x,&physical.y,&width,&height,0,false,0)

ShowEPS (procedure)

Displays an EPS image resource.

Syntax

showeps(resname, width, height)

Argument

resname

String value containing either the name of the EPS resource within the document, or the path to an EPS file .

width, height

Measure values specifying the width/height, in inches, the EPS occupies when it displays. Specifying a value of zero for one but
not both of the two dimensions scales the EPS to fit the non-zero dimension. Specifying both a width and a height scales the
EPS to the best fit possible with that width and height, while maintaining its aspect ratio. Specifying both a width and a height of
zero displays the EPS at its default resolution.

©2010 Objectif Lune Inc - 357 -

Code Sample Example

This example displays the EPS image ‘my_eps’, scaling it as necessary to fit a width of 4.5 inches.

Example

showeps('my_eps', 4.5, 0)

ShowLeftRight (procedure)

Displays a string of characters, in inches, using a specified width.

Syntax

showleftright(text, width)

Arguments

text

String value to be displayed.

width

Measure value representing the amount of horizontal space to use for displaying the string. showleftright adjusts the amount
of spaces between characters to insure the string fits exactly within the specified width.

Code Sample Example

This example shows how to fit strings of different sizes within the same box that has a width of 3 inches.

Example

margin(0,0)

rectstroke(0,0,3,3)

moveto(0,0.5)

showleftright('This fits well inside the box',3)

crlf(0.1599)

showleftright('But this one is a little more tight',3)

ShowPage (procedure)

Instructs the printer to output the page andmove on to the next instruction.

This command has no effect on screen, because it is intended to be executed only inside the printer.

©2010 Objectif Lune Inc - 358 -

Syntax

showpage()

Argument

None

Code Sample Example

This example specifies the number of pages to print at line 1, between columns 1 and 5.

Example

Define(&NumberOfPages,integer,strtoint(trim(@(1,1,5))))

Define(&x,integer,1)

for(&x,1,1,&NumberOfPages)

execpage('Page1')

showpage()

endfor()

ShowPDF (procedure)

Displays a page of a PDF image resource.

Syntax

showpdf(resname, pagenum, width, height)

Argument

resname

String value containing either the name of the PDF resource within the document, or the path to a PDF file .

pagenum

Integer value specifying the page number within the PDF image resource.

width, height

Measure values specifying the width/height, in inches, the PDF page occupies when it displays. Specifying a value of zero for
one but not both of the two dimensions scales the PDF page to fit the non-zero dimension. Specifying both a width and a height
scales the PDF page to the best fit possible with that width and height, while maintaining its aspect ratio. Specifying both a
width and a height of zero displays the PDF page at its default resolution.

Code Sample Example

This example displays page 5 of the PDF image resource ’new_models’, at its default resolution.

©2010 Objectif Lune Inc - 359 -

Example

showpdf('new_models', 5, 0, 0)

ShowUTF8 (procedure)

This command is used to display UTF8 text on the document. It is designed to be used within a begi-
nUTF8paragraph...endUTF8paragraph structure. Its uses the paragraph properties defined in the begi-
nUTF8paragraph command.

Syntax

showUTF8(text)

Argument

text

Static text string or data selection to be displayed. Bear in mind that the information, wether static or variable, must be in
UTF8. Themaputf8 function can be used to convert the information to UTF8.

Code Sample Example

This example displays a UTF8 string within a justified paragraph with the text running from right to left.

Example

setlinewidth(0.007)

moveto(0,0)

rlineto(&width,0)

rlineto(0,&height)

rlineto(neg(&width),0)

rlineto(0,neg(&height))

closepath()

stroke()

moveto(&width/2,&height/18)

BeginUTF8Paragraph(0.0000,&width,0.0000,'leftright',0.1667,'rtl')

SetStyleExt(&Style1,12.0000,0,[100],100)

ShowUTF8('\u0623\u0633\u0627\u0633\u064B\u0627\u060C')

EndUTF8Paragraph()

©2010 Objectif Lune Inc - 360 -

ShowUTF8Left / ShowUTF8Right / ShowUTF8Center (procedure)

These three commands are used to display simple text strings on the document. They are identical in all aspects, except in the
way they behave relative to the text insertion point: showUTF8Left displays the text from the insertion point to the left; sho-
wUTF8Right displays the text from the insertion point to the right; and showUTF8Center displays the text equally on both
sides of the insertion point.

These commands cannot be used with a beginUTF8paragraph...endUTF8paragraph structure.

Syntax

showUTF8left(text, mode)

showUTF8right(text, mode)

showUTF8center(text, mode)

Argument

text

Static text string or data selection to be displayed. Bear in mind that the information, wether static or variable, must be in
UTF8. Themaputf8 function can be used to convert the information to UTF8.

mode

String value specifying the contextual analysis is to be performed. Possible values are 'normal', 'reverse', and 'none' (for no
contextual analysis).

Code Sample Examples

Example 1

This example illustrates a static text string (the name Saudi Arabia) escaped to its UTF8 reference form that will be displayed
from the insertion point to the left.

setlinewidth(0.007)

moveto(0,0)

rlineto(&width,0)

rlineto(0,&height)

rlineto(neg(&width),0)

rlineto(0,neg(&height))

closepath()

stroke()

moveto(&width/2,&height/2)

SetStyleExt(&Style1,12.0000,0,[100],100)

showUTF8left('\u0627\u0644\u0633\u0639\u0648\u062F\u064A\u0629', 'normal')

©2010 Objectif Lune Inc - 361 -

Example 2

This example shows a variable text string that is taken from the data, converted from the MS-CP-1256 encoding to UTF8 and
then displayed from the insertion point to the right.

setlinewidth(0.007)

moveto(0,0)

rlineto(&width,0)

rlineto(0,&height)

rlineto(neg(&width),0)

rlineto(0,neg(&height))

closepath()

stroke()

moveto(&width/2,&height/2)

SetStyleExt(&Style1,12.0000,0,[100],100)

showUTF8right(maputf8(@(2,15,35), 'MS-CP-1256', False),'normal')

Sin (function)

Returns the sine value of the specified angle.

Syntax

sin(value) measure value

Argument

value

Measure value specifying the angle whose sine is returned.

Code Sample Example

This example draws a somewhat sinusoidal graph.

Example

moveto(0,0)

define(&i,integer,0)

for(&i,1,10,360)

lineto(cos(inttofloat((&i)/ 4)),sin(inttofloat(&i)))

endfor()

closepath()

©2010 Objectif Lune Inc - 362 -

StopJob (procedure)

Terminates execution of the document and returns control to the PostScript interpreter.

Syntax

stopjob()

Store (procedure)

Stores a string of characters on a specific line in the current data page.

Syntax

store(line, string)

Arguments

line

Integer value specifying the line on which to store the string.

string

String value to store in the data page.

Code Sample Example

This example is taken for an OnReadDataPage event for a user defined emulation. It shows how to store lines of text in the cur-
rent data page. It searches for a formfeed, increases the current line, stores the string, executes the document, resets the
page, and then ends the search.

Example

search(&str,'\014')

set(¤t.line,¤t.line+1)

store(¤t.line,&str)

doform()

clearpage()

endsearch()

StringReplace (function)

Replaces all occurrences of a pattern within a string, with another pattern.

©2010 Objectif Lune Inc - 363 -

Syntax

stringreplace(string, old, new) string

Arguments

string

String in which you want to replace a pattern.

old

String value that defines the pattern you want to replace.

new

String value that represents the replacement pattern.

Code Sample Example

This example replaces the dollar currency symbol with the pound currency symbol.

Example

stringreplace('1,000.00$','$','£')

StringWidth (function)

Returns the physical display width, in inches, of a string.

Syntax

stringwidth(string) measure value

Argument

string

String value whose width is returned.

Code Sample Example

This example draws a tight box around a variable length data selection.

Example

margin(0,0)

%Define the data. This could be a data selection.

define(&data,string,'This is a sample string')

set(&data,trimright(&data))

%Store the length

©2010 Objectif Lune Inc - 364 -

define(&dw,measure,stringwidth(&data))

moveto(1,1)

%Display the string, then draw a box around it.

show(&data)

rectstroke(1,0.86,&dw,0.2)

StringWidthUTF8 (function)

Returns the length, in inches, of the string as it would be displayed on a page, using the current font. Bear in mind that the com-
bination of many bytes sometimes results in a single glyph and that text orientation can also affect the number of glyphs dis-
played.

Syntax

stringwidthutf8(text, mode)

Arguments

text

UTF8 text string to be measured.

mode

String specifying how the contextual analysis is to be performed. Possible values are 'normal', 'reverse', and 'none' (for no con-
textual analysis).

Strip (function)

Removes all occurrences of a string within another string.

Syntax

strip(string1, string2) string value

Arguments

string1

String value to be removed from string2.

string2

String value to change.

Code Sample Example

This example strips all dollar signs from a variable.

Example

define(&data,string,'$11.95')

©2010 Objectif Lune Inc - 365 -

show(strip('$',&data))

Stroke (procedure)

Outlines the current shape using the pen colour and width specified with the setstrokecolor and setlinewidth command.
The shape is not filled. To fill and outline the shape, use strokeandfill instead. If you only want to fill the shape, use fill.

Syntax

stroke()

Argument

None

Code Sample Example

This example draws a blue triangle with a blue border.

Example

setstrokecolor([100,100,0,0]) %Set pen colour to blue

moveto(1,1)

lineto(1.5,2)

lineto(0,2)

closepath()

stroke()

StrokeAndFill (procedure)

Outlines the current shape using the pen colour and width specified with the setstrokecolor and setlinewidth command.
The shape is then filled using the colour specified with the setfillcolor command. To simply outline the shape, use stroke
instead. If you only want to fill the shape, use fill.

Syntax

strokeandfill()

Argument

None

Code Sample Example

This example draws a yellow triangle with a blue outline.

©2010 Objectif Lune Inc - 366 -

Example

setstrokecolor([100,100,0,0])

setfillcolor([0,0,100,0])

moveto(1,1)

lineto(1.5,2)

lineto(0,2)

closepath()

strokeandfill()

StrToCur (function)

Converts a string value into a currency value.

Syntax

strtocur(string) currency value

Argument

string

String value to convert.

StrToFloat (function)

Converts a string into a measure value.

Syntax

strtofloat(string) measure value

Argument

string

String value to convert.

Code Sample Example

This example reads a column of 6 values then converts the values to floating point values and then adds the ir values to the
&total variable. The total value is subsequently converted back to a string and the result is printed.

Example

define(&total,measure,0.0)

define(&x,integer,0)

©2010 Objectif Lune Inc - 367 -

for(&x,1,1,6)

set(&total,&total+strtofloat(@(&x,10,18)))

endfor()

show(floattostr(&total))

StrToInt (function)

Converts a string into an integer value.

Syntax

strtoint(string) integer value

Argument

string

String value to convert.

Code Sample Example

This example reads a column of 6 values then converts the values to integers and then adds the integer to the &total variable.
The total value is subsequently converted back to a string and the result is printed.

Example

define(&total,integer,0)

define(&x,integer,0)

for(&x,1,1,6)

set(&total,&total+strtoint(@(&x,10,18)))

endfor()

show(inttostr(&total))

Sub (function)

Subtracts one expression from another. This is the functional equivalent of the - operator.

Syntax

sub(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

©2010 Objectif Lune Inc - 368 -

Integer, measure or currency values. Both expressions must be the same type. The returned value is set according to the type
of the parameters.

Code Sample Example

Example 1 and Example 2 illustrates both ways of subtracting numbers.

Example 1

show(inttostr(2-2))

Example 2

show(floattostr(sub(4.7,2.1)))

SubRecCount (function)

Returns the number of records per data page. Since data pages can hold a variable number of records, this value may change
whenever you skip through data pages. Every data page always has at least one child, otherwise it wouldn't be stored in the
database. Subreccount can return 0 only if the emulation is set to something other than database mode, or if the converted
database is invalid. This function is only useful in database emulationmode.

Syntax

subreccount integer value

Code Sample Example

This example prints the line items from an invoice. It defines the loop and total variables, loops through all records, shows and
positions invoice information, and finally shows the invoice total. The fields listed here are for illustration purposes only.

Example

define(&x,integer,1)

define(&tot,measure,0.0)

for(&x,1,1,subreccount())

show(field('PartNum'))

moveto(1.5,¤t.y)

show(field('PartDesc'))

moveto(4.5,¤t.y)

show(field('Qty'))

moveto(5.5,¤t.y)

©2010 Objectif Lune Inc - 369 -

show(field('UnitPrice'))

moveto(6.5,¤t.y)

show(field('Total'))

%Add line total to tot variable

set(&tot,&tot+ strtofloat(field('Total')))

moveto(0,¤t.y+.25)

endfor()

moveto(6.5,8)

show(floattostr(&tot))

Time (function)

Returns the print time. Note that this functionwill only work if the document runs on a computer, since it is impossible for the
document to get the current time from a printer. So if you send your document to a printer and then simply send data with the
appropriate trigger to that printer, the document will run on the printer and the function will return an empty string. Use the
Run locally option, available in the PlanetPress Suite Workflow Tools, to ensure that the document runs on a computer rather
than on a printer.

Syntax

time(displayseconds)

Argument

displayseconds

Boolean specifying whether to display the time using seconds. True returns the time with seconds, False, without. The precise
format of the of the time value strings are set in the Windows Regional options.

Code Sample Example

This example shows how to add the current time with seconds (11:14:46 AM, as opposed to 11:14 AM, for example) on a doc-
ument page.

Example

show(time(true))

©2010 Objectif Lune Inc - 370 -

Translate (procedure)

Offsets an object's position from its original spot on the page. The point of origin of any object is (0,0) by default. All com-
mands within an object are relative to that point of origin. Moving, or translating the point of origin allows you to reset the point
of origin within the boundaries of the object.

Syntax

translate(x, y)

Arguments

x, y

Measure values representing the horizontal/vertical offset, in inches, of the new point of origin within the object. These values
are relative to the current point of origin, not absolute.

Code Sample Examples

Example 1

This example moves the point of origin 1 inch right and down from the original point.

translate(1,1)

show('some text')

Example 2

This example moves the point of origin 1 inch right and down from the current point.

translate(1,1)

show('some more text')

Example 3

This example moves the point of origin back to its original position. Translate sets the new point of origin for all subsequent
commands. Consequently, translate commands are cumulative. Therefore, to restore the previous point of origin, youmust
issue a translate command that negates whatever offset was previously applied.

translate(-2,-2)

©2010 Objectif Lune Inc - 371 -

Trim (function)

Removes both leading and trailing spaces from a string.

Syntax

trim(string) string value

Argument

string

String value from which you want to trim leading and trailing spaces.

Code Sample Example

This example trims leading and trailing spaces from the data selection on line 3, columns 8 to 24.

Example

trim(@(3,8,24))

TrimLeft (function)

Removes leading spaces from a string.

Syntax

trimleft(string) string value

Argument

string

String value to trim.

Code Sample Example

This example makes sure * delimiters are added immediately before and after a data selection.

Example

show('*'+trimleft(trimright(@(12,10,35)))+'*')

TrimRight (function)

Removes trailing spaces from a string.

Syntax

trimright(string) string value

©2010 Objectif Lune Inc - 372 -

Argument

string

String value to trim.

Code Sample Example

"TrimLeft (function)" (page 549)

UpperCase (function)

Convert a string to all upper case characters.

Syntax

uppercase(string) string

Argument

string

String value you want to convert to upper case. The stringmay be a mix of upper and lower case characters.

Code Sample Example

This example illustrates uppercase().

Example

&month := uppercase(@(1,60,70))

xmlCount()

Counts the number of children for a specific element, according to standard XPath syntax. The return value is an integer and
always returns 0 if the specified XPath is invalid or if no value is found. The XPath is always relative to the XML root path.

Syntax

xmlCount(path: string) integer value

Arguments

path

The XML Path of the value you want to retrieve. The pathmust correspond to a single entry in the XML, thus is not a complete
XPath with regular expressions and variables.

Code Sample

The following gets the number of items in an invoice, loops through each item and displays the item's description with show().

define(&i, integer, 0)
define(¤tItemDescription, string, '')

©2010 Objectif Lune Inc - 373 -

define(&numberOfItems, integer, xmlcount('/MyData/CUSTOMER/INVOICES/INVOICE/ITEM'))

for(&i, 1, 1, &numberOfItems)
¤tItemDescription := xmlget('-

/MyData/CUSTOMER/INVOICES/INVOICE/ITEM['+inttostr(&i)+']/Description')
show(¤tItemDescription)
crlf()

endfor()

xmlGet()

Retrieves a data selection value through the structure of an XML file. This function uses a single parameter specifying the Path
of the value to be retrieved. This function returns a string. The return value is an empty string if no value is found or if the spec-
ified Element is invalid or not found.

Syntax

xmlGet(path: string) string value

Arguments

path

The XML Path of the value you want to retrieve. The pathmust correspond to a single entry in the XML, thus is not a complete
XPath with regular expressions and variables.

Code Sample

These are examples of xmlGet() commands returning data from an XML file. Note that these will most likely not work with
your own XML even if you tried, as the path is completely dependent on the exact structure of your XML Data file.

define(&myVar, string, '')
&myVar := xmlget('/PLANETPRESS_DATA_FILE[1]-
/CUSTOMER[1]/INVOICES[1]/INVOICE[1]/ITEM[1]/Description[1]')
&myVar := xmlget('/MyData/CUSTOMER[1]/INVOICES[1]/INVOICE[1]/ITEM[1]/Description[1]')
% This next line uses the &i variable to dynamically select an item in the invoice. Use-
ful in a repeat & overflow
% configuration, or a manual PlanetPress Talk loop through te data. Note that the var-
iable must be converted to a string.
&myVar := xmlget('-
/MyData/CUSTOMER[1]/INVOICES[1]/INVOICE[1]/ITEM['+inttostr(&i)+']/Description[1]')

Example 2

The following gets the number of items in an invoice, loops through each item and displays the item's description with show().

define(&i, integer, 0)
define(¤tItemDescription, string, '')

define(&numberOfItems, integer, xmlcount('/MyData/CUSTOMER/INVOICES/INVOICE/ITEM'))

©2010 Objectif Lune Inc - 374 -

for(&i, 1, 1, &numberOfItems)
¤tItemDescription := xmlget('-

/MyData/CUSTOMER/INVOICES/INVOICE/ITEM['+inttostr(&i)+']/Description')
show(¤tItemDescription)
crlf()

endfor()

XOr (Boolean operator function)

Returns true if only one of two specified expressions is true, false otherwise.

Syntax

xor(expression1, expression2) ' boolean value

expression1 xor expression2 boolean value

Arguments

expression1, expression2

Boolean values.

Code Sample Examples

These examples illustrate the possible values for XOR.

Example 1

xor(true, false) %Returns true

Example 2

xor(false, true) %Returns true

Example 3

xor(false, false) %Returns false

Example 4

xor(true, true) %Returns false

Language Reference (by element type)
This section contains a reference to PlanetPress Talk organized in by element type.

©2010 Objectif Lune Inc - 375 -

l "System Variables" (page 376)
l "System Objects" (page 378)
l "Assignment Operator" (page 381)
l "Mathematical Operators and Operator Functions" (page 381)
l "String Operator" (page 387)
l "Boolean Operator Functions" (page 387)
l "Comparison Operators and Operator Functions" (page 390)
l "Conversion Operator Functions" (page 394)
l "Loop Structures" (page 399)
l "Condition Structures" (page 402)
l "Procedures" (page 405)
l "Functions" (page 481)

System Variables

&EOJob (system variable)

Read-only variable that returns True if the document has processed the last line of data or if the line that follows the last form
feed character (ASCII 12) is empty.

This variable always returns True at design-time when using a user-defined emulation.

Thus if a file ends with the sequence:

FF CR LF

&eojob becomes true before the last line (CR LF) since the last line is empty.

Syntax

&eojob Boolean value

&FirstSide (system variable)

Read-only variable that returns True when a page is printing on the first side of a page in duplex mode (double-sided printing).
In simplex mode (single-sided)&firstside always returns True.

This variable is based on PostScript’s firstside command as implemented in your printer. If your printer does not support
firstside, the document attempts to detect which side of the page is currently printing. Passthrough commands can hamper
the document’s ability to return the correct value for &firstside.

Syntax

&firstside Boolean value

&Height (system variable)

System variable with a scope local to a specific object, group, or page. The system initializes this variable to the value of the
Height property of the object’s, group’s, or page’s Basic Attributes. You can reference and set this variable in any PlanetPress
Talk code you enter in the object, group, or page.

Syntax

&height measure value

©2010 Objectif Lune Inc - 376 -

&PrinterMode (system variable)

Returns the current output mode for the document. This allows you to test for a specific value and react accordingly.

Syntax

&printermode integer value

Possible Values

Value: Description:
0 PlanetPress during document design
1 Preview or Softproof as Printer Queue
2 Preview or Softproof as PlanetPress Image
3 Preview or Softproof as PlanetPress Fax
4 Printer Preview
5 Printer Hard Disk
6 Printer Memory
7 Host Computer
8 Flash Memory
9 PlanetPress Image
10 PlanetPress Fax
11 PlanetPress Suite Workflow Tools

Code Sample Example

This example changes some colors to shades of gray for greater legibility on a fax.

Example

setlinewidth(0.1) %Select a thick pen
if(&printermode=10) %If Destination is Fax

setfillcolor([5,5,5,5]) %Set fill to light gray
setstrokecolor([0,0,0,100]) %Set pen to black

elseif()
%Otherwise,set fill colour to yellow
setfillcolor([0,0,50,0])
setstrokecolor([100,100,0,0]) %Set pen colour to blue

endif()
rectstroke(0,0,3,3) %Display rectangle
rectfill(0,0,3,3)

&Str (system variable)

Contains a line of input data.

Syntax

&str string

©2010 Objectif Lune Inc - 377 -

Code Sample Example

This example illustrates a few lines of code from a user-defined emulation. In these lines, if the line of input data (minus any
leading spaces)begins with the code ‘5’, the emulation advances to the next line of the data page and stores the line of input
data on that line. Notice the ¤t.line system variable—one of the variables in the current system object.

Example

if(eq(mid(trimleft(&str),1,1),'5'))
set(¤t.line,¤t.line + 1)
store(¤t.line,trimleft(&str))

endif()

&Width (system variable)

System variable with a scope local to a specific object or group. The system initializes this variable to the value of the Width
property of the object’s or group’s Basic Attributes. You can reference and set this variable in any PlanetPress Talk code you
enter in the object, group, or page.

Syntax

&width measure value

System Objects

Current (system object)

This object includes a set of system variables reflecting the current state of the document. All of these variables are read-only
and therefore cannot be changed using the set command, except where noted. You can access each property individually
using the same syntax.

Syntax

¤t.property => value

Properties

datafilename

String value containing the full path and the internal filename, not the original values, of the currently used data file. Note: This
variable contains an empty string in printer centric mode.

datapage

Integer value containing the page number of the current data page, or the number of the current record set in the case of a
database emulation. Note that if you use Metadata and youmodify it in any way (sorting, filtering, sequencing) you should use
¤t.metadatapage instead.

line

Integer value containing the line number of the current line of data within the data page, or the number of the current record
within the record set. This value is read-write and can be modified using the set command.

©2010 Objectif Lune Inc - 378 -

lpp

Integer value containing the number of lines per page in the current data page. In database emulation, this value can also be
used in place of the subreccount() function to determine how many records a record set contains.

mediacolor

String value containing the color set in the Media color box of the Page dialog box for the current document page, or, if no
value is set in that box, the color set in the Media color box in the Document dialog box for the document. The Media color box
appears when you select Media selection in the Selection type box. Recall that the Media color box specifies the color of paper.

mediatype

String value containing the type set in the Media type box of the Page dialog box for the current document page, or, if no value
is set in that box, the type set in the Media type box in the Document dialog box for the document. The Media type box appears
when you select Media selection in the Selection type box. Recall that the Media type box specifies the type of paper (plain,
coated, etc.).

mediaweight

Integer value containing the weight set in the Media weight box of the Page dialog box for the current document page, or, if no
value is set in that box, the weight set in the Media weight box in the Document dialog box for the document. The Media weight
box appears when you select Media selection in the Selection type box. Recall that the Media weight box specifies the weight
of paper, in grams per square meter.

metadatapage

Integer value containing the page number of the current metadata page. This corresponds to the filtered, sorted and
sequencedmetadata.

minfeature

Measure value containing the width of a single pixel at the current zoom level. Precise to 1/65536 inch. This is the minimum
size you can use in PlanetPress Talk code. If you use a smaller value (for example as an argument in a command), Plan-
etPress Talk automatically replaces that value with the value ofminfeature.

orientation

Integer value containing the orientation of the current document page (0=portrait, 1=landscape, 2=Rotated portrait, 3=Rot-
ated landscape).

overflowcount

Integer variable storing the number of times that a data page overflowed and that a new document page was added to accom-
modate the overflowing data. Initially set to 0, is incremented by 1 every time the page overflows.

overflowing

Boolean variable set to False by default. When the current data page contains more lines than can be printed by the current
object, or technically speaking when the object’s condition to exit and overflow has beenmet, this variable is set to True. It is
set back to False with every new overflowing page, the logic being that the current overflowing page will be the last, unless if
the condition to exit and overflow is met yet again.

lastoverflowrepetition

Integer variable storing the number of the last iteration value when the condition to exit and overflow has beenmet.

pageheight

Measure value containing the physical page height, in inches, of the current page in the document.

©2010 Objectif Lune Inc - 379 -

printpagename

String value containing the name of the page that is actually printing. This allows conditional processing to take place within a
PPTalk object according to the name of the page being executed. Note that the value always corresponds to the name of the
actual page page being printed, even if the call comes from a virtual or overlay page (in other words, the name of the page on
which the overlay is layed out).

pagewidth

Measure value containing the physical page width, in inches, of the current page in the document.

printpage

Integer value containing the current page number in the document.

x,y

Measure value containing the current horizontal (x) or vertical (y) position of the drawing pen on the current page. This value
is relative to the top left corner of the current page - whose coordinates are (0,0) - andmay not necessarily be equal to the cur-
rent physical position on the page.

Physical (system object)

The physical object contains system variables that reflect the current state of the document. These system variables are
read-only and therefore cannot be changed using the set command. You can access each system variable using the same syn-
tax.

Syntax

&physical.x measure value

&physical.y measure value

Variables

x,y

Measure value containing the current horizontal (x) or vertical (y) position of the drawing pen, relative to the upper left corner
of the physical page, whose coordinates are (0,0). This system object can be used to assess the amount of space left on a
page.

&system (system object)

The &system system object contains system variables related to the Raster Image Processor (RIP) the document is using to
execute, and document version. These system variables are read-only.

Syntax

l &system.product string value
l &system.version string value
l &system.formversion integer value

Properties

product

String value containing the name of the RIP the document is using to execute. For example,

©2010 Objectif Lune Inc - 380 -

PlanetPress Alambic is the name of the RIP built in to PlanetPress (the RIP PlanetPress uses when you perform a preview and
select Internal interpreter as the PostScript interpreter).

version

String value containing the version number of the RIP the document is using to execute. For example, 4.0.

formversion

Integer value containing the version number of the document requested by the trigger. Recall that you can assign a version
number to a document and increment the number each time you update and reinstall the document. When you execute a doc-
ument that uses a version number, the document verifies its version number against the one you specify in the trigger, and it
proceeds with execution only if the two version numbers match.

Assignment Operator

= (operator)

Assign a value to a variable. This provides a more convenient alternative to the set() command. Note that spaces between
the operator and its operands are optional.

Code Samples

&price := 18.53
&day[4] := 'Friday'
&last:=True
&mustard := [0,20,90,16]

Mathematical Operators and Operator Functions

+ (operator & function)

Either concatenates two or more strings or adds two numerical expressions, depending on its context.

This description details how to use it to concatenate two strings. See "Add (function)" (page 551) for help using it to add two
numerical expressions.

Syntax

string1 + string2 + ... string

Arguments

string1, string2,...

String values.

Code Sample Example

The following code sample concatenates five strings into a single string that contains the first and last name of a customer.

©2010 Objectif Lune Inc - 381 -

Code Sample

show('First Name: ' + @(2,12,36) + ' ' + 'Last Name: ' + @(3,12,36))

Add (function)

Adds two numerical expressions. This is the functional equivalent to the + operator, when you use the + operator with numer-
ical expressions.

Syntax

add(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure, or currency values. Both expressions must be the same type. The returned value is set according to the
type of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of adding numbers.

Example 1

show(inttostr(2+2)) %Displays 4

Example 2

show(floattostr(add(4.7,2.1))) %Displays 6.8

– (operator)

See "Sub (function)" (page 539) and "Neg (function)" (page 535).

Sub (function)

Subtracts one expression from another. This is the functional equivalent of the - operator.

Syntax

sub(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be the same type. The returned value is set according to the type
of the parameters.

Code Sample Example

Example 1 and Example 2 illustrates both ways of subtracting numbers.

©2010 Objectif Lune Inc - 382 -

Example 1

show(inttostr(2-2))

Example 2

show(floattostr(sub(4.7,2.1)))

Asterisk (*) operator

See "Mul (function)" (page 535).

Mul (function)

Multiplies two expressions. This is the functional equivalent of the * operator.

Syntax

mul(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be of the same type. The returned value is set accordingly to the
type of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of multiplying numbers.

Example 1

show(inttostr(2*2)) %Displays 4

Example 2

show(floattostr(mul(4.7,2.1))) %Displays 9.87

/ (operator)

See "Div (function)" (page 532).

Div (function)

Divides an expression with another. This is the functional equivalent to the / operator.

©2010 Objectif Lune Inc - 383 -

Syntax

div(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be the same type. The returned value is set according to the type
of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of dividing numbers.

Example 1

show(inttostr(2/2)) %Displays 1

Example 2

show(floattostr(div(4.7,2.1))) %Displays 2.2381

Neg (function)

Returns the negative value of the specified expression. This is the functional equivalent to the - sign.

Syntax

neg(expression1) integer, measure, currency value

Argument

expression1

Integer, measure or currency value. The returned value is the same type as expression1.

Code Sample Examples

Examples 1and 2 show both ways of negating a number. Negating negative numbers yields a positive result.

Example 1

-12 %Returns -12

-&max %Returns negative of the value of the variable &max

neg(-12.45) %Returns 12.45

Cos (function)

Returns the cosine value of the specified angle.

©2010 Objectif Lune Inc - 384 -

Syntax

cos(value) measure value

Argument

value

Measure value specifying the angle whose cosine is returned.

Code Sample Example

This example displays a sinusoidal graph.

Example

moveto(0,0)
define(&i,integer,0)
for(&i,1,10,360)

lineto(cos(inttofloat((&i)/ 4)),sin(inttofloat(&i)))
endfor()
closepath()

Sin (function)

Returns the sine value of the specified angle.

Syntax

sin(value) measure value

Argument

value

Measure value specifying the angle whose sine is returned.

Code Sample Example

This example draws a somewhat sinusoidal graph.

Example

moveto(0,0)

define(&i,integer,0)

for(&i,1,10,360)

lineto(cos(inttofloat((&i)/ 4)),sin(inttofloat(&i)))

endfor()

closepath()

©2010 Objectif Lune Inc - 385 -

Random (function)

Returns a measure value between 0 and 1, non-inclusive. Since this function uses the current system time when run inside the
printer, it returns a true random value. On the computer, however, the function uses the current data page as its seed to
ensure the returned value is constant when you navigate from page to page on your document.

Syntax

random() measure value

Argument

None

Code Sample Example

This example displays 10 random numbers between 1 and 20.

Example

define(&x,integer,1)

for(&x,1,1,10)

show(inttostr(floattoint(random()*20)+1))

crlf()

endfor()

Ceil (function)

Returns the smallest integer greater than or equal to the specified measure value.

Syntax

ceil(value) integer value

Argument

value

Measure value. The absolute value of the measure value must be less than the maximum value of an integer in PostScript
(2,147,483,647).

Code Sample Examples

These examples illustrate various applications of ceil().

ceil(-2.8) %Returns -2
ceil(2.8) %Returns 3
ceil(-5.0) %Returns -5

©2010 Objectif Lune Inc - 386 -

String Operator

"+ (operator & function)" (page 387)

+ (operator & function)

Either concatenates two or more strings or adds two numerical expressions, depending on its context.

This description details how to use it to concatenate two strings. See "Add (function)" (page 551) for help using it to add two
numerical expressions.

Syntax

string1 + string2 + ... string

Arguments

string1, string2,...

String values.

Code Sample Example

The following code sample concatenates five strings into a single string that contains the first and last name of a customer.

Code Sample

show('First Name: ' + @(2,12,36) + ' ' + 'Last Name: ' + @(3,12,36))

Boolean Operator Functions

And (Boolean operator function)

Returns true if both specified expressions are true, otherwise it is false.

Syntax

and(expression1, expression2) Boolean value

expression1 and expression2 Boolean value

Arguments

expression1, expression2

Boolean values.

Code Sample Examples

These examples illustrate the possible values for AND.

and(true, false) %Returns false
and(false, true) %Returns false

©2010 Objectif Lune Inc - 387 -

and(false, false) %Returns false
and(true, true) %Returns true

Not (Boolean operator function)

Negates the specified expression. Not to be confused with the neg function: not is a Boolean operator function, not a math-
ematical one.

Syntax

not(expression1) Boolean value

Argument

expression1

Boolean value.

Code Sample Example

This example shows how NOT can be used in place of operators.

Example

define(&x,integer,1) %Define loop variable

for(&x,1,1,10) %Set loop

if(not(&x=5)) %Same as if(&x<>5)

show('This is NOT the 5th line') %Show some text

elseif()

show('This IS the 5th line') %Show alternate

endif()

endfor()

Or (Boolean operator function)

Returns true if either or both specified expressions are true, false otherwise.

Syntax

or(expression1, expression2) Boolean value

expression1 or expression2 Boolean value

Arguments

expression1, expression2

Boolean values.

©2010 Objectif Lune Inc - 388 -

Code Sample Examples

These examples illustrate the possible values for OR.

Example 1

or(true, false) %Returns true

Example 2

or(false, true) %Returns true

Example 3

or(false, false) %Returns false

Example 4

or(true, true) %Returns true

XOr (Boolean operator function)

Returns true if only one of two specified expressions is true, false otherwise.

Syntax

xor(expression1, expression2) ' boolean value

expression1 xor expression2 boolean value

Arguments

expression1, expression2

Boolean values.

Code Sample Examples

These examples illustrate the possible values for XOR.

©2010 Objectif Lune Inc - 389 -

Example 1

xor(true, false) %Returns true

Example 2

xor(false, true) %Returns true

Example 3

xor(false, false) %Returns false

Example 4

xor(true, true) %Returns false

Comparison Operators and Operator Functions

GT (function)

Compares two expressions of any type and returns true if the first is greater than the second, false otherwise. This is the func-
tional equivalent to the > operator.

Syntax

gt(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Examples

Examples 1 and 2 illustrate both ways of comparing two expressions.

Example 1

if(gt(¤t.line, 50))

show('Bottom of page')

endif()

Example 2

©2010 Objectif Lune Inc - 390 -

if(¤t.line > 50)

show('Bottom of page)

endif()

Greater than (>) operator

See "GT (function)" (page 554).

GE (function)

Compares two expressions of any type and returns true if the first is greater than or equal to the second, false otherwise. This
is the functional equivalent to the >= operator.

Syntax

ge(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Examples

Example 1 and Example 2 show both ways of comparing two expressions. Example 2 illustrates the >= operator.

Example 1

if(ge(¤t.line, 50))
show('Bottom of page')

endif()

Example 2

if(¤t.line >= 50)
show('Bottom of page')

endif()

Greater or equal to (>=) operator

See "GE (function)" (page 553).

LT (function)

Compares two expressions of any type and returns true if the first is less than the second, false otherwise. This is the func-
tional equivalent to the < operator.

©2010 Objectif Lune Inc - 391 -

Syntax

lt(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Example

This example shows both ways of comparing two expressions.

Example

if(lt(¤t.line, 15))

show('Top of page')

endif()

%Same statement, using the < operator

if(¤t.line < 50)

show('Top of page')

endif()

Less than (<) operator

See "LT (function)" (page 556).

LE (function)

Compares two expressions of any type and returns true if the first is less than or equal to the second, false otherwise. This is
the functional equivalent to the <= operator.

Syntax

le(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Example

This example shows both ways of comparing two expressions.

Example

if(le(¤t.line, 15))

show('Top of page')

©2010 Objectif Lune Inc - 392 -

endif()

%Same statement, using the <= operator

if(¤t.line <= 50)

show('Top of page')

endif()

Less or equal to (<=) operator

See "LT (function)" (page 556).

Eq (function)

Compares two expressions of any type and returns true if both are equal, false otherwise. This is the functional equivalent of
the = operator.

Syntax

eq(expression1, expression2) boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Examples

Examples 1 and 2 shows both ways of comparing two expressions.

Example 1

if(eq(¤t.line, 33))
show('Middle of page')

endif()

Example 2

if(¤t.line = 33)
show('Middle of page')

endif()

= (operator)

Assign a value to a variable. This provides a more convenient alternative to the set() command. Note that spaces between
the operator and its operands are optional.

Code Samples

©2010 Objectif Lune Inc - 393 -

&price := 18.53
&day[4] := 'Friday'
&last:=True
&mustard := [0,20,90,16]

NE (function)

Compares two expressions of any type and returns true if they are not equal, false otherwise. This is the functional equivalent
to the <> operator.

Syntax

ne(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Examples

Examples 1 and 2 show both ways of comparing two expressions.

Example 1

if(ne(¤t.line, 1))

show('Not a new page')

endif()

Example 2

if(¤t.line <> 1) %Same statement, using the <> operator

show('Not a new page')

endif()

<> (operator)

See "NE (function)" (page 557)

Conversion Operator Functions

©2010 Objectif Lune Inc - 394 -

FloatToCur (function)

Converts a measure expression into a currency value.

Syntax

floattocur(expression) currency value

Argument

expression

Measure value to be converted. The decimal part is rounded down to 2 decimal points.

Code Sample Example

This example converts a floating point value into a currency value.

floattocur(3.263457) %Returns 3.26

FloatToInt (function)

Converts a measure expression into an integer value.

Syntax

floattoint(expression) integer value

Argument

expression

Measure value to be converted. The decimal part is rounded down to a whole number.

Code Sample Examples

These examples illustrate floattoint().

Example 1

floattoint(3.2) %Returns 3

Example 2

floattoint(11.6) %Returns 12

FloatToStr (function)

Converts a measure expression into a string value.

Syntax

floattostr(expression[, precision]) string value

©2010 Objectif Lune Inc - 395 -

Argument

expression

Measure value to be converted.

precision

The number of decimal places to include in the result string.

Code Sample Examples

These examples illustrate floattostr().

Example 1

floattostr(3.14) %Returns 3.14

Example 2

floattostr(11) %Returns 11.0

Example 3

floattostr(34.6453455, 4) %Returns 34.6453

IntToCur (function)

Converts an integer expression into a measure value.

Syntax

inttocur(expression) currency value

Argument

expression

Integer value to be converted.

IntToFloat (function)

Converts an integer expression into a measure value.

Syntax

inttofloat(expression) measure value

Argument

expression

Integer value to be converted.

Code Sample Example

This example uses a loop to draw a series of blue rectangles.

©2010 Objectif Lune Inc - 396 -

Example

define(&x,integer,1)

%Define loop variable

setfillcolor([100,100,0,0])

%Fill blue

for(&x,1,1,10)

%Set up loop

%We must convert &x because rectfill

%expects measure values

rectfill(inttofloat(&x)/2,1,0.1,1)

%Draw rectangle

endfor()

IntToStr (function)

Converts an integer expression into a string value.

Syntax

inttostr(expression) string value

Argument

expression

Integer value to be converted.

Code Sample Example

This example prints the iterations of a loop.

Example

define(&x,integer,1)

%Define loop variable

for(&x,1,1,10)

%Set up loop

show('Iteration ' + inttostr(&x))

%Show text

crlf()

%Skip line

©2010 Objectif Lune Inc - 397 -

endfor()

StrToCur (function)

Converts a string value into a currency value.

Syntax

strtocur(string) currency value

Argument

string

String value to convert.

StrToFloat (function)

Converts a string into a measure value.

Syntax

strtofloat(string) measure value

Argument

string

String value to convert.

Code Sample Example

This example reads a column of 6 values then converts the values to floating point values and then adds the ir values to the
&total variable. The total value is subsequently converted back to a string and the result is printed.

Example

define(&total,measure,0.0)

define(&x,integer,0)

for(&x,1,1,6)

set(&total,&total+strtofloat(@(&x,10,18)))

endfor()

show(floattostr(&total))

StrToInt (function)

Converts a string into an integer value.

©2010 Objectif Lune Inc - 398 -

Syntax

strtoint(string) integer value

Argument

string

String value to convert.

Code Sample Example

This example reads a column of 6 values then converts the values to integers and then adds the integer to the &total variable.
The total value is subsequently converted back to a string and the result is printed.

Example

define(&total,integer,0)

define(&x,integer,0)

for(&x,1,1,6)

set(&total,&total+strtoint(@(&x,10,18)))

endfor()

show(inttostr(&total))

Loop Structures

For… EndFor (procedure)

This command structure allows a series of nested commands to be repeated a specified number of times. Each for statement
must have a corresponding endfor statement in order for PlanetPress Talk to know which commands to include in the loop.
Note that you cannot increment the counter for a for() loop, inside the loop.

If you open a document created a with a version of PlanetPress earlier than 5.2.0, and if that document includes a for() loop
with an increment greater than 1, you will notice that the loop is executed one less time than with your older version software
both in PlanetPress itself and when you use the Optimized PostScript Stream option. The behavior on printers (using the Printer
Centric option), on the other hand, remains unchanged.

Syntax

for(varname, startvalue, increment, stopvalue)

…

endfor()

Arguments

varname

©2010 Objectif Lune Inc - 399 -

Name of the variable to use for iterations. The variable must already exist.

startvalue

Integer value to initialize varname.

increment

Integer value used to increment varname after each iteration.

stopvalue

Integer value after which iterations stop.

Code Sample Example

This example simply prints 5 lines of text.

To cycle backwards through values, make startvalue larger than stopvalue, and specify a negative increment.

Example

define(&x,integer,1)
for(&x,1,1,5)

show('Line nº '+inttostr(&x))
crlf()

endfor()

Repeat... Until (procedure)

Repeat a sequence of commands until a condition is true. It is similar to a for... endfor loop in that you can nest the loops. It is
different from a for... endfor loop in that the loop always executes at least once, and that you tie the number of times the
loop repeats to a Boolean condition. For example youmight tie the number of times the loop repeats to the occurrence of a
piece of data in the data stream.

Syntax

repeat

…

until(expression)

Argument

expression

Boolean value. If it evaluates to true, the loop ends. If it evaluates to false, the loop repeats.

Code Sample Example

This example prints the string ‘Cheers’ ten times, one underneath the other, with a dashed line above and below the ten
instances.

Example

show('---------------')

crlf(0.16)

©2010 Objectif Lune Inc - 400 -

&count := 1

repeat

&count := &count + 1

show('Cheers')

crlf(0.16)

until(&count = 10)

show('---------------')

crlf(0.16)

Search … EndSearch (procedure)

This command structure allows a series of nested commands to be repeated as long as a specific string of characters (the
search string) is found within another string (the target string). After each iteration, the target string contains all the data
between occurrences of the search string, excluding the search string. Once the loop is over, target contains the remaining
characters of the original data.

Syntax

search(target, search)

…

endsearch()

Arguments

target

Name of a variable of type string in which to perform the search.

search

String value to search for.

Code Sample Example

This example splits a string delimited with semi-colons.

In theOnReadDataPage event of the user-defined emulation, the&str system variable contains each new line of data
being fed to the document. Also, do not assign anything to the variable while inside the search-endsearch loop; it will get
overwritten.

Example

define(&v1,string,'This;is;a;test') %Create the variable

search(&v1,';') %Start loop

show(&v1) %Show token

crlf() %Skip line

©2010 Objectif Lune Inc - 401 -

endsearch()

show(&v1) %Show remaining text

Exit (procedure)

Exits from a for...endfor or repeat...until loop.

Syntax

exit()

Argument

None

Code Sample Example

This example shows how to break from a loop when a specific word, in this case ’Invoice,’ is found somewhere on the data
page.

define(&x,integer,1)
for(&x,1,1,¤t.lpp)

if(pos('Invoice',@(&x,1,80))>0)
exit()

endif
endfor()

Condition Structures

If … ElseIf… EndIf (procedure)

This command structure can define up to two conditional blocks. Statements nested within the first block are executed only if
the condition specified in the if statement returns true. If it returns false, the program branches to the first statement in the sec-
ond block, if one has been defined using the elseif statement. Otherwise, control flows to the first statement following the endif
command.

With PlanetPress Suite version 7.0, the elseif statement has been optimized to evaluate an argument, exactly like an if state-
ment, and elseif statements from other programming languages. In order to complete the if...elseif...endif command struc-
ture, however, an else statement was also added, acting exactly like the previous, empty elseif. Note that the use of the else
statement is strongly recommended, as it is optimized by comparison to the elseif statement. Also note that documents
created with previous versions and using the if...elseif...endif structure will not be updated, for full backward compatibility.

Syntaxes

Prior to version 7.0

if(condition)

…

©2010 Objectif Lune Inc - 402 -

elseif()

…

endif()

Version 7.0 and above

if(condition1)

...

elseif(condition2)

...

else()

...

endif()

Argument

condition, condition1, condition2

Value of type Boolean to evaluate.

Code Sample Example

This example simply prints 5 lines of text, selecting fonts according to line numbers.

Example prior to version 7.0

define(&x,integer,1)

%Define loop variable and then set up loop

for(&x,1,1,5)

if((&x mod 2)=0)

%If &x is an even number

setstyle(&bluefont)

%use the blue font

elseif() %otherwise

setstyle(&Default)

%use the default font

endif()

show('Some text to display')

%Display the text

crlf()

%Skip to the next line

©2010 Objectif Lune Inc - 403 -

endfor()

Example with version 7.0

define(&x, integer, inttostr(@(1, 1, 10)))

if(&x = 1)

setstyle(&bluefont)

elseif(&x = 2)

setstyle(&redfont)

else()

setstyle(&default)

endif()

Related topics:

l "If (function)" (page 554)

If (function)

Evaluates an expression and returns one of two specified values according to the results of the evaluation.

Syntax

if(expression, trueresult, falseresult) any type

Arguments

expression

Boolean value. If it evaluates to true, the function returns the contents of trueresult, otherwise it returns the contents of falsere-
sult.

trueresult, falseresult

Values of any type, as long as both are of the same type. The return value of the function is therefore of the same type as
trueresult and falseresult.

Code Sample Example

This example changes the text to display according to the current value of a variable.

©2010 Objectif Lune Inc - 404 -

Example

show(if(&pagenumber=1,'Customer Copy','Store Copy'))

Procedures

% (procedure)

Comments out the line. This is useful for embedding documentation in your code, making it easier to read andmaintain. It is
also useful during debugging, for commenting out lines of code you do not want to execute.

Comments must not appear in the first line of the script you enter in the PlanetPress Talk Editor.

Syntax

%… comment….

Argument

None

Code Sample Example

This example illustrates comments in PlanetPress Talk code.

define(&x,integer,1)
% Creates a new local variable named x that is an
% integer and has a value of 1. The variable is used
% in a loop
for(&x,1,1,10)

show(inttostr(&x))
endfor()

@name (function/procedure)

Executes a global function or procedure created using the function() command.

The @ character can be the beginning of a data selection, a page call or a procedure or function call.

Syntax

@functionname(parameters) integer, measure, currency, string, Boolean or no return value

Arguments

functionname

String value specifying the name of the function or procedure.

©2010 Objectif Lune Inc - 405 -

parameters

Comma separated list of parameters required by the specified function or procedure.

@page (procedure)

Executes the content of the specified document page, as if it were part of the calling page. The content of the page in this case
excludes the paper handling properties of the page. The height and width of the page content thus becomes the height and
width of the group that would result if you created a single group of all of the page elements. If you want to include the paper
handling properties in the page execution, use the $element syntax instead.

The @ character can be the beginning of a data selection, a page call or a procedure or function call.

The@page() and execpage() commands are functionally equivalent. However, the execpage() command has the
added ability of calling variable page names.

Syntax

@pagename()

Arguments

pagename

String value specifying the name of the page you want to execute.

Example

The following two lines of code are functionally equivalent and display the content of a page namedMyFirstPage:

@MyFirstPage
execpage('MyFirstPage')

$element (procedure)

Executes the specified document element (object, page, resource, etc.). Note that in the case of a page, this procedure
executes both the content of the page and the paper handling properties of the page. The height and width of the calling page
are therefore set to the same values as those set by the called page.

Recall that every element in a document has a unique name. You can therefore call any element in the document at any time.
For example, the first page of a medical record documentmay contain a header listing all of the patient information, while
other pages in the document scale that same header to fit in the lower left corner of each page. Any modification you sub-
sequently make to the header is automatically reflected throughout the document.

Syntax

$element

Arguments

element

String value specifying the name of the element you want to execute.

©2010 Objectif Lune Inc - 406 -

Examples

Example 1 illustrates basic usage of the syntax.

$my_square
$page1
$box5

Example 2 scales the $header element to one quarter of its original size, and rotates it 90 degrees.

scale(0.25, 0.25)
setangle(90)
$header

Example 3 creates a thumbnail of each of the first two pages and positions the thumbnails side-by-side.

scale(0.10, 0.10)
$page1
translate(8.5, 0)
$page2

Arc and ArcN (procedures)

Arc() draws an arc in a counter-clockwise direction, while ArcN() draws an arc in a clockwise direction. If there is a current
point set, the command draws a straight line from the current point to the start point of the arc. Whether or not a current point
is set when the command executes, after execution the current point is the end point of the arc.

You define the arc you want to draw by specifying the x and y coordinates of the center of the circle, the radius of the circle,
and the start and end points for the arc. You specify each of the start and end points of the arc as an angle; the command uses
the angle to position the point. For example, to position the start point, the command draws an invisible line at the specified
start angle from the center of the circle, the length of the radius; it positions the start point at the end of that line.

Example using Arc() Example using ArcN().

Example of an arc drawn from start point D to end point F: A. Center of circle (x,y) B. Radius C. Start angle D. Start point of arc
E. End angle F.

©2010 Objectif Lune Inc - 407 -

Syntax

arc(x, y, arc_length, start_angle, end_angle)

Arguments

x, y

Measure values representing the x and y coordinates respectively of the center of the circle.

arc_length

Measure value representing the length of the arc.

start_angle

Measure value representing the start angle, in degrees, for the arc. Degrees are relative to a standard X, Y axis, with a value
of 0 degrees lying flush with the X axis. The value of the start angle can be either positive or negative.

end_angle

Measure value representing the end angle, in degrees, for the arc. Degrees are relative to a standard X, Y axis, with a value of
0 degrees lying flush with the X axis. The value of the end angle can be either positive or negative.

Code Sample Examples

Example 1

Example 1 draws a 180 degree arc 3 inches in length. The center of the circle is at (0,0). The rmoveto() command that pre-
cedes the arc() command ensures the current point is set at the center of the circle and prevents a line from being drawn from
the current point to the start point of the arc.

rmoveto(3,0)
arc(0,0,3,0,180)
stroke()

Example 2

Example 2 draws an arc 2.5 inches in length. The center for the arc is four inches from the left edge of the page and three
inches from the top edge. The arc starts at 30 degrees and ends at 60 degrees. The rmoveto() command that precedes the
arc() commandmoves the current point to the center of the circle, resulting in a line that is drawn from the center of the circle
to the start point of the arc.

rmoveto(4,3)
arc(4,3,2.5,30,60)
stroke()

BeginDocument/EndDocument (procedure)

Delimits the boundaries of a metadata document within a PlanetPress Design document.

Syntax

begindocument()

or

©2010 Objectif Lune Inc - 408 -

enddocument()

Arguments

None

Code Sample Examples

if (&is_FirstPage)
begindocument()

EndIf()
if(&is_LastDocPage)

enddocument()
EndIf()

BeginGroup/EndGroup (procedure)

Delimits the boundaries of a metadata group within a PlanetPress Design document.

Syntax

begingroup()

or

endgroup()

Arguments

None

Code Sample Examples

if(&is_FirstInvPage)
begingroup()

EndIf()
if(&is_LastInvPage)

endgroup()
EndIf()

BeginParagraph … EndParagraph (procedure)

Delimits a paragraph of formatted text.

The beginparagraph … endparagraph structure can contain only the following commands: setstyle(), setstyleext(),
show(), and% (indicating a commented line). Any other command included within this structure will yield unpredictable
results. Amargin() command should precede the beginparagraph...endparagraph structure, and each variable you ref-
erence within the structure must have its own procedure., as demonstrated in the second of the examples below. Also note
that the first command within a beginparagraph...endparagraph structure must be the setstyle() command.

No crlf procedures are permitted inside a paragraph structure, since crlfs are paragraph delimiters.

If you do not need to change fonts or use variables within a paragraph, it is strongly recommended you use the text object in
PlanetPress, as PlanetPress optimizes text objects to improve performance.

©2010 Objectif Lune Inc - 409 -

When a long string containing no spaces between its characters appears in the context of a show() command and the begin-
paragraph ... endparagraph() command, the line of text will not wrap. The same is true for a text object; no wrapping
occurs when a long string has no spaces between its characters.

Note that when a Text object is converted to PlanetPress Talk, an extra argument is is added to the beginparagraph … end-
paragraph syntax. Ignore this argument since it is strictly for internal use.

Syntax

beginparagraph(lmargin, rmargin, firstindent, align, leading,[opt, forcedwordwrap])

…

endparagraph()

Arguments

lmargin

Measure value specifying the left margin, in inches, of the text relative to the left border of the object.

rmargin

Measure value specifying the right margin, in inches, of the text relative to the left border of the object.

firstindent

Measure value specifying the indent, in inches, of the first line of the paragraph, relative to the lmargin parameter.

align

String value specifying the text alignment within the paragraph. Possible values are 'left', 'right', 'center' and 'leftright' (for
both left and right justification of text).

leading

Measure value specifying the amount of vertical space, in inches, between each line of the paragraph.

opt

Optional boolean value used internally. Default value is false.

forcedwordwrap

Optional boolean value that forces wordwrap at the defined paragraph size. Default value is false.

Code Sample Examples

Example that displays a paragraph aligned to the right.

Example 1

beginparagraph(1,3,0,'right',0.16)
setstyle(&Default)
show('This long line of text should wrap around')
show('This long line of text should wrap around')

endparagraph()

Example that shows how to include a variable within a formatted paragraph.

©2010 Objectif Lune Inc - 410 -

Example 2

define(&var,string,'very')
beginparagraph(1,3,0,'left',0.16)

setstyle(&Default)
show('This ')
show(&var)
show(' long line of text should wrap around')

endparagraph()

BeginUTF8Paragraph … EndUTF8Paragraph (procedure)

Delimits a paragraph of formatted UTF8 text.

This procedure is based on BeginParagraph… EndParagraph (procedure), with the following differences:

l ShowUTF8 (procedure) must be used instead of show()
l SetStyleExt (procedure) must use a style that has been associated with the True Type Font "TT Host UTF8Arabic".
l Only UTF8 text can be displayed in a PlanetPress Talk object defined using the beginUTF8paragraph …
endUTF8paragraph structure. Non-UTF8 static text should therefore be converted to its UTF8 reference using the
Ansi/UTF8 Converter (place the cursor within the string and press CTRL+N). Variable text should be converted using
MapUTF8 (function).

Syntax

beginUTF8paragraph(lmargin, rmargin, firstindent, align, leading, majormode, [forcedwordwrap])

% Your Paragraph data here

endUTF8paragraph()

Arguments

Same as BeginParagraph… EndParagraph (procedure).

Code Sample Example

This example displays a justified paragraph with the UTF8 text running from right to left.

Example

setlinewidth(0.007)moveto(0,0)
rlineto(&width,0)
rlineto(0,&height)
rlineto(neg(&width),0)
rlineto(0,neg(&height))
closepath()
stroke()
moveto(&width/2,&height/18)
BeginUTF8Paragraph(0.0000,&width,0.0000,'leftright',0.1667,'rtl')

SetStyleExt(&Style1,12.0000,0,[100],100)
ShowUTF8('\u0623\u0633\u0627\u0633\u064B\u0627\u060C')

EndUTF8Paragraph()

©2010 Objectif Lune Inc - 411 -

Breakpoint (procedure)

Stops the execution of a PlanetPress Talk object when the specified expression is True. This breakpoint is effective only when
running in debugmode in the PlanetPress Talk editor.

Syntax

breakpoint(expression1)

Argument

expression1

Boolean value.

Code Sample Example

This example sets up a loop, stops the loop on its 5th iteration, and then displays the value.

Example

define(&x,integer,1)for(&x,1,1,10)
breakpoint(&x = 5)
show(inttostr(&x))

endfor()

CallPPD (procedure)

Calls a section of the PostScript Printer Description (PPD) file and executes it on the printer. Use this to set printer options such
as the input tray or duplexing options. The tokens and subtokens you use as arguments with this functionmust be defined in
the PPD file associated with your document or page in the document’s or page’s Basic Attributes. PlanetPress searches the PPD
file for the token-subtoken combination and then prompts the printer to execute the corresponding code.

Syntax

callppd(token, subtoken)

Arguments

token

This is the string to search for in the PPD file (for example, Duplex).

subtoken

This is string to search for that is a setting for the token (for example, None).

Example

if((&Condition1) or (&Condition2))
callppd("Tray", "2")

elseif()
if((&Condition3) or (&Condition4))

callppd("Tray", "3")
elseif()

©2010 Objectif Lune Inc - 412 -

callppd("Tray", "4")
endif()

endif()

CharPath (procedure)

Creates a path in the shape and size of a text string, in the currently active style.

Syntax

charpath(string)

Argument

None

Example

This example creates a path of the word "Text" and applies it as a clipping path on the coffee_time bitmap. This creates the
word Text where the filling texture is the cofee_time image.

moveto(&width / 2, &height / 2)
charpath('TEST')
clippath()
moveto(0,0)
showbitmap('coffee_time',&document.picturecolorres,&width,&height)

Result:

ClearPage (procedure)

Clears the current data page and loads the next one. This command should only be used before reading the next page of data
from the input stream. It is strictly for use within a User-Define Emulation and generally follows DoForm (procedure).

Syntax

clearpage()

Argument

None

©2010 Objectif Lune Inc - 413 -

Example:

This example the default User-Defined Emulation that corresponds to a Line Printer data file.

search(&str,'\014')
set(¤t.line,¤t.line + 1)
store(¤t.line,&str)
doform()
clearpage()

endsearch()
set(¤t.line,¤t.line + 1)
store(¤t.line,&str)
if(ge(¤t.line,¤t.lpp))

doform()
clearpage()

endif()

ClipPath (procedure)

The Clippath() command takes the last drawn path and selects it as the clipping region. Any subsequent drawing will only be
visible inside that clipping region. The clipping will stop at the next call to GRestore(). All PlanetPress objects are natively
wrapped in a GSave/GRestore(), so clipping between objects will not work.

Syntax

clippath()

Argument

None

Example

This example displays the coffee_time image partially, where only a square defined by the rlineto() is visible.

moveto((2.0000/(6.6529)) * &width, (0.2000/(4.9897)) * &height)
rlineto(0, (3.0000/(4.9897)) * &height)
rlineto((3.0000/(6.6529)) * &width, 0)
rlineto(0, neg((3.0000/(4.9897)) * &height))
closepath()
clippath()
moveto(0, 0)
showbitmap('coffee_time',&document.picturecolorres,&width,&height)

ClosePath (procedure)

Closes any open path and completes the current shape, if need be, by drawing a line from the last point in the shape to the
starting point. This ensures the shape is closed, thus enabling filling to take place if specified. Only closed shapes can be filled.

Syntax

closepath()

©2010 Objectif Lune Inc - 414 -

Argument

None

Code Sample Example

The first line of code sets the starting point of a triangle, the second and third lines of code draw the first and second lines (or
sides) of the triangle, the fourth line of code closes the triangle shape by implicitly issuing amoveto command.

Example

moveto(1.0,1.0)lineto(1.5,2.0)
lineto(0.5,2.0)
closepath()
fill()

CRLF (procedure)

Moves the current point by simulating a carriage return/line feed combination. The horizontal position is reset to the value of
the current left margin, while the vertical position is offset by the leading value specified.

Syntax

crlf([leading])

Argument

leading

Measure value setting the vertical distance, in inches, between two lines. If you do not provide this argument, the value by
default is 0.167 inches, which is roughly equivalent to a 6 LPI (lines per inch) setting.

Code Sample Example

This example demonstrates how to change the vertical spacing of lines within an object.

Example

margin(1,1)
show('These lines are displayed')
crlf(0.125)
show('at 8 LPI.')
crlf(0.5)
show('While these lines are displayed')
crlf(0.5)
show('at 2 LPI')

CurveTo/RCurveTo (procedure)

Creates a Bezier curve. Bezier curves are shapes defined using 4 points: the starting and ending points are physical posi-
tioning points while the second and third points are control points on the curve. In PlanetPress Talk, the starting point is implicit
and automatically set to the current cursor position. The first control point defines the direction the curve takes whenmoving

©2010 Objectif Lune Inc - 415 -

from the starting point, and before shifting to the second control point, which defines a second curve before reaching the end-
ing point.

A complete explanation of Bezier curves is beyond the scope of this document. Feel free, however, to try out this command
using the PlanetPress Talk Editor in PlanetPress in order to study its possibilities.

To draw a simple curve, use the same (x,y) coordinates for both control points.

Syntax

curveto(x1, y1, x2, y2, x3, y3)

Arguments

x1, y1, x2, y2, x3, y3

Pairs of measure values representing the horizontal/vertical position, in inches, of each point defining the Bezier curve. When
using rcurveto, these values are relative to the current point of origin. When using curveto, they are absolute values.

Code Sample Example

This example draws a triangle with a twisted bottom side. The triangle has a blue outline and is filled with yellow.

Example

setstrokecolor([100,100,0,0])
setfillcolor([0,0,100,0])
moveto(1,1)
lineto(1.5,2)
curveto(1,1,1,3,0.5,2)
closepath()
strokeandfill()

Result:

Define (procedure)

This command creates a new local variable, or redefines an existing one. The define procedure must appear before the var-
iable is actually used. PlanetPress Talk scripts require all variables to be defined either as a global variable in your document,
or a local scope variable within your PlanetPress Talk script.

©2010 Objectif Lune Inc - 416 -

Syntax

define(name, type, value)

Arguments

name

The name of the variable, prefixed with the ampersand (&) character. The name must conform to the rules for names
described in "Names" (page 221).

type

Constant value specifying the variable type, either integer, measure, string, Boolean, or an array type. The array types are
color, arrayinteger, arraymeasure, arraycurrency, arrayBoolean, arraystring or directory. Once a type is assigned to a var-
iable, it cannot be changed, unless the variable is redefined.

value

An initial value for the variable, of the same type as the variable (for example if the variable is of type integer, this value must
be an integer). This value can also be a valid PlanetPress Talk expression. In the case of any array variable other than a color
array or an array of type directory, the initial value can be either the number of elements you want the array to contain, or the
set of values you want the array to contain. In the former case you assign values to the array elements in subsequent com-
mands. In the latter case, you separate each value by a comma, and enclose the complete set of elements in square brackets.
In the case of a string array, youmust also quote each of the array elements. In an array of type directory, you specify the
pathname to the folder and the file name filter you want to apply to each of the files in that folder; this in turn determines the
number of elements in the array.

Code Sample Example

define(&customer_name, string, 'Smith')
define(&invoice_number, integer, strtoint(@(1,1,10)))
define(&left_margin, measure, 1.5)
define(&is_bottom, boolean, (¤t.line > 50))
define(&my_array,arrayinteger,[12,3,76,109,4])
define(&my_array,arrayinteger, 5)
define(&prices,arraycurrency, 6)
define(&greetings,arraystring,['hello','bonjour','ola'])
define(&mustard,color,[0,12,84,16])
define(&image_paths, directory, 'c:\\images*.JPG')
define(&cost, currency, 0.00)

DefineData (procedure)

Change the active data file to the one specified in the path parameter.

Changing the data file in the middle of document processing can have unexpected consequences and should only be
used if you understand the implications of doing so.

Syntax

definedata(path)

©2010 Objectif Lune Inc - 417 -

Argument

path

String value specifying the path of the data file.

DefineImageIndex (procedure)

Defines a PlanetPress Search index term. PlanetPress Image uses this information to generate the .PDI file it creates for each
PDF file it creates. You use SetImageIndex (procedure) to associate a data value with the index term.

Syntax

defineimageindex(name, [length])

Arguments

name

String value specifying a name for the index term.

length

String value specifying a length for the index term.

Code Sample Examples

Example 1

This example defines the index term 'PONumber' and assigns it a length of 8 characters. The PDI file generated by PlanetPress
Image contains the line: ~IndexName=PONumber,8.

defineimageindex('PONumber', '8')

Example 2

This example defines the same index term, this time without defining a length for the term. In this case the line in the PDI file
becomes: ~IndexName=PONumber

defineimageindex('PONumber')

DoForm (procedure)

Runs the current document. This command is usually issued once a complete data page has been received and committed to
buffer. This command should only be used before reading the next page of data from the input stream. It is strictly for use
within a User-Define Emulation.

Syntax

doform()

Argument

None

©2010 Objectif Lune Inc - 418 -

Code Sample Example

This example is an extract from a user-defined emulation. The search() command looks for a formfeed and adds its line
number. The line number is stored as a string and the document is run. The data page is cleared and the search is over.

Example

search(&str,'\014')
set(¤t.line,¤t.line + 1)
store(¤t.line,&str)
doform()
clearpage()

endsearch()

endpageset (procedure)

Ends any page set and subset when printing using a Windows driver. When creating a VDX PlanetPress Design document, this
command signals the end of a booklet rather than a simple page subset.

Syntax

endpageset()

Argument

None

Code Sample Examples

In bothmodes, the command is called the same way.

% Print using a Windows driver mode
if(&is_CA)

endpageset()
selectprinter('MyCanadianPrinter')

else
endpageset()
selectprinter('MyOtherPrinter')

endif()

% Work with VDX
if(&is_LastBookletPage)

endpageset()
endif()

ExecPage (procedure)

Executes the content of the specified document page, as if it were part of the calling page. The content of the page in this case
excludes the paper handling properties of the page. If you want to include the paper handling properties in the page execution,
see "$element (procedure)" (page 613).

The execpage() and@page() commands are equivalent.

©2010 Objectif Lune Inc - 419 -

Syntax

execpage(pagename)

Argument

pagename

String value specifying the name of the page to run. The page must exist, and its name is case insensitive.

Code Sample Example

In this example, the current page executes pages 2, 3 or 4 according to a data selection. This allows you to create pages of
'subroutines' that can be called from any other page.

Example

define(&x,integer,strtoint(@(7,4,8)))
if(&x < 1000)

execpage('PAGE1')
elseif()

if(&x > 1000)
%This is equivalent to execpage('PAGE3')

@PAGE3
elseif()

execpage('PAGE2')
endif()

endif()

Exit (procedure)

Exits from a for...endfor or repeat...until loop.

Syntax

exit()

Argument

None

Code Sample Example

This example shows how to break from a loop when a specific word, in this case ’Invoice,’ is found somewhere on the data
page.

define(&x,integer,1)
for(&x,1,1,¤t.lpp)

if(pos('Invoice',@(&x,1,80))>0)
exit()

endif
endfor()

©2010 Objectif Lune Inc - 420 -

Fill (procedure)

Fills the current closed shape, using the colour specified with the setfillcolor command. Only the inside of the shape is filled,
not its outline. To fill and outline the shape, use strokeandfill command instead. If you only want to outline the shape, use
stroke. Only closed shapes can be filled.

Syntax

fill()

Argument

None

Code Sample Example

This example draws a yellow filled triangle.

Example

setfillcolor([0,0,100,0])
moveto(1,1)
lineto(1.5,2)
lineto(0,2)
closepath()
fill()

For… EndFor (procedure)

This command structure allows a series of nested commands to be repeated a specified number of times. Each for statement
must have a corresponding endfor statement in order for PlanetPress Talk to know which commands to include in the loop.
Note that you cannot increment the counter for a for() loop, inside the loop.

If you open a document created a with a version of PlanetPress earlier than 5.2.0, and if that document includes a for() loop
with an increment greater than 1, you will notice that the loop is executed one less time than with your older version software
both in PlanetPress itself and when you use the Optimized PostScript Stream option. The behavior on printers (using the Printer
Centric option), on the other hand, remains unchanged.

Syntax

for(varname, startvalue, increment, stopvalue)

…

endfor()

Arguments

varname

Name of the variable to use for iterations. The variable must already exist.

startvalue

Integer value to initialize varname.

increment

©2010 Objectif Lune Inc - 421 -

Integer value used to increment varname after each iteration.

stopvalue

Integer value after which iterations stop.

Code Sample Example

This example simply prints 5 lines of text.

To cycle backwards through values, make startvalue larger than stopvalue, and specify a negative increment.

Example

define(&x,integer,1)
for(&x,1,1,5)

show('Line nº '+inttostr(&x))
crlf()

endfor()

Function @name (procedure)

Defines a new PlanetPress Talk function or procedure. If you define a function that you want to return a value, you assign that
value to the predefined variable&result on the last line of the function definition. You call the function or procedure you
define using the@name() command. See "@name (function/procedure)" (page 563).

You can reference a global function from within another global function only if the global function you are referencing already
exists.

You cannot reference a function from within itself, so recursive functions are not possible within PlanetPress Talk.

Syntax

Syntax for a function that returns a value:

function@name(arglist): type

...

&result := return-_value

endfunction()

Syntax for a function that does not return a value (procedure):

function@name(arglist)

...

endfunction()

Arguments

name

©2010 Objectif Lune Inc - 422 -

Name to use for the function, prefixed with the @ character. The name must conform to the rules for names described in
"Names" (page 221). It is good practice to be careful naming functions that you define in different documents, to ensure that if
at some point you want to copy code between documents, the names of functions do not conflict.

arglist

List of arguments the function requires, where each element in the list has the syntax varname : type. For example, &date :
string. An ampersand always precedes the first letter of varname. A comma separates each element in the list. Note that all
arguments are pass by value (as opposed to pass by reference). Pass by value means that the function you define cannot mod-
ify any of the arguments it receives. Any modifications youmake to an argument within the body of the function are made to a
local copy, and do not affect the original.

type

Type of value (integer, measure, currency, string, Boolean) the function returns.

Code Sample Example

This example displays a string.

function @showtext(&mystring: string)
moveto(1,1)
show(&mystring)

endfunction()

Code Sample Example

This example illustrates a procedure that creates a 3D pie chart.

Example

function @_3DPie(&W:measure, &H:measure, &HB:measure, &S:measure, &E:measure,
&L:string, &c:color)

%==
% &W is the total width of the pie chart
% &H is the total height of the pie chart
% &HB is the height of the lower band
% &S is the starting angle (0..360)
% &E is the ending angle (0..360 and bigger than &S)
% &L is the label text
%==
%Local variables
%==
define(&SB,measure,0)
define(&EB,measure,0)
define(&Scaling,measure,0)
define(&R,measure,&W/2)
%==
&Scaling := (&H-&HB)/&W
gsave()
if(&Scaling<0.01)

&Scaling := 0.01
endif()

©2010 Objectif Lune Inc - 423 -

if(&Scaling>1)
&Scaling := 1

endif()
scale(1,&Scaling)
setstyle(&Style1)
&HB := &HB / &Scaling
translate(&R,&R)
if(&E > 180)

if(&E > 360)
&EB := 360

elseif()
&EB := &E

endif()
%===
if(&S < 180)

&SB := 180
elseif()

&SB := &S
endif()
%===
set-

fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

moveto(cos(&SB) * &R,neg(sin(&SB) * &R))
rlineto(0,&HB)
arc(0,&HB,&R,&SB,&EB)
rlineto(0,neg(&HB))
closepath()
strokeandfill()

endif()
%==
setfillcolor(&c)
pie(0,0,&R,&S,&E)
strokeandfill()
&SB := (&S+&E)/2
%==
if(gt(&SB,180))

margin(cos(&SB) * &R,neg(sin(&SB) * &R)+&HB+(0.2/&Scaling))
elseif()

margin(cos(&SB) * &R,neg(sin(&SB) * &R)-(0.05/&Scaling))
endif()
%==
scale(1,1/&Scaling)
if(and(gt(&SB,90),lt(&SB,270)))

showright(&L+' ')
elseif()

show(' '+&L)
endif()
grestore()

©2010 Objectif Lune Inc - 424 -

GetNextDataPage(procedure)

Advance to the next data page of the sample data file. Note that this commandmay have unpredicted behavior if not used cor-
rectly in documents that use a user-defined emulation.

This command should only be executed when printermode is not in designmode. The result will be incorrect on screen, but
there will be no
unexpected behaviors. Therefore, the only solution is for end-users to make sure the command doesn't get executed while in
Designmode by bracketing it within a if(&printermode<>0) ... endif()
structure.

Syntax

getnextdatapage()

GRestore (procedure)

This command restores all system parameters previously saved with the gsave command. If no gsave command was issued
previously, the results are unpredictable. For more information, refer to the gsave command.

Syntax

grestore()

Argument

None

Code Sample Example

See "GSave (procedure)" (page 567).

GSave (procedure)

This command saves all current system parameters, which can later be restored using the grestore command. By bracketing
parts of your PlanetPress Talk programs with gsave/grestore commands, you canmake sure the current system state is
preserved and remains unaffected by whatever operations your program executes. For instance, each PlanetPress object,
once converted to its PlanetPress Talk scripting language equivalent, begins with a gsave command and ends with a gre-
store, thus ensuring objects do not interfere with each other, or with the system.

The system parameters gsave saves include current line width, current stroke color, and current fill color.

Syntax

gsave()

Argument

None

Code Sample Example

In this example, the current position is set first and saved.

©2010 Objectif Lune Inc - 425 -

gsave and grestore are required to be issued in pairs, meaning that you need the equal number of gsave and grestore
commands to run in any given object. However, an uneven number of commands can be located in the code, if some of them
are within IF statements, so that when the code is actually run, the pairing occurs correctly in all instances.

Example

moveto(1, 1)

%Position is now 1,1

gsave()

%Save current state

lineto(2, 1)

%Position is now 2,1

lineto(2, 2)

%Position is now 2,2

grestore()

%Restore previous state: position is now 1,1

If … ElseIf… EndIf (procedure)

This command structure can define up to two conditional blocks. Statements nested within the first block are executed only if
the condition specified in the if statement returns true. If it returns false, the program branches to the first statement in the sec-
ond block, if one has been defined using the elseif statement. Otherwise, control flows to the first statement following the endif
command.

With PlanetPress Suite version 7.0, the elseif statement has been optimized to evaluate an argument, exactly like an if state-
ment, and elseif statements from other programming languages. In order to complete the if...elseif...endif command struc-
ture, however, an else statement was also added, acting exactly like the previous, empty elseif. Note that the use of the else
statement is strongly recommended, as it is optimized by comparison to the elseif statement. Also note that documents
created with previous versions and using the if...elseif...endif structure will not be updated, for full backward compatibility.

Syntaxes

Prior to version 7.0

if(condition)

…

elseif()

…

endif()

Version 7.0 and above

©2010 Objectif Lune Inc - 426 -

if(condition1)

...

elseif(condition2)

...

else()

...

endif()

Argument

condition, condition1, condition2

Value of type Boolean to evaluate.

Code Sample Example

This example simply prints 5 lines of text, selecting fonts according to line numbers.

Example prior to version 7.0

define(&x,integer,1)

%Define loop variable and then set up loop

for(&x,1,1,5)

if((&x mod 2)=0)

%If &x is an even number

setstyle(&bluefont)

%use the blue font

elseif() %otherwise

setstyle(&Default)

%use the default font

endif()

show('Some text to display')

%Display the text

crlf()

%Skip to the next line

endfor()

©2010 Objectif Lune Inc - 427 -

Example with version 7.0

define(&x, integer, inttostr(@(1, 1, 10)))

if(&x = 1)

setstyle(&bluefont)

elseif(&x = 2)

setstyle(&redfont)

else()

setstyle(&default)

endif()

Related topics:

l "If (function)" (page 554)

InStream... EndInStream (procedure)

Ceate an alias for a resource file (image, data file, attachment, etc.). You can then reference the resource file using the alias
instead of the path. This eliminates the need to repeat a path inmore than one place in your code, and thus makes your code
easier to maintain. For example, if you change the resource, you need only modify the path in the instream() command,
rather than everywhere you reference the original resource.

You cannot use the instream() command inside any function you define using function @name().

Syntax

instream external resname

path

endinstream()

If you want to create a reference to a text document (for example a sample data file), replace "external" by "cleartext.”

Argument

resname

String value specifying the alias to use to refer to this resource file.

path

String value specifying the path of the resource file.

©2010 Objectif Lune Inc - 428 -

Code Sample Example

This example creates the alias 'photo' that refers to the resource file c:\images\employees\JAdler.bmp.

Example

instream external photo

c:\images\employees\JAdler.bmp

endinstream()

%You can then reference the resource using the alias

showbitmap('photo',72,1,1)

LineTo/RLineTo (procedure)

Draws a line starting from the current point up to the specified coordinates.

Syntax

lineto(x, y)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the ending point of the line. When using rlineto,
these values are relative to the current point of origin. When using lineto, they are absolute values.

Code Sample Example

This example draws an empty triangle with a blue outline.

Example

setstrokecolor([100,100,0,0]) %Set pen colour to blue

moveto(1,1) %Set starting point

lineto(1.5,2) %Draw first line

lineto(0.5,2) %Draw second line

closepath() %Close shape

stroke() %Draw shape

©2010 Objectif Lune Inc - 429 -

Margin (procedure)

Offsets text within a series of commands, relative to the original top left position of the object. Margin also sets the horizontal
position to be used when crlf commands are encountered. All text-rendering functions that make use of margins use this set-
ting.

Syntax

margin(x, y)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the starting point for the text within an object.

Code Sample Example

This example displays shadowed text by repeating the same text commands twice, using styles of different colours and
slightly offsetting the margin.

Example

margin(1,1) %Set margins to (1,1)

setstyle(&blackfont) %Blackfont must already exist

show('This is shadowed text')

margin(.98,.98) %Offset margins slightly

setstyle(&bluefont) %Bluefont must already exist

show('This is shadowed text')

MoveTo/RMoveTo (procedure)

Moves the current point to the specified coordinates.

Syntax

moveto(x, y)

Arguments

x, y

Measure values representing the new horizontal/vertical position, in inches, of the current point. In rmoveto, these values
are relative to the current point of origin. Inmoveto, they are absolute values.

Code Sample Example

This example displays a triangle within a rectangle.

Example

rectstroke(.5,.5,2,2) %Draw rectangle

©2010 Objectif Lune Inc - 430 -

moveto(1,1) %Reset current point

lineto(1.5,2) %Draw first line

lineto(0.5,2) %Draw second line

closepath() %Close shape

stroke() %Draw shape

Object $name()... EndObject (procedure)

Creates an object. You can reference the object you create using the $ operator. See "$element (procedure)" (page 613).

This command can only be used from within the PressTalk Before and PressTalk After of a PlanetPress Design doc-
ument, and cannot exist within a page's properties or the PressTalk of any object, including

Syntax

object $name(top, left, width, height, condition, angle[, setsnappingpoint[, snap-
toprevious]])
%Object Contents

endobject()

Argument

$name (PressTalk Name)

Name to use for the object, preceded by the dollar sign character ($). The name must conform to the rules for names
described in "Names" (page 221).

top (Measure)

Measure value specifying the distance, in inches, to offset the top edge of the picture object, from the top edge of the doc-
ument page. If you set the snaptoprevious argument to a value other than 0, the value you set for the top argument becomes
the vertical offset for the Snap to previous snapping point.

left (Measure)

Measure value specifying the distance, in inches, to offset the left edge of the picture object, from the left edge of the doc-
ument page. If you set the snaptoprevious argument to a value other than 0, the value you set for the left argument becomes
the horizontal offset for the Snap to previous snapping point.

width, height (Measure)

Measure values specifying the width and height respectively, in inches, of the object.

condition (Boolean)

Boolean value, or PlanetPress Talk expression that resolves to a Boolean value, specifying a condition on the object.

angle (Measure)

©2010 Objectif Lune Inc - 431 -

Measure value specifying the angle of rotation, in degrees. The pivot point for the rotation is the bottom left corner of the
object.

setsnappingpoint (optional, Boolean)

Boolean value (True or False) specifying whether the object has its Set snapping point property set. If you set this argument to
True, the last line of the code for the object must be amoveto() command that moves the current point to the position at
which you want to set the object’s snapping point.

snaptoprevious (optional, Integer)

Integer value specifying whether the object has its Snap to previous property set, and if so, the position of that snapping point.
If you set the Snap to previous property, you can use the top and left arguments to specify, respectively, a vertical and hor-
izontal offset for the snapping point.

l 0 = do not set the Snap to previous snapping point
l 1 = top left
l 2 = topmiddle
l 3= top right
l 4= middle left
l 5 = middle middle
l 6= middle right
l 7 = bottom left
l 8 = bottommiddle
l 9 = bottom right

Code Sample Example

The following creates a rectangle object (2 inches wide by 3 inches high), rotates it 45 degrees, and sets its Snap to previous
snapping point at the top left of the object with a vertical offset of 1 inch and a horizontal offset of 1.5 inches.

object $Box2(1.0,1.5,2.0,3.0,true,45.0,false,1)
setstyle(&Style1)
MoveTo(0,0)
SetLineWidth(0.0070)
SetStrokeColor([0,0,0,100])
SetFillColor([0,0,0,0])
LineTo(&width,0.0)
LineTo(&width,&height)
LineTo(0.0,&height)
LineTo(0.0,0.0)
ClosePath()
Stroke()

endobject()

OutputDebugString (procedure)

Outputs a string to the PlanetPress Talk Messages window in PlanetPress.

Syntax

outputdebugstring(message)

©2010 Objectif Lune Inc - 432 -

Argument

message

String value to display in the PlanetPress Talk Messages window.

PassThrough (procedure)

Sends a literal PostScript command to the printer.

Syntax

passthrough(string, [mode])

Argument

string

String value to be sent to the printer. This string is sent as is, with no further modification.

mode

Integer used as a bitfield to specify when to send the passthrough. Use a value of 1 to send the passthrough in PostScript-
printer centric mode only, a value of 2 to send the passthrough in PostScript-Optimized PostScript Stream only, a value of 3 to
send the passthrough in both PostScript-printer centric AND PostScript-Optimized PostScript Streammodes (default behavior if
the parameter is not present), and a value of 4 to send the passthrough inWindows printingmode only.

Code Sample Example

Refer to your PostScript manual for valid commands.

Pie (procedure)

Creates a pie slice shape, which can then be rendered using stroke, fill, or strokeandfill.

Syntax

pie(x, y, radius, startangle, endangle)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of a circle's center representing the whole pie from
which to draw a slice.

radius

Measure value representing the length, in inches, of the segments of the pie, i.e. its radius.

startangle, endangle

Measure values representing the angles, in degrees, of both segments of the pie slice. Values increase counter clock wise,
with 0 extending right from the center of the circle.

Code Sample Example

This example draws a whole pie chart with a shadow effect.

©2010 Objectif Lune Inc - 433 -

Example

setfillcolor([0,0,0,50]) %Set shadow colour to gray

pie(1.5,1.5,1,60,290) %Create shadow for first slice

translate(0.2,0.2) %Separate shadows

pie(1.5,1.5,1,290,420) %Create shadow for second slice

fill() %Display shadows

translate(-0.3, 0.3) %Offset chart from its shadow

setstrokecolor([0,0,100,0]) %Set pen colour to yellow

setfillcolor([0,100,100,0]) %Set fill colour to red

pie(1.5,1.5,1,60,290) %Create first slice

strokeandfill() %Draw first slice

translate(0.2,0.2) %Separate slices

setfillcolor([100,100,0,0]) %Set fill colour to blue

pie(1.5,1.5,1,290,420) %Create second slice

strokeandfill() %Draw second slice

Put (procedure)

Assigns a value to an element of an array.

Syntax

put(&array, index, value)

Arguments

&array

Array variable containing the element whose value you want to change.

index

Integer value representing the position of the element in the array.

value

The value you want to assign to the element. The value must be of the same the type as the array. Thus if the array is of type
string, the value must be of type string.

©2010 Objectif Lune Inc - 434 -

Rectangle (procedure)

Creates and draws a rectangle shape. The rectangle can optionally be filled using the colour specified with the setfillcolor
command. The border can optionally be drawn using the colour specified with the setstrokecolor command.

Syntax

rectangle(x, y, x1, y1, filled, stroked)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the starting point.

x1, y1

Measure values representing the horizontal/vertical position, in inches, of the bottom right corner of the rectangle.

filled

Boolean value specifying whether the shape should be filled using the colour specified with the setfillcolor command.

stroked

Boolean value specifying whether the shape should be outlined using the colour specified with the setstrokecolor command.

Code Sample Example

This example draws a yellow rectangle with a black border.

Example

setstrokecolor([0,0,0,100])

setfillcolor([0,0,50,0])

rectangle(0,0,3,3,true,true)

RectFill (procedure)

Creates and draws a filled rectangle shape. The colour used to fill the shape can be specified using the setfillcolor command.

Syntax

rectfill(x, y, width, height)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the starting point.

width, height

Measure values representing the width/height, in inches, of the rectangle shape.

©2010 Objectif Lune Inc - 435 -

Code Sample Example

This example draws two identical rectangles.

To draw a rectangle that is both stroked and filled, use rectstroke() and rectfill() in succession, or rectfillstroke().

Example

setfillcolor([0,100,100,0])

%Draw first rectangle using rectfill with red

rectfill(1,1,2,2)

%Offset starting position slightly to distinguish

%between each rectangle and fill second one with blue.

translate(.2,.2)

setfillcolor([100,100,0,0])

%Draw second rectangle using conventional commands

moveto(1,1) %Reset current point

lineto(3,1) %Draw first line

lineto(3,3) %Draw second line

lineto(1,3) %Draw third line

closepath() %Close shape

fill() %Draw shape

RectFillStroke (procedure)

Creates a rectangle that has both an outline and a fill color. You set the color for the outline using setstrokecolor and the fill
color using setfillcolor.

Syntax

rectfillstroke(x, y, width, height)

Arguments

x,y

Measure values representing the x and y coordinates respectively of the top left corner of the rectangle.

width, height

Measure values specifying the width and height respectively of the rectangle.

©2010 Objectif Lune Inc - 436 -

RectStroke (procedure)

Creates and draws an empty rectangle shape. The colour of the pen used to draw the rectangle can be set using set-
strokecolor.

Syntax

rectstroke(x, y, width, height)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the starting point.

width, height

Measure values representing the width/height, in inches, of the rectangle shape.

Code Sample Example

This example draws two identical rectangles.

To draw a rectangle that is both stroked and filled, use rectstroke and rectfill in succession.

Example

rectstroke(1,1,2,2) %Draw first rectangle

%Offset starting position slightly to distinguish

%between each rectangle; the second rectangle is blue.

translate(.2,.2)

setstrokecolor([100,100,0,0])

%Draw second rectangle using conventional commands

moveto(1,1) %Reset current point

lineto(3,1) %Draw first line

lineto(3,3) %Draw second line

lineto(1,3) %Draw third line

closepath() %Close shape

stroke() %Draw shape

Repeat... Until (procedure)

Repeat a sequence of commands until a condition is true. It is similar to a for... endfor loop in that you can nest the loops. It is
different from a for... endfor loop in that the loop always executes at least once, and that you tie the number of times the

©2010 Objectif Lune Inc - 437 -

loop repeats to a Boolean condition. For example youmight tie the number of times the loop repeats to the occurrence of a
piece of data in the data stream.

Syntax

repeat

…

until(expression)

Argument

expression

Boolean value. If it evaluates to true, the loop ends. If it evaluates to false, the loop repeats.

Code Sample Example

This example prints the string ‘Cheers’ ten times, one underneath the other, with a dashed line above and below the ten
instances.

Example

show('---------------')

crlf(0.16)

&count := 1

repeat

&count := &count + 1

show('Cheers')

crlf(0.16)

until(&count = 10)

show('---------------')

crlf(0.16)

RunPS (procedure)

This command is typically used to call resources, usually images, downloaded either with the Image Downloader in Plan-
etPress or Send Images to Printer action tasks in the PlanetPress Suite Workflow Tools. Note that this command does not
work with any other PostScript files.

Syntax

runps(filename)

Argument

filename

String value. Name of the resource file.

©2010 Objectif Lune Inc - 438 -

Scale (procedure)

Scales the result of all commands that follow the scale() command.

Syntax

scale(width, height)

Argument

width

Measure value specifying the factor by which to scale the width.

height

Measure value specifying the factor by which to scale the height.

Code Sample Example

scale(2,0.5)

Search … EndSearch (procedure)

This command structure allows a series of nested commands to be repeated as long as a specific string of characters (the
search string) is found within another string (the target string). After each iteration, the target string contains all the data
between occurrences of the search string, excluding the search string. Once the loop is over, target contains the remaining
characters of the original data.

Syntax

search(target, search)

…

endsearch()

Arguments

target

Name of a variable of type string in which to perform the search.

search

String value to search for.

Code Sample Example

This example splits a string delimited with semi-colons.

In theOnReadDataPage event of the user-defined emulation, the&str system variable contains each new line of data
being fed to the document. Also, do not assign anything to the variable while inside the search-endsearch loop; it will get
overwritten.

©2010 Objectif Lune Inc - 439 -

Example

define(&v1,string,'This;is;a;test') %Create the variable

search(&v1,';') %Start loop

show(&v1) %Show token

crlf() %Skip line

endsearch()

show(&v1) %Show remaining text

SelectMedia (procedure)

On screen, displays the physical page. On a PostScript printer, calls the specified paper.

Variables used as arguments in this command are not parsed when printing using the Optimized PostScript Streammode.

Syntax

selectmedia(width, height, [media], [color], [weight], orientation, mode)

Arguments

width, height

Measure values specifying the width and height of the physical page in inches.

media

A string value specifying the type of paper to use.

color

String value specifying the color of the paper.

weight

Measure value specifying the weight of the paper (in grams per square meter). You can convert weight in pounds to weight in
grams by multiplying by the weight in pounds by 3.76.

orientation

Integer representing the orientation of the page (0=Portrait, 1=Landscape, 2=Reverse portrait, and 3=Reverse landscape).

mode

Reserved for future use. Specify 0 for now.

Code Sample Example

define(&mcolor,string,'')

&mcolor := 'White'

©2010 Objectif Lune Inc - 440 -

selectmedia(8.5,11,'Danny',&mcolor,20,0,0)

The code above will generate the following PostScript code (notice how the variable was
not replaced by its value).

612 792 0 ^SM (Danny) &mcolor 20 ^SPM

SelectPrinter (procedure)

This command is used to select the printer on which the next page set will be sent. It can be used to select the same physical
printer with different options, or a different printer altogether. It is meant to be used with the EndPageSet() command. This
command can currently be used only for Windows Printing.

Syntax

selectprinter(printername)

Arguments

printername

String identifying a printer queue.

Example

Refer to the code example given in the section describing the EndPageSet command on page 1.

Set (procedure)

This command assigns a new value to a variable. Only user-defined variables can be set. System variables are read-only.
Note that you can also use the assignment operator to assign a value to a variable. See "= (operator)" (page 393).

Syntax

set(name, value)

Arguments

name

Variable name, prefixed with the ampersand (&) character. The variable name must already exist.

value

New value to store in the variable. This value can be any valid PlanetPress Talk expression, as long as its type is the same as
the variable's original type.

Code Sample Example

set(&invoice_number, (&invoice_number + 1))

set(&is_bottom, (not(&is_top) and not(&is_middle)))

&tax_rates[2] :=32

©2010 Objectif Lune Inc - 441 -

put(&tax_rates[2], @(1,3,5))

set(&months, ['JAN','FEB','MAR','APR','MAY'])

set(&mustard_color,[0,20,90,16])

set(&prices, [12.5632,18.9932,23.6651,27.0300])

put(&imagefiles[0], 'c\\images\\sushi.png')

SetAngle (procedure)

This command rotates all subsequent commands by the angle specified. Most commands and objects that are dis-
played/printed on the document are affected by the setangle command.

Syntax

setangle(angle)

Argument

angle

Measure value specifying the angle of rotation in degrees for all subsequent commands. Use a positive value for counter-clock-
wise motion and a negative value for clockwise motion. This value is relative to the current angle, not absolute.

Code Sample Example

This example illustrates setangle().

setangle() sets a rotation for all subsequent commands. Consequently, setangle commands are cumulative. Therefore, to
restore the previous angle of rotation, youmust issue a setangle command that negates whatever rotation applied.

Example

setangle(45.00) %Rotate subsequent commands by 45 degrees

show('Some text') %Display at a 45 degree angle

setangle(45.00) %Rotate subsequent commands by 45 degrees

show('Some text') %Display at a 90 degree angle

setangle(-90) %Cancel all rotations

SetBodyText (procedure)

Defines the text that appears as the body of an email message sent by PlanetPress Image.

Syntax

setbodytext(bodytext)

©2010 Objectif Lune Inc - 442 -

Arguments

bodytext

String value specifying the text to use as the body of the email message.

SetDash(procedure)

Set the properties of a dashed line. Any drawing done after setdash() draws dashed instead of solid lines. You can revert to
solid lines by calling setdash()with an empty array as a parameter.

Syntax

setdash([dashlength, spacelength])

Argument

dash

Measure value specifying the length, in inches, of each of the dashes in the dashed line.

space

Measure value specifying the length, in inches, of the space between each of the dashes in the dashed line.

Code Sample Examples

These examples illustrate setdash().

Example 1

setdash([0.5,0.3])

Example 2

setdash([])

SetDataPage(procedure)

Specify the data page of the sample data file.

Syntax

setdatapage(pagenum)

Argument

pagenum

Integer value representing the page number of the data page.

©2010 Objectif Lune Inc - 443 -

SetEmailAddress (procedure)

Defines an email address for PlanetPress Image.

Syntax

setemailaddress(address)

Arguments

address

String value specifying the email address.

SetEmailSubject (procedure)

Defines the subject line of an email message sent by PlanetPress Image.

Syntax

setemailsubject(subjectline)

Arguments

subjectline

String value specifying the subject line.

SetEmulation(procedure)

Sets the emulation to use.

Syntax

setemulation(emulation)

Argument

emulation

Integer value indicating the type of emulation.

Value: Emulation:
0 Line printer
1 ASCII
2 Comma Separated Value (CSV)
3 Channel skip
4 Database
5 XML
6 PDF

SetUserCRLF (procedure)

Lets you define a custom global function that will be executed whenever a line return appears in a Text object where this pro-
cedure is added. The SetUserCRLF() procedure is normally added in the PressTalk Before parameter of your Text object.

Syntax

©2010 Objectif Lune Inc - 444 -

setusercrlf(procedurename:procedure)

Arguments

Procedurename

The name of an existing global function in your PlanetPress Design document, preceded as usual with@.

Example

This example will ensure that multi-line text will never overlap an image on the page (where the image's position and size has
been saved as global variables).

In the PressTalk Before of an object, the following line is added:

setusercrlf(@MyCRLF)

This global function is created:

function @MyCRLF(&Leading:measure)
if(((&physical.y+(&leading*2))>&LogoPos[0]) and ((&physical.y+&leading)<(&LogoPos[0])))
translate(0,(&LogoPos[1]-&LogoPos[0])+&leading*2)

endif()
moveto(0,¤t.Y+&Leading)

endfunction()

SetFaxInformation (procedure)

Defines the fax description that appears in both the PlanetPress Fax dialog box and the PlanetPress Fax log file.

Syntax

setfaxinformation(info)

Arguments

info

String value specifying a description of the fax.

Code Sample Example

setfaxinformation('purchase confirmation')

SetFaxNumber (procedure)

Defines a fax number for PlanetPress Fax.

Syntax

setfaxnumber(faxnumber)

©2010 Objectif Lune Inc - 445 -

Arguments

faxnumber

String value specifying the fax number.

Code Sample Example

setfaxnumber('(514)276-7633')

SetFillColor (procedure)

Sets the colour used to paint the insides of any closed shapes when issuing a fill or a strokeandfill command.

Syntax

setfillcolor(colour)

Argument

colour

Colour array that can be expressed expressed using one, three or four values ranging from 0 to 255. For Grayscale, a single
value is used in the form [K]. For the RGB model, three values are used in the form [R, G, B]. For the CMYK model, four values
are used in the form [C, M, Y, K].

Code Sample Example

This example draws three filled rectangles.

Example

setfillcolor([255]) %Sets fill colour to black using the Grayscale model

rectfill(1, 1, 1, 1) %Draws a black square

setfillcolor([125,0,0]) %Sets fill colour to medium red using the RGB model

rectfill(1, 1, 1, 1) %Draws a medium red square

setfillcolor([0,0,25,0]) %Sets fill colour to light yellow using the CMYK model

rectfill(0, 0, 1, 1) %Draws a light yellow square

SetImageIndex (procedure)

Associates a data value with a PlanetPress Search index term defined using theDefineImageIndex() command. Plan-
etPress Image uses this information when it generates the .PDI file it creates for each PDF file it creates.

This function has no effect when the output of the document is not a PDF file generated through PlanetPress Image.

©2010 Objectif Lune Inc - 446 -

Syntax

setimageindex(name, data)

Arguments

name

String value specifying the name of the index term with which you want to associate a data value.

data

String value specifying the data value you want to associate with the index term.

Code Sample Examples

These examples illustrate setimageindex().

Example 1

setimageindex('PONumber', '2005')

Example 2

setimageindex('PONumber', @(2,24,32))

SetLineWidth (procedure)

Sets the width of the pen used for drawing lines, boxes and other objects. When setting the line width, remember that the
exact location of the pen is on the middle of the line, with the stroke spilling over equally on both sides.

Syntax

setlinewidth(width)

Argument

widthSetLineWidth (procedure)

Measure value setting the width, in inches, of the drawing pen.

Code Sample Examples

Example 1

This example sets the pen width to 1/4 inch then draws a 2"x2" rectangle using that pen.

setlinewidth(0.25)
rectstroke(0,0,2,2)

©2010 Objectif Lune Inc - 447 -

SetLPP(procedure)

Sets the number of lines per data page. This function is only useful when working with User-Defined Emulation, if you have a
method of determining the number of LPP from within your data.

Syntax

setlpp(lines)

Argument

lines

Integer value specifying the number of lines per page.

SetPDFBookmark (procedure)

Creates a PDF bookmark at the current page, for the PDF files PlanetPress Image generates.

This function has no effect when the output of the document is not a PDF file generated through PlanetPress Image.

Syntax

setpdfbookmark(name)

Arguments

name

String value specifying the name of the bookmark that appears in the PDF.

Code Sample Examples

These examples illustrate setpdfbookmark().

Example 1

setpdfbookmark('Table of Contents')

Example 2

setpdfbookmark(@(10,23,45))

Example 3

setpdfbookmark(@(10,23,45) + '|' + @(11,23,45))

©2010 Objectif Lune Inc - 448 -

SetStrokeColor (procedure)

Sets the colour of the pen used for drawing lines, boxes and other objects.

Syntax

setstrokecolor(colour)

Argument

colour

Colour array that can be expressed expressed using one, three or four values ranging from 0 to 255. For Grayscale, a single
value is used in the form [K]. For the RGB model, three values are used in the form [R, G, B]. For the CMYK model, four values
are used in the form [C, M, Y, K].

Code Sample Example

This example draws two empty rectangles of different colors.

Example

setstrokecolor([0,0,100]) %Sets stroke color to medium blue using the RGB model
rectstroke(0,0,1,1) %Draws a medium blue rectangle
setstrokecolor([0,0,255,0]) %Sets stroke color to bright yellow using the CMYK model
rectstroke(1,1,1,1) %Draws a bright yellow rectangle

SetStyle (procedure)

Sets the style to be used for all subsequent commands. The specified style must already exist in the document.

SetStyle() supercedes the SetFont() command. Although PlanetPress Talk still recognizes SetFont(), this behavior is
unlikely to continue in future versions, and it is therefore highly recommended that you use the SetStyle() command in your
scripts.

Syntax

setstyle(stylename)

Argument

stylename

Name of the style to use for all subsequent commands. The name of the style must be preceded by an ampersand. You can ref-
erence the bold, italic, or underlined versions of a font by appending the appropriate letter or letters to the name of the style.
Append .b for the bold version, .i for the italic version, .bi for the bold italic version, and .u for the underlined version.

Code Sample Example

This example displays a line of text using two different existing styles called Blackfont and Bluefont.

Example

©2010 Objectif Lune Inc - 449 -

margin(1,1)
setstyle(&blackfont)
show('The word ')
setstyle(&bluefont.i)
show('blue')
setstyle(&blackfont)
show(' is now in blue italic')

SetStyleExt (procedure)

Select an existing style and set the size, color, style property, or font ratio for its font. This eliminates the need to create sev-
eral styles that use the same font. setstyleext() does not support bold, italic, or underline styles with double-byte character
sets.

Syntax

setstyleext(stylename, fontsize, styleproperty, fontcolor, fontratio)

Arguments

stylename

The name of the style. The name of the style must be preceded by an ampersand. You can set the bold, italic, or bold italic
property of the style by appending .b, .i, or .bi respectively to the name of the style.

The ability to append .b, .i, or .bi to style names that have double-byte character sets is not supported.

fontsize

Measure value representing the point size for the font. A value of -1 use the default font size of the style specified by style-
name.

styleproperty

Integer value representing the style property for the font:

l 0: Normal
l 1: Underline
l 2: Outline

fontcolor

Colour array that can be expressed using one, three or four values ranging from 0 to 255. For Grayscale, a single value
between 0 and 100 is used in the form [K], representing percentage of gray (100 is black, 0 is white). For the RGB model,
three values are used in the form [R, G, B]. For the CMYK model, four values are used in the form [C, M, Y, K].

fontratio

Integer value representing the percentage by which to shrink or stretch the font spacing. This value adjusts both the width of
each glyph and the spacing between glyphs. This is in contrast to kerning, whichmodifies the spacing between characters with-
out modifying the width of characters.

Example

setstyleext(&Style2.bi, 25, [100], 100)

©2010 Objectif Lune Inc - 450 -

Show / ShowCenter / ShowRight (procedure)

These three commands are used to display simple text on the document. They are identical in all aspects, except in the way
they behave relative to the current margin settings: show uses the margin as a starting point to extend the string to the right;
showright uses the margin as the ending point of the string; and showcenter extends the string equally on both sides of
the margin. These commands are equivalent to print, echo or write commands in other scripting languages.

Syntax

show(text)

showcenter(text)

showright(text)

Argument

text

String value to be displayed.

Code Sample Example

This example illustrates the difference between all three variations of using the SHOW command.

Example

margin(3,1)
showright('This line is to the left of the margin')
crlf()
showcenter('This line is centered on the margin')
crlf()
show('This line is to the right of the margin')

ShowBarCode (procedure)

Note: This PressTalk command is deprecated. Use instead the barcode-specific commands.

Displays a specified string as a barcode.

Syntax

showbarcode(string)

Arguments

string

Value of type string to display as a barcode.

showbarcode needs 3 additional parameters before it can display the barcode. These parameters must be set before calling
showbarcode, using the following variables:

BarWidth

Measure value setting the width of each bar, in inches.

©2010 Objectif Lune Inc - 451 -

BarHeight

Measure value setting the height of each bar, in inches.

BarType

Integer value specifying the type of barcode to print. Current possible values include:

BarType: Code:
0 Code 39
1 Code 128
2 UPC_A
3 UPC_E
4 UPC/EAN 8
5 UPC/EAN 13
6 PostNet
7 PDF-417

Code Sample Example

This example prints a Code 128 barcode.

The BarWidth, BarHeight andBarType variables must be created exactly as shown here, with the same case changes in
the variable names.

Example

define(&BarWidth,measure,0.012)

define(&BarHeight,measure,1.000)

define(&BarType,integer,1)

%Set bar color to black and display barcode

setfillcolor([100,100,100,100])

showbarcode('Bar 128')

ShowBarcode2of5(procedure)

Displays a specified string as a Standard 2 of 5 barcode.

Syntax

showbarcode2of5(str, barwidth, readable, bearers)

Arguments

str

Value of type string to display as a barcode.

barwidth

©2010 Objectif Lune Inc - 452 -

Width of one barcode bar, in mils (0.001 inch).

readable

Boolean that enables display of the human readable portion of the barcode

bearers

Boolean that enables bearer bars surrounding the barcode

Code Sample Example

showbarcode2of5('123456789',12,true,true)

ShowBarcodeAustPost (procedure)

Displays a specified string as an Australia Post barcode.

Syntax

showbarcodeaustpost(str)

Arguments

str

Value of type string to display as a barcode.

Code Sample Example

showbarcodeaustpost('56439111ABA 9')

ShowBarcodeAztec (procedure)

Displays a specified string as an Aztec barcode.

Syntax

showbarcodeaztec(str, mode, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

mode

Mode to use for the barcode.

Value Mode

0 Normal

©2010 Objectif Lune Inc - 453 -

1 Compact

2 Full Range

errorcorrection

Error correction level to use in the barcode.

Mode Error Correction Range

0 0-99

1 0-4

2 0-32

barwidth

Measure value of the width a a single barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodeaztec('A 12345 B 434343',5,35,24)

ShowBarcodeCodabar (procedure)

Displays a specified string as a Codabar barcode.

Syntax

showbarcodecodabar(str, start, stop, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

Start

The Start character of the barcode

A

B

C

D

Stop

The Stop character of the barcode

A

B

C

D

©2010 Objectif Lune Inc - 454 -

barwidth

Width of one barcode bar, in mils (0.001 inch).

readable

Boolean that enables display of the human readable portion of the barcode

Code Sample Example

showbarcodecodabar('12345','A','A',12,true)

ShowBarcodeCodablockF (procedure)

Displays a specified string as a Codablock F barcode.

Syntax

showbarcodecodablockf(str, barwidth)

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodecodablockf('12345',12)

ShowBarcodeCode11 (procedure)

Displays a specified string as a Code 11 barcode.

Syntax

showbarcodecode11(str, barwidth, checksum, readable, readchecksum)

Arguments

str

Value of type string to display as a barcode.

barwidth

©2010 Objectif Lune Inc - 455 -

Width of one barcode bar, in mils (0.001 inch).

Checksum

Boolean allows the automatic calculation of the barcode checksum

readable

Boolean that enables display of the human readable portion of the barcode

readchecksum

Boolean that enables display of the checksum in the human readable portion of the barcode

Code Sample Example

showbarcodecode11('123456789',12,true,true,false)

ShowBarcodeCode128 (procedure)

Displays a specified string as a Code 128 barcode.

Syntax

showbarcodecode128(str, subset, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

subset

Integer specifying the subset of the barcode to use.

Value Subset

0 A

1 B

2 C

barwidth

Width of one barcode bar, in mils (0.001 inch).

readable

Boolean that enables display of the human readable portion of the barcode

Code Sample Example

showbarcodecode128('123456789',0,12,true)

©2010 Objectif Lune Inc - 456 -

ShowBarcodeCode16k (procedure)

Displays a specified string as a Code 16k barcode.

Syntax

showbarcodecode16k(str, mode, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Mode (0-7) of the Code 16k barcode

barwidth

Width of one barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodecode16k('12345',4,12)

ShowBarcodeCode39 (procedure)

Displays a specified string as a Code 3 of 9 barcode.

Syntax

showbarcodecode39(str, barwidth, checksum, readable, readchecksum)

Arguments

str

Value of type string to display as a barcode.

BarWidth

Measure value setting the width of each bar, in mils (0.001 inch).

Checksum

Boolean value that indicates if the checksum should automatically be calculated.

Readable

Boolean value that indicates if the human readable should be shown

ReadChecksum

Boolean value that indicates if the checksum value should be included in the human readable

©2010 Objectif Lune Inc - 457 -

Code Sample Example

showbarcodecode39('123456',12,true,true,false)

ShowBarcodeCode49 (procedure)

Displays a specified string as a Code 49 barcode.

Syntax

showbarcodecode49(str, barwidth)

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodecode49('12345', 12)

ShowBarcodeCode93 (procedure)

Displays a specified string as a Code 93 barcode.

Syntax

showbarcodecode93(str, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

readable

Boolean that enables display of the human readable portion of the barcode

Code Sample Example

©2010 Objectif Lune Inc - 458 -

showbarcodecode93('123456789',12,true)

ShowBarcodeDatamatrix (procedure)

Displays a specified string as a Datamatrix barcode.

Syntax

showbarcodedatamatrix(str, mode, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the Datamatrix Mode to use.

Value Mode

0 Square

1 Rectangular

errorCorrection

Error correction level to use with the barcode.

Mode Allowed Range

Square 1-24

Rectangular 1-6

barwidth

Width of one barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodedatamatrix('12345', 0, 5, 12)

ShowBarcodeEAN8 (procedure)

Displays a specified string as a EAN-8 barcode.

Syntax

showbarcodeean8(str, subset,[readable, barwidth])

©2010 Objectif Lune Inc - 459 -

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of EAN-8 to use

0 EAN-8

1 EAN-8 ext.2

2 EAN-8 ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

showbarcodeean8('0133558',0)

ShowBarcodeEAN13 (procedure)

Displays a specified string as a EAN-13 barcode.

Syntax

showbarcodeean13(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of EAN-13 to use

0 EAN-13

1 EAN-13 ext.2

2 EAN-13 ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

©2010 Objectif Lune Inc - 460 -

Code Sample Example

showbarcodeean13('977147396801',0)

ShowBarcodeFIM (procedure)

Displays a specified string as a FIM barcode.

Syntax

showbarcodefim(str)

Arguments

str

Value of type string to display as a barcode.

Code Sample Example

showbarcodefim('A')

ShowBarcodeI2of5 (procedure)

Displays a specified string as an Interleaved 2 of 5 barcode.

Syntax

showbarcodei2of5(str, barwidth, checksum, readable, readchecksum, bearers)

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

Checksum

Boolean to add checksum automatically to barcode

readable

Boolean that enables display of the human readable portion of the barcode

readchecksum

Boolean that enables display of the checksum in the human readable portion of the barcode

©2010 Objectif Lune Inc - 461 -

bearers

Boolean that enables bearer bars surrounding the barcode

Code Sample Example

showbarcodei2of5('123456789',12,true,true,false,true)

ShowBarcodeISBN (procedure)

Displays a specified string as an ISBN barcode.

Syntax

showbarcodeisbn(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of ISBN to use

0 ISBN

1 ISBN ext.2

2 ISBN ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

showbarcodeisbn('978-1-86074-271-2-54495',2)

ShowBarcodeJapanpost (procedure)

Displays a specified string as a Japan Post barcode.

Syntax

showbarcodejapanpost(str, barwidth)

Arguments

str

©2010 Objectif Lune Inc - 462 -

Value of type string to display as a barcode.

BarWidth

Measure value setting the width of each bar, in mils (0.001 inch).

Code Sample Example

showbarcodejapanpost('6540123789-A-K-Z',12)

ShowBarcodeMaxicode (procedure)

Displays a specified string as a Maxicode barcode.

Syntax

showbarcodemaxicode(str, mode)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value (2-6) of the Maxicode Mode to use.

Code Sample Example

show-
bar-
codemaxicode('^059^042^041^059^040<RS>01^02996152382802^029840^029001^0291Z00004951^029UPSN^02906X610^029159^0291234567^0291/1^029^029Y^029634
ALPHA DR^029PITTSBURGH^029PA^030<ET>',2)

ShowBarcodeMicroPDF (procedure)

Displays a specified string as a Micro PDF-417 barcode.

Syntax

showbarcodemicropdf(str, mode, columns, barwidth)

Arguments

str

Value of type string to display as a barcode.

©2010 Objectif Lune Inc - 463 -

Mode

Integer value of the Micro PDF mode to use.

Value Mode

0 Text

1 Numeric

columns

Integer value (1-4) of the number of columns to use.

barwidth

Integer value of the barwidth of a single bar in the Micro PDF

Code Sample Example

showbarcodemicropdf('123456',0,4,12)

ShowBarcodeMicroQR (procedure)

Displays a specified string as a Micro QR Code barcode.

Syntax

showbarcodemicroqr(str, mode, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the Micro QRmode to use.

Value Mode

0 Alpha

1 Numeric

errorcorrection

Integer value of the error correction level to use.

Value Correction Level

0 L

1 S

2 Q

barwidth

Integer value of the barwidth of a single bar in the Micro QR

©2010 Objectif Lune Inc - 464 -

Code Sample Example

showbarcodemicroqr('123456',0,2,12)

ShowBarcodeMSI (procedure)

Displays a specified string as a MSI barcode.

Syntax

showbarcodemsi(str, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

barwidth

Measure of the width of a single barcode bar, in mils (0.001 inch).

readable

Boolean value determining if the human readable portion of the barcode is visible.

Code Sample Example

showbarcodemsi('1234567')

ShowBarcodeOnecode (procedure)

Displays a specified string as a Onecode/IMB barcode.

Syntax

showbarcodeonecode(str)

Arguments

str

Value of type string to display as a barcode.

Code Sample Example

showbarcodeonecode('0123456709498765432101234567891')

©2010 Objectif Lune Inc - 465 -

ShowBarcodePDF417 (procedure)

Displays a specified string as a PDF 417 Code barcode.

Syntax

showbarcodepdf417(str, mode, columns, truncated, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the PDF 417mode to use.

Value Mode

0 Text

1 ASCII Plus

2 Numeric

columns

Integer value (1-20) of the number of columns to use.

truncated

Boolean value to decide to use the truncated version of the barcode

errorcorrection

Integer value (0-8) of the error correction level to use.

barwidth

Integer value of the barwidth of a single bar in the PDF 417

Code Sample Example

showbarcodepdf417('123456',0,2,false,5,12)

ShowBarcodePlessey (procedure)

Displays a specified string as a plessey barcode.

Syntax

showbarcodeplessey(str, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

©2010 Objectif Lune Inc - 466 -

barwidth

Measure of the width of a single barcode bar, in mils (0.001 inch).

readable

Boolean value determining if the human readable portion of the barcode is visible.

Code Sample Example

showbarcodeplessey('1234567')

ShowBarcodePostnet (procedure)

Displays a specified string as a Postnet barcode.

Syntax

showbarcodepostnet(str, subset)

Arguments

str

Value of type string to display as a barcode.

subset

Subset of the Postnet barcode to use

Subset Zipcode Length

0 5 digits

1 9 digits

2 11 digits

Code Sample Example

showbarcodepostnet('12345',0)

ShowBarcodeQRCode (procedure)

Displays a specified string as a QR Code barcode.

Syntax

showbarcodeqrcode(str, mode, errorcorrection, barwidth)

Arguments

str

©2010 Objectif Lune Inc - 467 -

Value of type string to display as a barcode.

Mode

Integer value of the QR Code mode to use.

Value Mode

0 Numeric

1 Alpha

errorcorrection

Integer value of the error correction level to use.

Value Mode

0 L

1 S

2 Q

3 H

barwidth

Integer value of the barwidth of a single bar in the QR Code

Code Sample Example

showbarcodeqrcode('123456',0,2,12)

ShowBarcodeRoyalMail (procedure)

Displays a specified string as a Royal Mail barcode.

Syntax

showbarcoderoyalmail(str)

Arguments

str

Value of type string to display as a barcode.

Code Sample Example

showbarcoderoyalmail('LE28HS9Z')

ShowBarcodeRSS (procedure)

Displays a specified string as a RSS barcode.

©2010 Objectif Lune Inc - 468 -

Syntax

showbarcoderss(str, mode, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the RSSmode to use.

Value Mode

0 RSS-14

1 RSS-Truncated

2 RSS-Limited

3 RSS-Stacked

4 RSS-Stacked Omni

5 RSS-Expanded

6 RSS-Expanded Stacked

barwidth

Integer value of the barwidth of a single bar in the RSS Code

Code Sample Example

showbarcoderss('123456',0,12)

ShowBarcodeUPCA (procedure)

Displays a specified string as a UPC-A barcode.

Syntax

showbarcodeupca(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of UPC-A to use

0 UPC-A

1 UPC-A ext.2

2 UPC-A ext.5

©2010 Objectif Lune Inc - 469 -

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

showbarcodeupca('123456789012',0)

ShowBarcodeUPCE (procedure)

Displays a specified string as a UPC-E barcode.

Syntax

showbarcodeupce(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of UPC-E to use

0 UPC-E

1 UPC-E ext.2

2 UPC-E ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

showbarcodeupce('123456',0)

ShowBitmap (procedure)

Displays a bitmap resource.

Syntax

showbitmap(resname, resolution, width, height[, transparent[, duotone]])

©2010 Objectif Lune Inc - 470 -

Arguments

resname

String value containing either the name of the bitmap resource within the document, or the path to a bitmap file.

resolution

Integer value specifying the resolution, in pixels per inch, at which the bitmap displays. A larger number yields a smaller,
clearer image, since more pixels are squeezed into a smaller space. But the bitmap then requires more memory. Except in
some very specific applications, it is rarely desirable to use resolutions exceeding 100 ppi.

width, height

Measure values specifying the width/height, in inches, the bitmap occupies when it displays. Specifying a value of zero for one
but not both of the two dimensions scales the bitmap to fit the non-zero dimension. Specifying both a width and a height scales
the bitmap to the best fit possible with that width and height, while maintaining its aspect ratio. Specifying both a width and a
height of zero displays the bitmap at its default resolution.

transparent

Boolean value specifying whether part of the bitmap is transparent. When set to true, the bitmap image is combined with the
background; otherwise it is pasted on top.

duotone

Colour array specifying the colour to paint all non-white pixels in the bitmap.

Code Sample Examples

Example 1

This example displays the bitmap image street_photo at a resolution of 72 pixels per inch, and a width of 1 inch, as a trans-
parent bitmap image with non-white pixels set to blue.

showbitmap('street_photo',72,1,0,true,[100,100,0,0])

Example 2

This example displays the bitmap image sunset at a resolution of 300 pixels per inch.

showbitmap('sunset',300,0,0)

Example 3

This example prints either an image, or, if the image cannot be found, the pathname to the image.

define(&image_paths, directory, 'c:\\images*.JPG')

define(&i, integer, 1)

©2010 Objectif Lune Inc - 471 -

if(resourcetype(&image_paths[&i]) <> 0)

showbitmap(&image_paths[&i], 300, 0, 0)

crlf(bitmapheight(&image_paths[&i]))

elseif()

show(&image_paths[&i])

crlf(0.16)

endif()

ShowCaptureUserArea (procedure)

Displays a Capture Field object.

Syntax

showcaptureuserarea(name: string, areatype: integer, left: measure,top: measure, width: measure, height: measure,
requiredfield: integer, disablerewrite: boolean, groupid: integer)

Arguments

name

String that defines the name of the Capture Field object (aka "PressTalk ID"). Must be the same as defined in the metadata
and can only be letters or numbers (no spaces or special characters).

areatype

Integer that defines what kind of area type to use, from the following list:

l 0 - Checkbox
l 1 - List Fields
l 2 - Text Area
l 3 - Multi-Area Field

left, top

Measure variables that define the position of the Capture Field, in inches, from the left and top of the page.

width, height

Measure variables that define the size, in inches, of the Capture Field.

requiredfield

Integer that defines what kind of requirement this field has, from the following list:

l 0 - Optional Field
l 1 - Mandatory Field
l 2 - Final Field

disablerewrite

©2010 Objectif Lune Inc - 472 -

Boolean that defines whether the field will accept new ink if some ink is already present in previous processing of the doc-
ument. True prevents rewriting.

groupid

Integer value that defines a group for mandatory fields.

Example

definemeta('CapPatternSequence','', 0, 'job.group.document')
definemeta('CaptureField', 'Capture1;' + IntToStr(0) + ';2;' + FloatToStr((&physical.x *
72),4) + ';' + FloatToStr((&physical.y*72),4) + ';' + FloatToStr(3.7861*72) + ';' +
FloatToStr(1.4223*72) + ';false;0', 2, 'job.group.document.datapage.page')
showcaptureuserarea('Capture1',2,&physical.x,&physical.y,&width,&height,0,false,0)

ShowEPS (procedure)

Displays an EPS image resource.

Syntax

showeps(resname, width, height)

Argument

resname

String value containing either the name of the EPS resource within the document, or the path to an EPS file .

width, height

Measure values specifying the width/height, in inches, the EPS occupies when it displays. Specifying a value of zero for one but
not both of the two dimensions scales the EPS to fit the non-zero dimension. Specifying both a width and a height scales the
EPS to the best fit possible with that width and height, while maintaining its aspect ratio. Specifying both a width and a height of
zero displays the EPS at its default resolution.

Code Sample Example

This example displays the EPS image ‘my_eps’, scaling it as necessary to fit a width of 4.5 inches.

Example

showeps('my_eps', 4.5, 0)

ShowLeftRight (procedure)

Displays a string of characters, in inches, using a specified width.

Syntax

showleftright(text, width)

©2010 Objectif Lune Inc - 473 -

Arguments

text

String value to be displayed.

width

Measure value representing the amount of horizontal space to use for displaying the string. showleftright adjusts the amount
of spaces between characters to insure the string fits exactly within the specified width.

Code Sample Example

This example shows how to fit strings of different sizes within the same box that has a width of 3 inches.

Example

margin(0,0)

rectstroke(0,0,3,3)

moveto(0,0.5)

showleftright('This fits well inside the box',3)

crlf(0.1599)

showleftright('But this one is a little more tight',3)

ShowPage (procedure)

Instructs the printer to output the page andmove on to the next instruction.

This command has no effect on screen, because it is intended to be executed only inside the printer.

Syntax

showpage()

Argument

None

Code Sample Example

This example specifies the number of pages to print at line 1, between columns 1 and 5.

Example

Define(&NumberOfPages,integer,strtoint(trim(@(1,1,5))))

Define(&x,integer,1)

for(&x,1,1,&NumberOfPages)

execpage('Page1')

©2010 Objectif Lune Inc - 474 -

showpage()

endfor()

ShowPDF (procedure)

Displays a page of a PDF image resource.

Syntax

showpdf(resname, pagenum, width, height)

Argument

resname

String value containing either the name of the PDF resource within the document, or the path to a PDF file .

pagenum

Integer value specifying the page number within the PDF image resource.

width, height

Measure values specifying the width/height, in inches, the PDF page occupies when it displays. Specifying a value of zero for
one but not both of the two dimensions scales the PDF page to fit the non-zero dimension. Specifying both a width and a height
scales the PDF page to the best fit possible with that width and height, while maintaining its aspect ratio. Specifying both a
width and a height of zero displays the PDF page at its default resolution.

Code Sample Example

This example displays page 5 of the PDF image resource ’new_models’, at its default resolution.

Example

showpdf('new_models', 5, 0, 0)

ShowUTF8 (procedure)

This command is used to display UTF8 text on the document. It is designed to be used within a begi-
nUTF8paragraph...endUTF8paragraph structure. Its uses the paragraph properties defined in the begi-
nUTF8paragraph command.

Syntax

showUTF8(text)

Argument

text

©2010 Objectif Lune Inc - 475 -

Static text string or data selection to be displayed. Bear in mind that the information, wether static or variable, must be in
UTF8. Themaputf8 function can be used to convert the information to UTF8.

Code Sample Example

This example displays a UTF8 string within a justified paragraph with the text running from right to left.

Example

setlinewidth(0.007)

moveto(0,0)

rlineto(&width,0)

rlineto(0,&height)

rlineto(neg(&width),0)

rlineto(0,neg(&height))

closepath()

stroke()

moveto(&width/2,&height/18)

BeginUTF8Paragraph(0.0000,&width,0.0000,'leftright',0.1667,'rtl')

SetStyleExt(&Style1,12.0000,0,[100],100)

ShowUTF8('\u0623\u0633\u0627\u0633\u064B\u0627\u060C')

EndUTF8Paragraph()

ShowUTF8Left / ShowUTF8Right / ShowUTF8Center (procedure)

These three commands are used to display simple text strings on the document. They are identical in all aspects, except in the
way they behave relative to the text insertion point: showUTF8Left displays the text from the insertion point to the left; sho-
wUTF8Right displays the text from the insertion point to the right; and showUTF8Center displays the text equally on both
sides of the insertion point.

These commands cannot be used with a beginUTF8paragraph...endUTF8paragraph structure.

Syntax

showUTF8left(text, mode)

showUTF8right(text, mode)

showUTF8center(text, mode)

Argument

text

©2010 Objectif Lune Inc - 476 -

Static text string or data selection to be displayed. Bear in mind that the information, wether static or variable, must be in
UTF8. Themaputf8 function can be used to convert the information to UTF8.

mode

String value specifying the contextual analysis is to be performed. Possible values are 'normal', 'reverse', and 'none' (for no
contextual analysis).

Code Sample Examples

Example 1

This example illustrates a static text string (the name Saudi Arabia) escaped to its UTF8 reference form that will be displayed
from the insertion point to the left.

setlinewidth(0.007)

moveto(0,0)

rlineto(&width,0)

rlineto(0,&height)

rlineto(neg(&width),0)

rlineto(0,neg(&height))

closepath()

stroke()

moveto(&width/2,&height/2)

SetStyleExt(&Style1,12.0000,0,[100],100)

showUTF8left('\u0627\u0644\u0633\u0639\u0648\u062F\u064A\u0629', 'normal')

Example 2

This example shows a variable text string that is taken from the data, converted from the MS-CP-1256 encoding to UTF8 and
then displayed from the insertion point to the right.

setlinewidth(0.007)

moveto(0,0)

rlineto(&width,0)

rlineto(0,&height)

rlineto(neg(&width),0)

rlineto(0,neg(&height))

closepath()

stroke()

©2010 Objectif Lune Inc - 477 -

moveto(&width/2,&height/2)

SetStyleExt(&Style1,12.0000,0,[100],100)

showUTF8right(maputf8(@(2,15,35), 'MS-CP-1256', False),'normal')

StopJob (procedure)

Terminates execution of the document and returns control to the PostScript interpreter.

Syntax

stopjob()

Store (procedure)

Stores a string of characters on a specific line in the current data page.

Syntax

store(line, string)

Arguments

line

Integer value specifying the line on which to store the string.

string

String value to store in the data page.

Code Sample Example

This example is taken for an OnReadDataPage event for a user defined emulation. It shows how to store lines of text in the cur-
rent data page. It searches for a formfeed, increases the current line, stores the string, executes the document, resets the
page, and then ends the search.

Example

search(&str,'\014')

set(¤t.line,¤t.line+1)

store(¤t.line,&str)

doform()

clearpage()

endsearch()

©2010 Objectif Lune Inc - 478 -

Stroke (procedure)

Outlines the current shape using the pen colour and width specified with the setstrokecolor and setlinewidth command.
The shape is not filled. To fill and outline the shape, use strokeandfill instead. If you only want to fill the shape, use fill.

Syntax

stroke()

Argument

None

Code Sample Example

This example draws a blue triangle with a blue border.

Example

setstrokecolor([100,100,0,0]) %Set pen colour to blue

moveto(1,1)

lineto(1.5,2)

lineto(0,2)

closepath()

stroke()

StrokeAndFill (procedure)

Outlines the current shape using the pen colour and width specified with the setstrokecolor and setlinewidth command.
The shape is then filled using the colour specified with the setfillcolor command. To simply outline the shape, use stroke
instead. If you only want to fill the shape, use fill.

Syntax

strokeandfill()

Argument

None

Code Sample Example

This example draws a yellow triangle with a blue outline.

Example

setstrokecolor([100,100,0,0])

setfillcolor([0,0,100,0])

©2010 Objectif Lune Inc - 479 -

moveto(1,1)

lineto(1.5,2)

lineto(0,2)

closepath()

strokeandfill()

Translate (procedure)

Offsets an object's position from its original spot on the page. The point of origin of any object is (0,0) by default. All com-
mands within an object are relative to that point of origin. Moving, or translating the point of origin allows you to reset the point
of origin within the boundaries of the object.

Syntax

translate(x, y)

Arguments

x, y

Measure values representing the horizontal/vertical offset, in inches, of the new point of origin within the object. These values
are relative to the current point of origin, not absolute.

Code Sample Examples

Example 1

This example moves the point of origin 1 inch right and down from the original point.

translate(1,1)

show('some text')

Example 2

This example moves the point of origin 1 inch right and down from the current point.

translate(1,1)

show('some more text')

©2010 Objectif Lune Inc - 480 -

Example 3

This example moves the point of origin back to its original position. Translate sets the new point of origin for all subsequent
commands. Consequently, translate commands are cumulative. Therefore, to restore the previous point of origin, youmust
issue a translate command that negates whatever offset was previously applied.

translate(-2,-2)

Functions

@ (function)

Returns a selection within the current data page for text emulations.

The @ character can be the beginning of a data selection, a page call or a procedure or function call.

Syntax

@(line, startcolumn, endcolumn) string value

Arguments

line

Integer value specifying the line on which to read the data in the current data page.

startcolumn, endcolumn

Integer values specifying the start/end columns of the chunk of data to read from the current data page.

Code Sample Example

The first line of code assigns data from the current data page to a variable. The second line of code checks for the presence of
a value inside the data page and sets a Boolean variable according to the results.

define(&invnum,string,@(7,50,59))
define(&isfirstpage,boolean,(strtoint(@(1,60,70))=1))

@name (function/procedure)

Executes a global function or procedure created using the function() command.

The @ character can be the beginning of a data selection, a page call or a procedure or function call.

Syntax

@functionname(parameters) integer, measure, currency, string, Boolean or no return value

©2010 Objectif Lune Inc - 481 -

Arguments

functionname

String value specifying the name of the function or procedure.

parameters

Comma separated list of parameters required by the specified function or procedure.

BitmapWidth/BitmapHeight (function)

Returns the width or height, in inches, of a bitmap image resource, at the specified resolution.

Syntax

Bitmapwidth(name, resolution) measure value

Bitmapheight(name, resolution) measure value

Argument

name

String value that specifies the name of the bitmap image resource.

resolution

Integer value that specifies the resolution at which you want to measure the width or height of the bitmap.

Code Sample Example

This example sets the variable maxwidth to the width of the bitmap 'fingerprint' at a resolution of 150 DPI, and the variable
maxheight to the height of the same bitmap at a resolution of 200 DPI.

Example

&maxwidth := bitmapwidth('fingerprint', 150)
&maxheight := bitmapheight('fingerprint', 200)

C128 (function)

This function is deprecated and should be replaced by ShowBarcodeCode128 (procedure) whenever encountered. It
is kept for backwards compability.

Converts a two-character string to Code 128 bar code, character set C data.

Syntax

c128(string) string value

Argument

string

String value composed of two characters.

©2010 Objectif Lune Inc - 482 -

Code Sample Example

This example converts the data on line 5, columns 12 to 13, to Code 128 bar code C character set data.

Example

c128(@(5,12,13))

Ceil (function)

Returns the smallest integer greater than or equal to the specified measure value.

Syntax

ceil(value) integer value

Argument

value

Measure value. The absolute value of the measure value must be less than the maximum value of an integer in PostScript
(2,147,483,647).

Code Sample Examples

These examples illustrate various applications of ceil().

ceil(-2.8) %Returns -2
ceil(2.8) %Returns 3
ceil(-5.0) %Returns -5

Char (function)

Returns the character whose ASCII value is specified.

Syntax

char(value) string value

Argument

value

Integer value between 0 and 255, specifying the ASCII index of the character.

Example

show(char(84)+char(97)+char(108)+char(107))
% This displays the word "Talk"

©2010 Objectif Lune Inc - 483 -

Date (function)

Returns the print date. Note that this function does not work in Printer-Centric mode, since it is impossible for the document to
get the current date from a printer. So if you send your document to a printer and then simply send data with the appropriate
trigger to that printer, the document will run on the printer and the function will return an empty string. Use the Run locally
option, available in the PlanetPress Suite Workflow Tools, to ensure that the document runs on a computer rather than on a
printer.

Syntax

date(longdate)

Argument

longdate

Boolean specifying whether to use short or long date. True returns the date in long format, False, in short format. The precise
format of the short and long date value strings are set in the Windows Regional options.

Code Sample Example

This example shows how to add the current date in long form on a document page.

Example

show(date(true))

Result

On a system set to French (Canada), returns .

Definemeta (function)

Defines a field when running a PlanetPress Design Document withmetadata file creation. In every cases, the name of the field
is case-insensitive andmust begin with a letter (A-Z, a-z), followed by any number of letters, numbers (0-9), underscore ('_')
or dash ('-') characters.

Syntax

definemeta(name: string, data: string, [flags: integer, path: string])

Argument

name

The name of the metadata field to define. Unless the path argument specifies otherwise, the new field is defined at page
level.

data

An initial string value of the definedmetadata field. This value can also be a valid PlanetPress Talk expression.

flags

Optional integer value to define the behavior of the command when a field with the same name already exists in the current
level. The default behavior uses 0 and overwrites the old value with the new one.

©2010 Objectif Lune Inc - 484 -

Name Value Behavior

DefineOverwrite 0
The content of the value parameter overwrites the current value of the field if it exists, or creates it if
it does not.

DefineAppend 1 The content of the value parameter is appended to the existing field.
DefineDuplicate 2 A new field with the same name is created, appending an index at the end of its name.

DefineError 3 The command fails and the job crashes, yielding an error dialog.

path

Optional string value to specify the level where to create the metadata field. Path components cannot be indexed, and if no
path is provided, the field is created at the current page level.

The node names of the path argument can have an optional zero-based index, indicated between square brackets ('[
]'), to access a specific node. If no index is provided, the first node is used.

Code Sample Example

This example illustrates how to assign data from the current line printer data file to a document-basedmetadata field, spec-
ifying the level where the field will be created.

% Create simple 'InvoiceNumber' holding the value found on line 10,
% between columns 35 and 42 of a line printer emulation data file.
definemeta('InvoiceNumber', @(10,35,42))
% Create the same 'InvoiceNumber' field but duplicating it if it already exists.
definemeta('InvoiceNumber', @(10,35,42), 2)
% Create the same 'InvoiceNumber' field but at the Document level this time,
% and raising an error if it already exists.
definemeta('InvoiceNumber', @(10,35,42), 3, 'Job.Group.Document')

EPSWidth/EPSHeight (function)

Returns the width or height, in inches, of an Encapsulated PostScript (EPS) image resource.

Syntax

epswidth(name) measure value

epsheight(name) measure value

Argument

name

String value that specifies the name of the EPS image resource.

Code Sample Example

This example sets the variable maxwidth to the width, and the variable maxheight to the height of the EPS image resource
wing_nut.

Example

&maxwidth := EPSwidth('wing_nut')
&maxheight := EPSheight('wing_nut')

©2010 Objectif Lune Inc - 485 -

ExecScriptFile (function)

Allows PlanetPress Design documents to execute the content of an external script file. The document waits until the script has
completed before resuming its own execution.

Note: This function does not support printer centric mode; results are undefined.

Syntax

ExecScriptFile(filename: string, parameters: string, scriptlanguage: integer) integer

Arguments

filename

Fully qualified path and name of the script to call and execute.

parameters

User-defined string value allowing a document to pass additional information to the script, such as data selections, PlanetPress
Talk variables, etc..

scriptlanguage

The programming language in which the script is written. The valid values are:

0 Auto-detect based on file extension: VBScript (.vbs) | JavaScript (.js) | Perl (.pl) | Python (.py)

1 VBScript

2 JavaScript

3 Perl

4 Python

Return value

Successful execution of the external script file will return 0 by default, although this value may be set by users through the
"Script (system object)" (page 249) system variable. Note that some negative values are internally used to indicate different
types of failure, always using negative values, whichmeans conflicts may happen when users set the Script.ReturnValue var-
iable with an existing negative value. The proper practice is thus to return only positive values.

Here are the existing negative values:

-1 Script file does not exist or is not accessible.

-2 Invalid script language.

-3 Error during script execution.

Use of PlanetPress APIs within called scripts

When a script is called from within PlanetPress Design using ExecScriptFile(), all of the PlanetPress environment is available to
the script, including the Watch, Metadata, Capture and Alambic objects.

Using these objects from a script within a Design document is not supported and can lead to unexpected results. Fur-
thermore, setting a Watch variable or job info from within the script will not return this value to the document, as
these values are always passed once when the document is called, never during execution.

Accessing Parameters from the script

©2010 Objectif Lune Inc - 486 -

The parameters value is a string which is sent to the executed script. It is available using the Script.Paramstring system var-
iable from within the code. If you want to sendmultiple parameters, you will have to separate themwith a special character
and use this character as a separator to split the string or create an array with it, such as (example in JavaScript):

params = Script.Paramstring.split(";")

Code Example

ExecScriptFile('c:\myScript.vbs', 'name;'+@(1,1,10), 1)

Sample Scripts

2 sample scripts are available with any PlanetPress Suite installation.
They are are located inC:\Documents and Settings\All Users\Application Data\Objectif Lune\PlanetPress Suite N\Scripts,
where N is the PlanetPress Suite version number. These 2 sample scripts are used by PlanetPress Design's Excel Graph func-
tionality, allowing to insert a business graphic from a Microsoft Excel file.

ExpandString (function)

Returns a string that contains the data from a Workflow tool variable. Any variable available to the Workflow tool can be used
here.

Syntax

ExpandString(stringtoexpand: string) string

Arguments

stringtoexpand

The Workflow tool variable string to expand. This can be local and global variables, job infos, as well as any other variable
such as %o, %j, %y, etc.

Return Value

Returns the resulting expanded string.

Code Sample Example

define(&result, string, '')
&result := ExpandString('%{global.GlobalVar}')
show(&result)
% Also works with system variables
&result := ExpandString('%o')
show(&result)

Field (function)

Returns the contents of the specified field for the current record. This function is only useful in database emulationmode.

Syntax

field(fieldname[, recordnumber]) string value

©2010 Objectif Lune Inc - 487 -

Argument

fieldname

String value specifying the name of the field whose value you want to retrieve.

recordnumber

Integer value specifying the number of the record, in the current record set, whose value you want to retrieve. If you omit this
argument, the document uses the value of¤t.line.

This argument is case sensitive. Thus the field names OrderNumber and ORDERNUMBER are not equivalent.

Code Sample Example

This example shows how to print the name and content of the current record in a generic fashion.

Example

define(&x,integer,1) //Define loop variable
define(&fn,string,'') //Define name variable
margin(0,0)
for(&x,1,1,fieldcount()) //Loop through all fields

set(&fn, fieldname(&x)) //Store field name
show(&fn) //Display field name
moveto(2,¤t.y) //Move right
show(field(&fn)) //Display field contents
crlf() //Move to next line

endfor()

FieldCount (function)

Returns a count of fields in the current database record. Since all records always hold the same number of fields, this value will
not change unless a new sample data file is used. This function is only useful in database emulationmode.

Syntax

fieldcount() integer value

Code Sample Example

"Field (function)" (page 542)

FieldName (function)

Returns the name of the specified field for the current record. This function is only useful in database emulationmode.

Syntax

fieldname(index) string value

Argument

index

Integer value specifying the index of the field whose name should be retrieved. Correct values range from 1 to fieldcount().

©2010 Objectif Lune Inc - 488 -

Code Sample Example

"Field (function)" (page 542)

Find (function)

Checks for the presence of a string within a rectangular region of the current data page. If the specified string is found, the
function returns true. This allows you to look for strings within a more general area, rather than at some precise location.

Syntax

find(string1, column1, line1, column2, line2) Boolean value

Argument

string1

String value to look for.

column1, line1

Integer values for the top left corner of the rectangular region to search in the current data page.

column2, line2

Integer values for the bottom right corner of the rectangular region to search in the current data page.

Code Sample Example

This example looks for the word 'Invoice' within a region of the data page.

Example

if(find('Invoice',60,1,80,5))
show('Invoice')

elseif()
show('Sales Order')

endif()

Get (function)

Returns an element of an array.

Syntax

get(array, position) array element

Argument

array

Name of the array.

position

Integer specifying the position in the array, of the element you want to retrieve. Recall that the first position in an array is 0,
the second is 1, the third 2, etc.

©2010 Objectif Lune Inc - 489 -

Code Sample Examples

Examples 1 and 2 are equivalent representations of using the get() command.

Example 1

&month := get(&MyArray,12)

Example 2

&month := &MyArray[12]

GetBlack (function)

Returns the value of the Black component of a color array.

Syntax

getblack(color) integer

Arguments

color

Color array for which you want to determine the Black value.

Code Sample Example

set-
fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

GetCyan (function)

Returns the value of the Cyan component of a color array.

Syntax

getcyan(color) integer

Arguments

color

Color array for which you want to determine the Cyan value.

©2010 Objectif Lune Inc - 490 -

Code Sample Example

set-
fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

GetMagenta (function)

Returns the value of the Magenta component of a color array.

Syntax

getmagenta(color) integer

Arguments

color

Color array for which you want to determine the Magenta value.

Code Sample Example

set-
fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

Getmeta (function)

Returns the value of a metadata attribute or field.

Syntax

getmeta(name: string; [flags : integer; path : string]) string

Arguments

name

The name of the metadata value to retrieve. Unless the GetAttribute flag argument is specified, the function looks for the
name in the field collection.

flags

Optional integer value to define the behavior of the command when a field with the same name already exists in the current
level. The flag value to enter should be the sum of all desired flags. (Eg: GetAttribute and FailIfNotFound would give a flag
value of '5').

The default behavior uses 0.

Name Value Behavior

©2010 Objectif Lune Inc - 491 -

GetAttribute 1
Search for the name argument in the attribute collection
instead of the default field collection.

NoCascade 2

Search only the level specified by the path argument
(defaults toPage level when path argument is empty),
instead of default behavior, going from the Page levelto
the Job level.

FailIfNotFound 4
Raise an error and crash the job is the specified nameis
not found instead of returning an empty string.

SelectedNodesOnly 8 Returns values from the selected nodes only.

path

Optional string value to specify the level where to start looking for the field or attribute. Path components cannot be indexed,
and if no path

is provided, the search is done from the the Page level.

Note: The node names of the path argument can have an optional zero-based index, indicated between square brackets ('[
]'), to access a specific node. If no index is provided, the first node is used.

Important Note: If used from PlanetPress Suite Workflow Tools, every argument ismandatory.

Code Sample Example

These examples show the three different syntaxes for the GetMeta() function.

% Retrieve value for field "mydata". If that field exists in both the current group and
the current datapage collections, for instance,

% this call to the GetMeta() function will return the value of the field from the datap-
age.

GetMeta('mydata')

% Retrieve the second value of the current page, containing two fields called "address",
while the group collection also has four "address" fields.

GetMeta('address[1]')

% Note that using GetMeta('address[2]') would return the third value of the group level.
To prevent the function from cascading up to the group level,

% the NoCascade flag must be provided. And to retrieve the first two "address" fields of
the group collection, the third argument must be used, set to

% the proper path, thusly:

GetMeta('address[1]', 2, 'Job.Group')

©2010 Objectif Lune Inc - 492 -

Getmetacount (function)

Returns the number of times an attribute or a field is encountered in the current metadata hierarchy. It can also be used to ver-
ify whether a field or attribute exists by comparing the returned value to zero. Note that attributes can only appear once, and
thus can only yield two possible values, either zero or one.

Syntax

getmetacount(name: string[, flags: integer, path: string]) integer

Arguments

name

The name of the metadata value to count.

flags

Optional integer value to define the behavior of the command.The default behavior uses 0. The flag value to enter should be
the sum of all desired flags. (Eg: GetAttribute and FailIfNotFound would give a flag value of '5').

Name Value Behavior

GetAttribute 1
Search for the name argument in the attribute instead of
the default field .

NoCascade 2

Search only the level specified by the path argument
(defaults toPage level when path argument is empty),
instead of default behavior, going from the Page levelto
the Job level.

FailIfNotFound 4
Raise an error and crash the job is the specified nameis
not found instead of returning an empty string.

path

Optional string value to specify the level where to start counting the field or attribute. Path components cannot be indexed, and
if no path

is provided, the search is done from the the Page level.

Note: The node names of the path argument can have an optional zero-based index, indicated between square brackets ('[
]'), to access a specific node. If no index is provided, the first node is used.

Also note that , if no attribute nor field is found, the command returns zero, unless the FailIfNotFound flag is specified.

Code Sample Example

This example shows the syntax for the GetMetacount() function.

% Retrieve and count the number of iterations of "address" for the current datapage
Getmetacount('address')

©2010 Objectif Lune Inc - 493 -

GetYellow (function)

Returns the value of the Yellow component of a color array.

Syntax

getyellow(color) integer

Arguments

color

Color array for which you want to determine the Yellow value.

Code Sample Example

set-
fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

IsNumber (function)

Tests a string and returns true if the string is a measure or integer value.

Syntax

isnumber(string) Boolean value

Argument

string

String value.

Code Sample Example

This example displays the word Yes if the string is either a measure or an integer, and No if it is not.

Example

show(if(isnumber(@(1,1,10)),'Yes','No'))

IsPageEmpty (function)

Returns False if the current data page contains data, or True if it does not.

Syntax

ispageempty() Boolean

©2010 Objectif Lune Inc - 494 -

Left (function)

Extracts the specified leftmost characters of a string.

Syntax

left(string, number) string value

Arguments

string

String value from which to extract characters.

number

Integer value specifying how many characters to extract from the beginning of the string.

Code Sample Example

This example prints a string up to a certain position.

Example

define(&data,string,'This is a~sample string')

%Define string

define(&x,integer, pos('~', &data))

%Find tilde

%Print the string up to the tilde character, if found

if(&x>1)

show(left(&data,&x-1))

endif()

Length (function)

Returns the length of a string, or the number of elements in an array.

Syntax

length(element) integer value

Argument

element

Either a string value, or an array variable.

Code Sample Example

Example 1

This example creates an a string array with the same number of elements as the &parts array.

©2010 Objectif Lune Inc - 495 -

define(&partnames, arraystring, length(&parts))

Example 2

This example prints part of a string, starting after a specific delimiter.

define(&data,string,'This is a~sample string')

define(&x,integer, pos('~', &data))

%Find tilde

if(&x>1)

show(right(&data,length(&data)-&x))

%Show remainder of string

endif()

LowerCase (function)

Convert a string to all lower case characters.

Syntax

lowercase(string) string

Argument

string

String value you want to convert to lower case. The stringmay be a mix of upper and lower case characters.

Code Sample Example

&partname := lowercase(@(30,16,39))

MapUTF8 (function)

Converts a text string from its original encoding to UTF8. This function can be used within a ShowUTF8, ShowUTF8Left, a Sho-
wUTF8Right, and a ShowUTF8Center procedure.

Syntax

maputf8(text, encoding, reversedmapping)

Arguments

text

©2010 Objectif Lune Inc - 496 -

Static text string or data selection to be converted.

encoding

String identifying the original encoding or reference to a style defined in the document that identifies the original encoding.

reversedmapping

Boolean specifying whether the text to be converted should be mapped in regular or reversed order. Possible values are true
(reversedmapping) and false (no reversedmapping). In the case of preformated Arabic data, this argument should be set to
false.

Supported Encodings

The following Arabic original encodings are supported for the conversion process:

AL-ARABI ASMO-708 ASMO-708-UNIX IBM-864 ISO-8859-6 (Arabic)
ASMO-449+ASMO-708+HP-ARABIC8 IRAN SYSTEMMS-CP-1256

Code Sample Examples

Example 1 illustrates a variable text string that is taken from the data, converted from the MS-CP-1256 encoding to UTF8 and
then displayed from the insertion point to the right. Example 2 illustrates the same variable text string, but this time it is con-
verted from the encoding specified in the style named “MyArabEncoding” to UTF8.

Example 1

setlinewidth(0.007)

moveto(0,0)

rlineto(&width,0)

rlineto(0,&height)

rlineto(neg(&width),0)

rlineto(0,neg(&height))

closepath()

stroke()

moveto(&width/2,&height/2)

SetStyleExt(&Style1,12.0000,0,[100],100)

showUTF8right(maputf8(@(2,15,35), 'MS-CP-1256', False),'normal')

Example 2

setlinewidth(0.007)

moveto(0,0)

rlineto(&width,0)

©2010 Objectif Lune Inc - 497 -

rlineto(0,&height)

rlineto(neg(&width),0)

rlineto(0,neg(&height))

closepath()

stroke()

moveto(&width/2,&height/2)

SetStyleExt(&Style1,12.0000,0,[100],100)

showUTF8right(maputf8(@(2,15,35), &MyArabEncoding, False),'normal')

Mid (function)

Extracts a specified number of characters from a string, starting at a specific position.

Syntax

mid(string, start, length) string value

Arguments

string

String value from which to extract characters.

start

Integer value specifying where the first character to extract is located.

length

Integer value specifying how many characters to extract, starting from number onwards.

Code Sample Example

This example extracts a bracket-delimited word from a sentence.

Example

define(&data,string,'This is a [bracketed] word')

define(&i,integer, pos('[', &data))

%Find the '[' character

define(&j,integer, pos(']', &data))

%Find the ']' character

if((&i>0) and (&j>&i))

%If both were found

show(mid(&data,&i+1,(&j-&i)-1))

%Print the word

©2010 Objectif Lune Inc - 498 -

endif()

Mul (function)

Multiplies two expressions. This is the functional equivalent of the * operator.

Syntax

mul(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be of the same type. The returned value is set accordingly to the
type of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of multiplying numbers.

Example 1

show(inttostr(2*2)) %Displays 4

Example 2

show(floattostr(mul(4.7,2.1))) %Displays 9.87

Ord (function)

Returns the ASCII value of a character.

Syntax

ord(string) integer value

Argument

string

String value whose ASCII value is returned. Only the first character is considered.

Code Sample Example

This example shows how to determine if a character is lowercase or uppercase.

Example

define(&data,string,'a') %Define sample string

if((ord(&data)>=97) and (ord(&data)<=122))

©2010 Objectif Lune Inc - 499 -

%Test lowercase

show(&data+' is lowercase')

elseif()

if((ord(&data)>=65) and (ord(&data)<=90))

%Test uppercase

show(&data+' is uppercase')

elseif()

show(&data+' is not between A and Z or a to z')

endif()

endif()

PDFPageCount (function)

Returns the number of pages in the specified PDF file.

Syntax

pdfpagecount(filename) integer

Argument

filename

String value specifying the path of the PDF file.

PDFWidth/PDFHeight (function)

Returns the width or height, in inches, of a page of a Portable Document Format (PDF) image resource.

Syntax

pdfwidth(name, page) measure value

pdfheight(name, page) measure value

Argument

name

String value that specifies the name of the PDF image resource.

page

Integer value that specifies the page of the PDF

Code Sample Example

This example sets the variable maxwidth to the width of page 3, and the variable maxheight to the height of page 4, of the PDF
named parts_manual.

©2010 Objectif Lune Inc - 500 -

Example

&maxwidth := pdfwidth(‘parts_manual’,3)

&maxheight := pdfheight(‘parts_manual’,4)

PixelHeight (function)

Returns the height, in pixels, of the specified image.

Syntax

pixelheight(image) integer

Argument

image

String value specifying the path of the file containing the image.

PixelWidth (function)

Returns the width, in pixels, of the specified image.

Syntax

pixelwidth(image) integer

Argument

image

String value specifying the path of the file containing the image.

Pos (function)

Returns the starting position of a specified string within another string, or 0 if the specified string cannot be found.

Syntax

pos(string1, string2) integer value

Arguments

string1

String value to search for.

string2

String value in which to search.

Code Sample Example

This example uses POS to look for a word in a data selection.

©2010 Objectif Lune Inc - 501 -

Example

define(&s,string,@(1,10,40)) %Initialize var. with data

if(pos('INVOICE',&s)>0) %Look for the word INVOICE

show('Invoice') %if found, display some text

elseif()

%Otherwise,display something else

show('Sales order')

endif()

Random (function)

Returns a measure value between 0 and 1, non-inclusive. Since this function uses the current system time when run inside the
printer, it returns a true random value. On the computer, however, the function uses the current data page as its seed to
ensure the returned value is constant when you navigate from page to page on your document.

Syntax

random() measure value

Argument

None

Code Sample Example

This example displays 10 random numbers between 1 and 20.

Example

define(&x,integer,1)

for(&x,1,1,10)

show(inttostr(floattoint(random()*20)+1))

crlf()

endfor()

Region (function)

Returns an array of strings, containing the text found inside left-top, right-bottom coordinates.
Note: This function only works inWindows Printing or Optimized PostScript Stream. If used in printer centric mode, it will

©2010 Objectif Lune Inc - 502 -

return an empty string.

Syntax

region(left, top, right, bottom) array of strings

Argument

left,top,right,bottom

Measure values specifying the coordinates, in inches or centimeters, for the area on which to read the data in the current data
page.
Note that since this function returns an array of string, using region to display data on a page does not make much sense; for
better results, consider using regionline().

Code Sample Example

This example illustrates how to assign data from the current data page to a array of strings variable by using the region() com-
mand. Then, a for() loop is used to show every item in the array of strings&detailarray, followed by a carriage return.

Example

define(&detailarray, arraystring, region(1.92,3.53,4.65,4.39))
define(&i, integer, 0)

for(&i, 0, 1, Length(&detailarray)-1)
show(&detailarray[&i])
crlf()

endfor()

Related topics:

l "Regionline (function)" (page 503)

Regionline (function)

Returns an array of strings, containing the text found inside left-top, right-bottom coordinates.
Note: This function only works inWindows Printing or Optimized PostScript Stream. If used in printer centric mode, it will
return an empty string.

Syntax

regionline(x1, y1, x2, y2: measure; [index: integer = 0] string

Argument

x1, y1, x2, y2

Measure values specifying the coordinates, in inches or centimeters, for the area on which to read the data in the current data
page.

index

©2010 Objectif Lune Inc - 503 -

Integer value specifying the line number to return. If no <>index<> paramter is specified, the default value is 0.

Code Sample Example

This example illustrates how to assign data from the current data page to a string variable by using the regionline() command.

Example

define(&invnum, string, regionline(2.1807,0.3018,3.8843,0.9054, 0))

Related topics:

l "Region (function)" (page 502)

ResourceType (function)

Returns the type of a resource. Recall that resources are either images or attachments.

Syntax

resourcetype(name) integer value

Argument

name

String value that specifies the name of the resource.

Return Values

Return value: Indicates:
0 The resource does not exist or could not be found.
1 A color bitmap.
2 A monochrome bitmap.
3 A grayscale bitmap.
4 An Encapsulated PostScript (EPS) image.
5 A PostScript file.
6 A Portable Document Format (PDF) file.

Code Sample Example

This example sets the variable &resolution to 200 DPI if the resource is a color bitmap, and to 75 DPI if it is not.

Example

if(eq(resourcetype(‘employee’), 1))

&resolution := 200

elseif

&resolution := 75

endif

©2010 Objectif Lune Inc - 504 -

Right (function)

Extracts the specified rightmost characters of a string.

Syntax

right(string, number) string value

Arguments

string

String value from which to extract characters.

number

Integer value specifying how many characters to extract from the end of the string.

Code Sample Example

This example prints part of a string, starting after a specific delimiter.

Example

define(&data,string,'This is a~sample string')

define(&x,integer, pos('~', &data)) %Find tilde

if(&x>1)

show(right(&data,length(&data)-&x))

%Show remainder of string

endif()

StringReplace (function)

Replaces all occurrences of a pattern within a string, with another pattern.

Syntax

stringreplace(string, old, new) string

Arguments

string

String in which you want to replace a pattern.

old

String value that defines the pattern you want to replace.

©2010 Objectif Lune Inc - 505 -

new

String value that represents the replacement pattern.

Code Sample Example

This example replaces the dollar currency symbol with the pound currency symbol.

Example

stringreplace('1,000.00$','$','£')

StringWidth (function)

Returns the physical display width, in inches, of a string.

Syntax

stringwidth(string) measure value

Argument

string

String value whose width is returned.

Code Sample Example

This example draws a tight box around a variable length data selection.

Example

margin(0,0)

%Define the data. This could be a data selection.

define(&data,string,'This is a sample string')

set(&data,trimright(&data))

%Store the length

define(&dw,measure,stringwidth(&data))

moveto(1,1)

%Display the string, then draw a box around it.

show(&data)

rectstroke(1,0.86,&dw,0.2)

©2010 Objectif Lune Inc - 506 -

StringWidthUTF8 (function)

Returns the length, in inches, of the string as it would be displayed on a page, using the current font. Bear in mind that the com-
bination of many bytes sometimes results in a single glyph and that text orientation can also affect the number of glyphs dis-
played.

Syntax

stringwidthutf8(text, mode)

Arguments

text

UTF8 text string to be measured.

mode

String specifying how the contextual analysis is to be performed. Possible values are 'normal', 'reverse', and 'none' (for no con-
textual analysis).

Strip (function)

Removes all occurrences of a string within another string.

Syntax

strip(string1, string2) string value

Arguments

string1

String value to be removed from string2.

string2

String value to change.

Code Sample Example

This example strips all dollar signs from a variable.

Example

define(&data,string,'$11.95')

show(strip('$',&data))

Sub (function)

Subtracts one expression from another. This is the functional equivalent of the - operator.

©2010 Objectif Lune Inc - 507 -

Syntax

sub(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be the same type. The returned value is set according to the type
of the parameters.

Code Sample Example

Example 1 and Example 2 illustrates both ways of subtracting numbers.

Example 1

show(inttostr(2-2))

Example 2

show(floattostr(sub(4.7,2.1)))

SubRecCount (function)

Returns the number of records per data page. Since data pages can hold a variable number of records, this value may change
whenever you skip through data pages. Every data page always has at least one child, otherwise it wouldn't be stored in the
database. Subreccount can return 0 only if the emulation is set to something other than database mode, or if the converted
database is invalid. This function is only useful in database emulationmode.

Syntax

subreccount integer value

Code Sample Example

This example prints the line items from an invoice. It defines the loop and total variables, loops through all records, shows and
positions invoice information, and finally shows the invoice total. The fields listed here are for illustration purposes only.

Example

define(&x,integer,1)

define(&tot,measure,0.0)

for(&x,1,1,subreccount())

show(field('PartNum'))

©2010 Objectif Lune Inc - 508 -

moveto(1.5,¤t.y)

show(field('PartDesc'))

moveto(4.5,¤t.y)

show(field('Qty'))

moveto(5.5,¤t.y)

show(field('UnitPrice'))

moveto(6.5,¤t.y)

show(field('Total'))

%Add line total to tot variable

set(&tot,&tot+ strtofloat(field('Total')))

moveto(0,¤t.y+.25)

endfor()

moveto(6.5,8)

show(floattostr(&tot))

Time (function)

Returns the print time. Note that this functionwill only work if the document runs on a computer, since it is impossible for the
document to get the current time from a printer. So if you send your document to a printer and then simply send data with the
appropriate trigger to that printer, the document will run on the printer and the function will return an empty string. Use the
Run locally option, available in the PlanetPress Suite Workflow Tools, to ensure that the document runs on a computer rather
than on a printer.

Syntax

time(displayseconds)

Argument

displayseconds

Boolean specifying whether to display the time using seconds. True returns the time with seconds, False, without. The precise
format of the of the time value strings are set in the Windows Regional options.

Code Sample Example

This example shows how to add the current time with seconds (11:14:46 AM, as opposed to 11:14 AM, for example) on a doc-
ument page.

Example

©2010 Objectif Lune Inc - 509 -

show(time(true))

Trim (function)

Removes both leading and trailing spaces from a string.

Syntax

trim(string) string value

Argument

string

String value from which you want to trim leading and trailing spaces.

Code Sample Example

This example trims leading and trailing spaces from the data selection on line 3, columns 8 to 24.

Example

trim(@(3,8,24))

TrimLeft (function)

Removes leading spaces from a string.

Syntax

trimleft(string) string value

Argument

string

String value to trim.

Code Sample Example

This example makes sure * delimiters are added immediately before and after a data selection.

Example

show('*'+trimleft(trimright(@(12,10,35)))+'*')

©2010 Objectif Lune Inc - 510 -

TrimRight (function)

Removes trailing spaces from a string.

Syntax

trimright(string) string value

Argument

string

String value to trim.

Code Sample Example

"TrimLeft (function)" (page 549)

UpperCase (function)

Convert a string to all upper case characters.

Syntax

uppercase(string) string

Argument

string

String value you want to convert to upper case. The stringmay be a mix of upper and lower case characters.

Code Sample Example

This example illustrates uppercase().

Example

&month := uppercase(@(1,60,70))

xmlCount()

Counts the number of children for a specific element, according to standard XPath syntax. The return value is an integer and
always returns 0 if the specified XPath is invalid or if no value is found. The XPath is always relative to the XML root path.

Syntax

xmlCount(path: string) integer value

Arguments

path

©2010 Objectif Lune Inc - 511 -

The XML Path of the value you want to retrieve. The pathmust correspond to a single entry in the XML, thus is not a complete
XPath with regular expressions and variables.

Code Sample

The following gets the number of items in an invoice, loops through each item and displays the item's description with show().

define(&i, integer, 0)
define(¤tItemDescription, string, '')

define(&numberOfItems, integer, xmlcount('/MyData/CUSTOMER/INVOICES/INVOICE/ITEM'))

for(&i, 1, 1, &numberOfItems)
¤tItemDescription := xmlget('-

/MyData/CUSTOMER/INVOICES/INVOICE/ITEM['+inttostr(&i)+']/Description')
show(¤tItemDescription)
crlf()

endfor()

xmlGet()

Retrieves a data selection value through the structure of an XML file. This function uses a single parameter specifying the Path
of the value to be retrieved. This function returns a string. The return value is an empty string if no value is found or if the spec-
ified Element is invalid or not found.

Syntax

xmlGet(path: string) string value

Arguments

path

The XML Path of the value you want to retrieve. The pathmust correspond to a single entry in the XML, thus is not a complete
XPath with regular expressions and variables.

Code Sample

These are examples of xmlGet() commands returning data from an XML file. Note that these will most likely not work with
your own XML even if you tried, as the path is completely dependent on the exact structure of your XML Data file.

define(&myVar, string, '')
&myVar := xmlget('/PLANETPRESS_DATA_FILE[1]-
/CUSTOMER[1]/INVOICES[1]/INVOICE[1]/ITEM[1]/Description[1]')
&myVar := xmlget('/MyData/CUSTOMER[1]/INVOICES[1]/INVOICE[1]/ITEM[1]/Description[1]')
% This next line uses the &i variable to dynamically select an item in the invoice. Use-
ful in a repeat & overflow
% configuration, or a manual PlanetPress Talk loop through te data. Note that the var-
iable must be converted to a string.
&myVar := xmlget('-
/MyData/CUSTOMER[1]/INVOICES[1]/INVOICE[1]/ITEM['+inttostr(&i)+']/Description[1]')

Example 2

©2010 Objectif Lune Inc - 512 -

The following gets the number of items in an invoice, loops through each item and displays the item's description with show().

define(&i, integer, 0)
define(¤tItemDescription, string, '')

define(&numberOfItems, integer, xmlcount('/MyData/CUSTOMER/INVOICES/INVOICE/ITEM'))

for(&i, 1, 1, &numberOfItems)
¤tItemDescription := xmlget('-

/MyData/CUSTOMER/INVOICES/INVOICE/ITEM['+inttostr(&i)+']/Description')
show(¤tItemDescription)
crlf()

endfor()

System Variables (by data type)
"Integer" (page 513)

"Measure" (page 513)

"String" (page 514)

"Boolean" (page 514)

Integer

&Current.DataPage (see "Current (system object)" (page 378))

&Current.Line (see "Current (system object)" (page 378))

&Current.LPP (see "Current (system object)" (page 378))

&Current.MediaWeight (see "Current (system object)" (page 378))

&Current.Orientation (see "Current (system object)" (page 378))

&Current.PrintPage (see "Current (system object)" (page 378))

"&PrinterMode (system variable)" (page 377)

"SubRecCount (function)" (page 528)

&Metamode (variable)

&System.FormVersion (see "&system (system object)" (page 380))

Measure

&Current.MinFeature (see "Current (system object)" (page 378))

&Current.PageHeight (see "Current (system object)" (page 378))

&Current.PageWidth (see "Current (system object)" (page 378))

&Current.X (see "Current (system object)" (page 378))

©2010 Objectif Lune Inc - 513 -

&Current.Y (see "Current (system object)" (page 378))

"&Height (system variable)" (page 376)

&Physical.X (see "Physical (system object)" (page 380))

&Physical.Y (see "Physical (system object)" (page 380))

"&Width (system variable)" (page 378)

String

&Current.MediaColor (see "Current (system object)" (page 378))

&Current.MediaType (see "Current (system object)" (page 378))

"&Str (system variable)" (page 377)

&System.Product (see "&system (system object)" (page 380))

&System.Version (see "&system (system object)" (page 380))

Boolean

"&EOJob (system variable)" (page 376)

"&FirstSide (system variable)" (page 376)

Functions (by return value data type)
This section contains a reference to all PlanetPress Talk functions, including operator functions, by the data type of their return
values.

l "Currency" (page 514)
l "Integer" (page 516)
l "Measure" (page 530)
l "String" (page 540)
l "Boolean" (page 551)

Currency

Add (function)

Adds two numerical expressions. This is the functional equivalent to the + operator, when you use the + operator with numer-
ical expressions.

Syntax

add(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

©2010 Objectif Lune Inc - 514 -

Integer, measure, or currency values. Both expressions must be the same type. The returned value is set according to the
type of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of adding numbers.

Example 1

show(inttostr(2+2)) %Displays 4

Example 2

show(floattostr(add(4.7,2.1))) %Displays 6.8

FloatToCur (function)

Converts a measure expression into a currency value.

Syntax

floattocur(expression) currency value

Argument

expression

Measure value to be converted. The decimal part is rounded down to 2 decimal points.

Code Sample Example

This example converts a floating point value into a currency value.

floattocur(3.263457) %Returns 3.26

IntToCur (function)

Converts an integer expression into a measure value.

Syntax

inttocur(expression) currency value

Argument

expression

Integer value to be converted.

StrToCur (function)

Converts a string value into a currency value.

Syntax

strtocur(string) currency value

©2010 Objectif Lune Inc - 515 -

Argument

string

String value to convert.

Integer

Add (function)

Adds two numerical expressions. This is the functional equivalent to the + operator, when you use the + operator with numer-
ical expressions.

Syntax

add(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure, or currency values. Both expressions must be the same type. The returned value is set according to the
type of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of adding numbers.

Example 1

show(inttostr(2+2)) %Displays 4

Example 2

show(floattostr(add(4.7,2.1))) %Displays 6.8

Ceil (function)

Returns the smallest integer greater than or equal to the specified measure value.

Syntax

ceil(value) integer value

Argument

value

Measure value. The absolute value of the measure value must be less than the maximum value of an integer in PostScript
(2,147,483,647).

Code Sample Examples

These examples illustrate various applications of ceil().

©2010 Objectif Lune Inc - 516 -

ceil(-2.8) %Returns -2
ceil(2.8) %Returns 3
ceil(-5.0) %Returns -5

Div (function)

Divides an expression with another. This is the functional equivalent to the / operator.

Syntax

div(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be the same type. The returned value is set according to the type
of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of dividing numbers.

Example 1

show(inttostr(2/2)) %Displays 1

Example 2

show(floattostr(div(4.7,2.1))) %Displays 2.2381

FieldCount (function)

Returns a count of fields in the current database record. Since all records always hold the same number of fields, this value will
not change unless a new sample data file is used. This function is only useful in database emulationmode.

Syntax

fieldcount() integer value

Code Sample Example

"Field (function)" (page 542)

FloatToInt (function)

Converts a measure expression into an integer value.

Syntax

floattoint(expression) integer value

Argument

expression

©2010 Objectif Lune Inc - 517 -

Measure value to be converted. The decimal part is rounded down to a whole number.

Code Sample Examples

These examples illustrate floattoint().

Example 1

floattoint(3.2) %Returns 3

Example 2

floattoint(11.6) %Returns 12

Get (function)

Returns an element of an array.

Syntax

get(array, position) array element

Argument

array

Name of the array.

position

Integer specifying the position in the array, of the element you want to retrieve. Recall that the first position in an array is 0,
the second is 1, the third 2, etc.

Code Sample Examples

Examples 1 and 2 are equivalent representations of using the get() command.

Example 1

&month := get(&MyArray,12)

Example 2

&month := &MyArray[12]

GetBlack (function)

Returns the value of the Black component of a color array.

©2010 Objectif Lune Inc - 518 -

Syntax

getblack(color) integer

Arguments

color

Color array for which you want to determine the Black value.

Code Sample Example

set-
fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

GetCyan (function)

Returns the value of the Cyan component of a color array.

Syntax

getcyan(color) integer

Arguments

color

Color array for which you want to determine the Cyan value.

Code Sample Example

set-
fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

GetMagenta (function)

Returns the value of the Magenta component of a color array.

Syntax

getmagenta(color) integer

Arguments

color

Color array for which you want to determine the Magenta value.

©2010 Objectif Lune Inc - 519 -

Code Sample Example

set-
fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

GetYellow (function)

Returns the value of the Yellow component of a color array.

Syntax

getyellow(color) integer

Arguments

color

Color array for which you want to determine the Yellow value.

Code Sample Example

set-
fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

Getmetacount (function)

Returns the number of times an attribute or a field is encountered in the current metadata hierarchy. It can also be used to ver-
ify whether a field or attribute exists by comparing the returned value to zero. Note that attributes can only appear once, and
thus can only yield two possible values, either zero or one.

Syntax

getmetacount(name: string[, flags: integer, path: string]) integer

Arguments

name

The name of the metadata value to count.

flags

Optional integer value to define the behavior of the command.The default behavior uses 0. The flag value to enter should be
the sum of all desired flags. (Eg: GetAttribute and FailIfNotFound would give a flag value of '5').

Name Value Behavior

GetAttribute 1
Search for the name argument in the attribute instead of
the default field .

©2010 Objectif Lune Inc - 520 -

NoCascade 2

Search only the level specified by the path argument
(defaults toPage level when path argument is empty),
instead of default behavior, going from the Page levelto
the Job level.

FailIfNotFound 4
Raise an error and crash the job is the specified nameis
not found instead of returning an empty string.

path

Optional string value to specify the level where to start counting the field or attribute. Path components cannot be indexed, and
if no path

is provided, the search is done from the the Page level.

Note: The node names of the path argument can have an optional zero-based index, indicated between square brackets ('[
]'), to access a specific node. If no index is provided, the first node is used.

Also note that , if no attribute nor field is found, the command returns zero, unless the FailIfNotFound flag is specified.

Code Sample Example

This example shows the syntax for the GetMetacount() function.

% Retrieve and count the number of iterations of "address" for the current datapage
Getmetacount('address')

If (function)

Evaluates an expression and returns one of two specified values according to the results of the evaluation.

Syntax

if(expression, trueresult, falseresult) any type

Arguments

expression

Boolean value. If it evaluates to true, the function returns the contents of trueresult, otherwise it returns the contents of falsere-
sult.

trueresult, falseresult

Values of any type, as long as both are of the same type. The return value of the function is therefore of the same type as
trueresult and falseresult.

Code Sample Example

This example changes the text to display according to the current value of a variable.

Example

show(if(&pagenumber=1,'Customer Copy','Store Copy'))

©2010 Objectif Lune Inc - 521 -

Length (function)

Returns the length of a string, or the number of elements in an array.

Syntax

length(element) integer value

Argument

element

Either a string value, or an array variable.

Code Sample Example

Example 1

This example creates an a string array with the same number of elements as the &parts array.

define(&partnames, arraystring, length(&parts))

Example 2

This example prints part of a string, starting after a specific delimiter.

define(&data,string,'This is a~sample string')

define(&x,integer, pos('~', &data))

%Find tilde

if(&x>1)

show(right(&data,length(&data)-&x))

%Show remainder of string

endif()

Mod (function & procedure)

Returns the remainder resulting from the division of two numbers.

Syntax

mod(number1, number2) integer value

number1 mod number2 integer value

Arguments

number1

Integer value to be divided.

©2010 Objectif Lune Inc - 522 -

number2

Integer value with which to divide number1.

Code Sample Example

This example uses MOD to distinguish between odd and even numbers.

Example

define(&i,integer, 1)

%Define loop variable

for(&i,1,1,10) %Set loop

show(inttostr(&i)+' is an') %Display number

if(mod(&i,2)=1)

%Determine if number is odd or even

show(' odd ')

elseif()

show(' even ')

endif()

show('number.')

crlf()

endfor()

Mul (function)

Multiplies two expressions. This is the functional equivalent of the * operator.

Syntax

mul(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be of the same type. The returned value is set accordingly to the
type of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of multiplying numbers.

Example 1

show(inttostr(2*2)) %Displays 4

©2010 Objectif Lune Inc - 523 -

Example 2

show(floattostr(mul(4.7,2.1))) %Displays 9.87

Neg (function)

Returns the negative value of the specified expression. This is the functional equivalent to the - sign.

Syntax

neg(expression1) integer, measure, currency value

Argument

expression1

Integer, measure or currency value. The returned value is the same type as expression1.

Code Sample Examples

Examples 1and 2 show both ways of negating a number. Negating negative numbers yields a positive result.

Example 1

-12 %Returns -12

-&max %Returns negative of the value of the variable &max

neg(-12.45) %Returns 12.45

Ord (function)

Returns the ASCII value of a character.

Syntax

ord(string) integer value

Argument

string

String value whose ASCII value is returned. Only the first character is considered.

Code Sample Example

This example shows how to determine if a character is lowercase or uppercase.

Example

define(&data,string,'a') %Define sample string

if((ord(&data)>=97) and (ord(&data)<=122))

©2010 Objectif Lune Inc - 524 -

%Test lowercase

show(&data+' is lowercase')

elseif()

if((ord(&data)>=65) and (ord(&data)<=90))

%Test uppercase

show(&data+' is uppercase')

elseif()

show(&data+' is not between A and Z or a to z')

endif()

endif()

PDFPageCount (function)

Returns the number of pages in the specified PDF file.

Syntax

pdfpagecount(filename) integer

Argument

filename

String value specifying the path of the PDF file.

PixelHeight (function)

Returns the height, in pixels, of the specified image.

Syntax

pixelheight(image) integer

Argument

image

String value specifying the path of the file containing the image.

PixelWidth (function)

Returns the width, in pixels, of the specified image.

Syntax

pixelwidth(image) integer

©2010 Objectif Lune Inc - 525 -

Argument

image

String value specifying the path of the file containing the image.

Pos (function)

Returns the starting position of a specified string within another string, or 0 if the specified string cannot be found.

Syntax

pos(string1, string2) integer value

Arguments

string1

String value to search for.

string2

String value in which to search.

Code Sample Example

This example uses POS to look for a word in a data selection.

Example

define(&s,string,@(1,10,40)) %Initialize var. with data

if(pos('INVOICE',&s)>0) %Look for the word INVOICE

show('Invoice') %if found, display some text

elseif()

%Otherwise,display something else

show('Sales order')

endif()

ResourceType (function)

Returns the type of a resource. Recall that resources are either images or attachments.

Syntax

resourcetype(name) integer value

Argument

name

String value that specifies the name of the resource.

©2010 Objectif Lune Inc - 526 -

Return Values

Return value: Indicates:
0 The resource does not exist or could not be found.
1 A color bitmap.
2 A monochrome bitmap.
3 A grayscale bitmap.
4 An Encapsulated PostScript (EPS) image.
5 A PostScript file.
6 A Portable Document Format (PDF) file.

Code Sample Example

This example sets the variable &resolution to 200 DPI if the resource is a color bitmap, and to 75 DPI if it is not.

Example

if(eq(resourcetype(‘employee’), 1))

&resolution := 200

elseif

&resolution := 75

endif

StrToInt (function)

Converts a string into an integer value.

Syntax

strtoint(string) integer value

Argument

string

String value to convert.

Code Sample Example

This example reads a column of 6 values then converts the values to integers and then adds the integer to the &total variable.
The total value is subsequently converted back to a string and the result is printed.

Example

define(&total,integer,0)

define(&x,integer,0)

for(&x,1,1,6)

©2010 Objectif Lune Inc - 527 -

set(&total,&total+strtoint(@(&x,10,18)))

endfor()

show(inttostr(&total))

Sub (function)

Subtracts one expression from another. This is the functional equivalent of the - operator.

Syntax

sub(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be the same type. The returned value is set according to the type
of the parameters.

Code Sample Example

Example 1 and Example 2 illustrates both ways of subtracting numbers.

Example 1

show(inttostr(2-2))

Example 2

show(floattostr(sub(4.7,2.1)))

SubRecCount (function)

Returns the number of records per data page. Since data pages can hold a variable number of records, this value may change
whenever you skip through data pages. Every data page always has at least one child, otherwise it wouldn't be stored in the
database. Subreccount can return 0 only if the emulation is set to something other than database mode, or if the converted
database is invalid. This function is only useful in database emulationmode.

Syntax

subreccount integer value

©2010 Objectif Lune Inc - 528 -

Code Sample Example

This example prints the line items from an invoice. It defines the loop and total variables, loops through all records, shows and
positions invoice information, and finally shows the invoice total. The fields listed here are for illustration purposes only.

Example

define(&x,integer,1)

define(&tot,measure,0.0)

for(&x,1,1,subreccount())

show(field('PartNum'))

moveto(1.5,¤t.y)

show(field('PartDesc'))

moveto(4.5,¤t.y)

show(field('Qty'))

moveto(5.5,¤t.y)

show(field('UnitPrice'))

moveto(6.5,¤t.y)

show(field('Total'))

%Add line total to tot variable

set(&tot,&tot+ strtofloat(field('Total')))

moveto(0,¤t.y+.25)

endfor()

moveto(6.5,8)

show(floattostr(&tot))

xmlCount()

Counts the number of children for a specific element, according to standard XPath syntax. The return value is an integer and
always returns 0 if the specified XPath is invalid or if no value is found. The XPath is always relative to the XML root path.

Syntax

xmlCount(path: string) integer value

Arguments

path

©2010 Objectif Lune Inc - 529 -

The XML Path of the value you want to retrieve. The pathmust correspond to a single entry in the XML, thus is not a complete
XPath with regular expressions and variables.

Code Sample

The following gets the number of items in an invoice, loops through each item and displays the item's description with show().

define(&i, integer, 0)
define(¤tItemDescription, string, '')

define(&numberOfItems, integer, xmlcount('/MyData/CUSTOMER/INVOICES/INVOICE/ITEM'))

for(&i, 1, 1, &numberOfItems)
¤tItemDescription := xmlget('-

/MyData/CUSTOMER/INVOICES/INVOICE/ITEM['+inttostr(&i)+']/Description')
show(¤tItemDescription)
crlf()

endfor()

Measure

Add (function)

Adds two numerical expressions. This is the functional equivalent to the + operator, when you use the + operator with numer-
ical expressions.

Syntax

add(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure, or currency values. Both expressions must be the same type. The returned value is set according to the
type of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of adding numbers.

Example 1

show(inttostr(2+2)) %Displays 4

Example 2

show(floattostr(add(4.7,2.1))) %Displays 6.8

©2010 Objectif Lune Inc - 530 -

BitmapWidth/BitmapHeight (function)

Returns the width or height, in inches, of a bitmap image resource, at the specified resolution.

Syntax

Bitmapwidth(name, resolution) measure value

Bitmapheight(name, resolution) measure value

Argument

name

String value that specifies the name of the bitmap image resource.

resolution

Integer value that specifies the resolution at which you want to measure the width or height of the bitmap.

Code Sample Example

This example sets the variable maxwidth to the width of the bitmap 'fingerprint' at a resolution of 150 DPI, and the variable
maxheight to the height of the same bitmap at a resolution of 200 DPI.

Example

&maxwidth := bitmapwidth('fingerprint', 150)
&maxheight := bitmapheight('fingerprint', 200)

Cos (function)

Returns the cosine value of the specified angle.

Syntax

cos(value) measure value

Argument

value

Measure value specifying the angle whose cosine is returned.

Code Sample Example

This example displays a sinusoidal graph.

Example

moveto(0,0)
define(&i,integer,0)
for(&i,1,10,360)

lineto(cos(inttofloat((&i)/ 4)),sin(inttofloat(&i)))
endfor()
closepath()

©2010 Objectif Lune Inc - 531 -

CurToFloat (function)

Converts a currency expression into a measure value.

Syntax

curtofloat(expression) measure value

Argument

expression

Currency value to convert.

Div (function)

Divides an expression with another. This is the functional equivalent to the / operator.

Syntax

div(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be the same type. The returned value is set according to the type
of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of dividing numbers.

Example 1

show(inttostr(2/2)) %Displays 1

Example 2

show(floattostr(div(4.7,2.1))) %Displays 2.2381

EPSWidth/EPSHeight (function)

Returns the width or height, in inches, of an Encapsulated PostScript (EPS) image resource.

Syntax

epswidth(name) measure value

epsheight(name) measure value

Argument

name

String value that specifies the name of the EPS image resource.

©2010 Objectif Lune Inc - 532 -

Code Sample Example

This example sets the variable maxwidth to the width, and the variable maxheight to the height of the EPS image resource
wing_nut.

Example

&maxwidth := EPSwidth('wing_nut')
&maxheight := EPSheight('wing_nut')

Get (function)

Returns an element of an array.

Syntax

get(array, position) array element

Argument

array

Name of the array.

position

Integer specifying the position in the array, of the element you want to retrieve. Recall that the first position in an array is 0,
the second is 1, the third 2, etc.

Code Sample Examples

Examples 1 and 2 are equivalent representations of using the get() command.

Example 1

&month := get(&MyArray,12)

Example 2

&month := &MyArray[12]

If (function)

Evaluates an expression and returns one of two specified values according to the results of the evaluation.

Syntax

if(expression, trueresult, falseresult) any type

©2010 Objectif Lune Inc - 533 -

Arguments

expression

Boolean value. If it evaluates to true, the function returns the contents of trueresult, otherwise it returns the contents of falsere-
sult.

trueresult, falseresult

Values of any type, as long as both are of the same type. The return value of the function is therefore of the same type as
trueresult and falseresult.

Code Sample Example

This example changes the text to display according to the current value of a variable.

Example

show(if(&pagenumber=1,'Customer Copy','Store Copy'))

IntToFloat (function)

Converts an integer expression into a measure value.

Syntax

inttofloat(expression) measure value

Argument

expression

Integer value to be converted.

Code Sample Example

This example uses a loop to draw a series of blue rectangles.

Example

define(&x,integer,1)

%Define loop variable

setfillcolor([100,100,0,0])

%Fill blue

for(&x,1,1,10)

%Set up loop

%We must convert &x because rectfill

%expects measure values

rectfill(inttofloat(&x)/2,1,0.1,1)

%Draw rectangle

©2010 Objectif Lune Inc - 534 -

endfor()

Mul (function)

Multiplies two expressions. This is the functional equivalent of the * operator.

Syntax

mul(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be of the same type. The returned value is set accordingly to the
type of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of multiplying numbers.

Example 1

show(inttostr(2*2)) %Displays 4

Example 2

show(floattostr(mul(4.7,2.1))) %Displays 9.87

Neg (function)

Returns the negative value of the specified expression. This is the functional equivalent to the - sign.

Syntax

neg(expression1) integer, measure, currency value

Argument

expression1

Integer, measure or currency value. The returned value is the same type as expression1.

Code Sample Examples

Examples 1and 2 show both ways of negating a number. Negating negative numbers yields a positive result.

Example 1

-12 %Returns -12

-&max %Returns negative of the value of the variable &max

neg(-12.45) %Returns 12.45

©2010 Objectif Lune Inc - 535 -

PDFWidth/PDFHeight (function)

Returns the width or height, in inches, of a page of a Portable Document Format (PDF) image resource.

Syntax

pdfwidth(name, page) measure value

pdfheight(name, page) measure value

Argument

name

String value that specifies the name of the PDF image resource.

page

Integer value that specifies the page of the PDF

Code Sample Example

This example sets the variable maxwidth to the width of page 3, and the variable maxheight to the height of page 4, of the PDF
named parts_manual.

Example

&maxwidth := pdfwidth(‘parts_manual’,3)

&maxheight := pdfheight(‘parts_manual’,4)

Random (function)

Returns a measure value between 0 and 1, non-inclusive. Since this function uses the current system time when run inside the
printer, it returns a true random value. On the computer, however, the function uses the current data page as its seed to
ensure the returned value is constant when you navigate from page to page on your document.

Syntax

random() measure value

Argument

None

Code Sample Example

This example displays 10 random numbers between 1 and 20.

Example

©2010 Objectif Lune Inc - 536 -

define(&x,integer,1)

for(&x,1,1,10)

show(inttostr(floattoint(random()*20)+1))

crlf()

endfor()

Sin (function)

Returns the sine value of the specified angle.

Syntax

sin(value) measure value

Argument

value

Measure value specifying the angle whose sine is returned.

Code Sample Example

This example draws a somewhat sinusoidal graph.

Example

moveto(0,0)

define(&i,integer,0)

for(&i,1,10,360)

lineto(cos(inttofloat((&i)/ 4)),sin(inttofloat(&i)))

endfor()

closepath()

StringWidth (function)

Returns the physical display width, in inches, of a string.

Syntax

stringwidth(string) measure value

Argument

string

©2010 Objectif Lune Inc - 537 -

String value whose width is returned.

Code Sample Example

This example draws a tight box around a variable length data selection.

Example

margin(0,0)

%Define the data. This could be a data selection.

define(&data,string,'This is a sample string')

set(&data,trimright(&data))

%Store the length

define(&dw,measure,stringwidth(&data))

moveto(1,1)

%Display the string, then draw a box around it.

show(&data)

rectstroke(1,0.86,&dw,0.2)

StringWidthUTF8 (function)

Returns the length, in inches, of the string as it would be displayed on a page, using the current font. Bear in mind that the com-
bination of many bytes sometimes results in a single glyph and that text orientation can also affect the number of glyphs dis-
played.

Syntax

stringwidthutf8(text, mode)

Arguments

text

UTF8 text string to be measured.

mode

String specifying how the contextual analysis is to be performed. Possible values are 'normal', 'reverse', and 'none' (for no con-
textual analysis).

StrToFloat (function)

Converts a string into a measure value.

Syntax

strtofloat(string) measure value

©2010 Objectif Lune Inc - 538 -

Argument

string

String value to convert.

Code Sample Example

This example reads a column of 6 values then converts the values to floating point values and then adds the ir values to the
&total variable. The total value is subsequently converted back to a string and the result is printed.

Example

define(&total,measure,0.0)

define(&x,integer,0)

for(&x,1,1,6)

set(&total,&total+strtofloat(@(&x,10,18)))

endfor()

show(floattostr(&total))

Sub (function)

Subtracts one expression from another. This is the functional equivalent of the - operator.

Syntax

sub(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure or currency values. Both expressions must be the same type. The returned value is set according to the type
of the parameters.

Code Sample Example

Example 1 and Example 2 illustrates both ways of subtracting numbers.

Example 1

show(inttostr(2-2))

Example 2

©2010 Objectif Lune Inc - 539 -

show(floattostr(sub(4.7,2.1)))

String

@ (function)

Returns a selection within the current data page for text emulations.

The @ character can be the beginning of a data selection, a page call or a procedure or function call.

Syntax

@(line, startcolumn, endcolumn) string value

Arguments

line

Integer value specifying the line on which to read the data in the current data page.

startcolumn, endcolumn

Integer values specifying the start/end columns of the chunk of data to read from the current data page.

Code Sample Example

The first line of code assigns data from the current data page to a variable. The second line of code checks for the presence of
a value inside the data page and sets a Boolean variable according to the results.

define(&invnum,string,@(7,50,59))
define(&isfirstpage,boolean,(strtoint(@(1,60,70))=1))

C128 (function)

This function is deprecated and should be replaced by ShowBarcodeCode128 (procedure) whenever encountered. It
is kept for backwards compability.

Converts a two-character string to Code 128 bar code, character set C data.

Syntax

c128(string) string value

Argument

string

String value composed of two characters.

Code Sample Example

This example converts the data on line 5, columns 12 to 13, to Code 128 bar code C character set data.

©2010 Objectif Lune Inc - 540 -

Example

c128(@(5,12,13))

Char (function)

Returns the character whose ASCII value is specified.

Syntax

char(value) string value

Argument

value

Integer value between 0 and 255, specifying the ASCII index of the character.

Example

show(char(84)+char(97)+char(108)+char(107))
% This displays the word "Talk"

CurToStr (function)

Converts a currency expression into a string value.

Syntax

curtostr(expression) string value

Argument

expression

Currency value to convert.

ExpandString (function)

Returns a string that contains the data from a Workflow tool variable. Any variable available to the Workflow tool can be used
here.

Syntax

ExpandString(stringtoexpand: string) string

Arguments

stringtoexpand

The Workflow tool variable string to expand. This can be local and global variables, job infos, as well as any other variable
such as %o, %j, %y, etc.

Return Value

Returns the resulting expanded string.

©2010 Objectif Lune Inc - 541 -

Code Sample Example

define(&result, string, '')
&result := ExpandString('%{global.GlobalVar}')
show(&result)
% Also works with system variables
&result := ExpandString('%o')
show(&result)

Field (function)

Returns the contents of the specified field for the current record. This function is only useful in database emulationmode.

Syntax

field(fieldname[, recordnumber]) string value

Argument

fieldname

String value specifying the name of the field whose value you want to retrieve.

recordnumber

Integer value specifying the number of the record, in the current record set, whose value you want to retrieve. If you omit this
argument, the document uses the value of¤t.line.

This argument is case sensitive. Thus the field names OrderNumber and ORDERNUMBER are not equivalent.

Code Sample Example

This example shows how to print the name and content of the current record in a generic fashion.

Example

define(&x,integer,1) //Define loop variable
define(&fn,string,'') //Define name variable
margin(0,0)
for(&x,1,1,fieldcount()) //Loop through all fields

set(&fn, fieldname(&x)) //Store field name
show(&fn) //Display field name
moveto(2,¤t.y) //Move right
show(field(&fn)) //Display field contents
crlf() //Move to next line

endfor()

FieldName (function)

Returns the name of the specified field for the current record. This function is only useful in database emulationmode.

Syntax

fieldname(index) string value

©2010 Objectif Lune Inc - 542 -

Argument

index

Integer value specifying the index of the field whose name should be retrieved. Correct values range from 1 to fieldcount().

Code Sample Example

"Field (function)" (page 542)

FloatToStr (function)

Converts a measure expression into a string value.

Syntax

floattostr(expression[, precision]) string value

Argument

expression

Measure value to be converted.

precision

The number of decimal places to include in the result string.

Code Sample Examples

These examples illustrate floattostr().

Example 1

floattostr(3.14) %Returns 3.14

Example 2

floattostr(11) %Returns 11.0

Example 3

floattostr(34.6453455, 4) %Returns 34.6453

Get (function)

Returns an element of an array.

Syntax

get(array, position) array element

Argument

array

Name of the array.

©2010 Objectif Lune Inc - 543 -

position

Integer specifying the position in the array, of the element you want to retrieve. Recall that the first position in an array is 0,
the second is 1, the third 2, etc.

Code Sample Examples

Examples 1 and 2 are equivalent representations of using the get() command.

Example 1

&month := get(&MyArray,12)

Example 2

&month := &MyArray[12]

If (function)

Evaluates an expression and returns one of two specified values according to the results of the evaluation.

Syntax

if(expression, trueresult, falseresult) any type

Arguments

expression

Boolean value. If it evaluates to true, the function returns the contents of trueresult, otherwise it returns the contents of falsere-
sult.

trueresult, falseresult

Values of any type, as long as both are of the same type. The return value of the function is therefore of the same type as
trueresult and falseresult.

Code Sample Example

This example changes the text to display according to the current value of a variable.

Example

show(if(&pagenumber=1,'Customer Copy','Store Copy'))

IntToStr (function)

Converts an integer expression into a string value.

©2010 Objectif Lune Inc - 544 -

Syntax

inttostr(expression) string value

Argument

expression

Integer value to be converted.

Code Sample Example

This example prints the iterations of a loop.

Example

define(&x,integer,1)

%Define loop variable

for(&x,1,1,10)

%Set up loop

show('Iteration ' + inttostr(&x))

%Show text

crlf()

%Skip line

endfor()

Left (function)

Extracts the specified leftmost characters of a string.

Syntax

left(string, number) string value

Arguments

string

String value from which to extract characters.

number

Integer value specifying how many characters to extract from the beginning of the string.

Code Sample Example

This example prints a string up to a certain position.

Example

define(&data,string,'This is a~sample string')

©2010 Objectif Lune Inc - 545 -

%Define string

define(&x,integer, pos('~', &data))

%Find tilde

%Print the string up to the tilde character, if found

if(&x>1)

show(left(&data,&x-1))

endif()

LowerCase (function)

Convert a string to all lower case characters.

Syntax

lowercase(string) string

Argument

string

String value you want to convert to lower case. The stringmay be a mix of upper and lower case characters.

Code Sample Example

&partname := lowercase(@(30,16,39))

Mid (function)

Extracts a specified number of characters from a string, starting at a specific position.

Syntax

mid(string, start, length) string value

Arguments

string

String value from which to extract characters.

start

Integer value specifying where the first character to extract is located.

length

Integer value specifying how many characters to extract, starting from number onwards.

©2010 Objectif Lune Inc - 546 -

Code Sample Example

This example extracts a bracket-delimited word from a sentence.

Example

define(&data,string,'This is a [bracketed] word')

define(&i,integer, pos('[', &data))

%Find the '[' character

define(&j,integer, pos(']', &data))

%Find the ']' character

if((&i>0) and (&j>&i))

%If both were found

show(mid(&data,&i+1,(&j-&i)-1))

%Print the word

endif()

Right (function)

Extracts the specified rightmost characters of a string.

Syntax

right(string, number) string value

Arguments

string

String value from which to extract characters.

number

Integer value specifying how many characters to extract from the end of the string.

Code Sample Example

This example prints part of a string, starting after a specific delimiter.

Example

define(&data,string,'This is a~sample string')

define(&x,integer, pos('~', &data)) %Find tilde

if(&x>1)

show(right(&data,length(&data)-&x))

©2010 Objectif Lune Inc - 547 -

%Show remainder of string

endif()

StringReplace (function)

Replaces all occurrences of a pattern within a string, with another pattern.

Syntax

stringreplace(string, old, new) string

Arguments

string

String in which you want to replace a pattern.

old

String value that defines the pattern you want to replace.

new

String value that represents the replacement pattern.

Code Sample Example

This example replaces the dollar currency symbol with the pound currency symbol.

Example

stringreplace('1,000.00$','$','£')

Strip (function)

Removes all occurrences of a string within another string.

Syntax

strip(string1, string2) string value

Arguments

string1

String value to be removed from string2.

string2

String value to change.

©2010 Objectif Lune Inc - 548 -

Code Sample Example

This example strips all dollar signs from a variable.

Example

define(&data,string,'$11.95')

show(strip('$',&data))

Trim (function)

Removes both leading and trailing spaces from a string.

Syntax

trim(string) string value

Argument

string

String value from which you want to trim leading and trailing spaces.

Code Sample Example

This example trims leading and trailing spaces from the data selection on line 3, columns 8 to 24.

Example

trim(@(3,8,24))

TrimLeft (function)

Removes leading spaces from a string.

Syntax

trimleft(string) string value

Argument

string

String value to trim.

Code Sample Example

This example makes sure * delimiters are added immediately before and after a data selection.

©2010 Objectif Lune Inc - 549 -

Example

show('*'+trimleft(trimright(@(12,10,35)))+'*')

TrimRight (function)

Removes trailing spaces from a string.

Syntax

trimright(string) string value

Argument

string

String value to trim.

Code Sample Example

"TrimLeft (function)" (page 549)

UpperCase (function)

Convert a string to all upper case characters.

Syntax

uppercase(string) string

Argument

string

String value you want to convert to upper case. The stringmay be a mix of upper and lower case characters.

Code Sample Example

This example illustrates uppercase().

Example

&month := uppercase(@(1,60,70))

xmlGet()

Retrieves a data selection value through the structure of an XML file. This function uses a single parameter specifying the Path
of the value to be retrieved. This function returns a string. The return value is an empty string if no value is found or if the spec-
ified Element is invalid or not found.

©2010 Objectif Lune Inc - 550 -

Syntax

xmlGet(path: string) string value

Arguments

path

The XML Path of the value you want to retrieve. The pathmust correspond to a single entry in the XML, thus is not a complete
XPath with regular expressions and variables.

Code Sample

These are examples of xmlGet() commands returning data from an XML file. Note that these will most likely not work with
your own XML even if you tried, as the path is completely dependent on the exact structure of your XML Data file.

define(&myVar, string, '')
&myVar := xmlget('/PLANETPRESS_DATA_FILE[1]-
/CUSTOMER[1]/INVOICES[1]/INVOICE[1]/ITEM[1]/Description[1]')
&myVar := xmlget('/MyData/CUSTOMER[1]/INVOICES[1]/INVOICE[1]/ITEM[1]/Description[1]')
% This next line uses the &i variable to dynamically select an item in the invoice. Use-
ful in a repeat & overflow
% configuration, or a manual PlanetPress Talk loop through te data. Note that the var-
iable must be converted to a string.
&myVar := xmlget('-
/MyData/CUSTOMER[1]/INVOICES[1]/INVOICE[1]/ITEM['+inttostr(&i)+']/Description[1]')

Example 2

The following gets the number of items in an invoice, loops through each item and displays the item's description with show().

define(&i, integer, 0)
define(¤tItemDescription, string, '')

define(&numberOfItems, integer, xmlcount('/MyData/CUSTOMER/INVOICES/INVOICE/ITEM'))

for(&i, 1, 1, &numberOfItems)
¤tItemDescription := xmlget('-

/MyData/CUSTOMER/INVOICES/INVOICE/ITEM['+inttostr(&i)+']/Description')
show(¤tItemDescription)
crlf()

endfor()

Boolean

Add (function)

Adds two numerical expressions. This is the functional equivalent to the + operator, when you use the + operator with numer-
ical expressions.

©2010 Objectif Lune Inc - 551 -

Syntax

add(expression, expression2) integer, measure, currency value

Arguments

expression1, expression2

Integer, measure, or currency values. Both expressions must be the same type. The returned value is set according to the
type of the parameters.

Code Sample Examples

Examples 1 and 2 show both ways of adding numbers.

Example 1

show(inttostr(2+2)) %Displays 4

Example 2

show(floattostr(add(4.7,2.1))) %Displays 6.8

Eq (function)

Compares two expressions of any type and returns true if both are equal, false otherwise. This is the functional equivalent of
the = operator.

Syntax

eq(expression1, expression2) boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Examples

Examples 1 and 2 shows both ways of comparing two expressions.

Example 1

if(eq(¤t.line, 33))
show('Middle of page')

endif()

Example 2

if(¤t.line = 33)
show('Middle of page')

endif()

©2010 Objectif Lune Inc - 552 -

Find (function)

Checks for the presence of a string within a rectangular region of the current data page. If the specified string is found, the
function returns true. This allows you to look for strings within a more general area, rather than at some precise location.

Syntax

find(string1, column1, line1, column2, line2) Boolean value

Argument

string1

String value to look for.

column1, line1

Integer values for the top left corner of the rectangular region to search in the current data page.

column2, line2

Integer values for the bottom right corner of the rectangular region to search in the current data page.

Code Sample Example

This example looks for the word 'Invoice' within a region of the data page.

Example

if(find('Invoice',60,1,80,5))
show('Invoice')

elseif()
show('Sales Order')

endif()

GE (function)

Compares two expressions of any type and returns true if the first is greater than or equal to the second, false otherwise. This
is the functional equivalent to the >= operator.

Syntax

ge(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Examples

Example 1 and Example 2 show both ways of comparing two expressions. Example 2 illustrates the >= operator.

Example 1

©2010 Objectif Lune Inc - 553 -

if(ge(¤t.line, 50))
show('Bottom of page')

endif()

Example 2

if(¤t.line >= 50)
show('Bottom of page')

endif()

GT (function)

Compares two expressions of any type and returns true if the first is greater than the second, false otherwise. This is the func-
tional equivalent to the > operator.

Syntax

gt(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Examples

Examples 1 and 2 illustrate both ways of comparing two expressions.

Example 1

if(gt(¤t.line, 50))

show('Bottom of page')

endif()

Example 2

if(¤t.line > 50)

show('Bottom of page)

endif()

If (function)

Evaluates an expression and returns one of two specified values according to the results of the evaluation.

©2010 Objectif Lune Inc - 554 -

Syntax

if(expression, trueresult, falseresult) any type

Arguments

expression

Boolean value. If it evaluates to true, the function returns the contents of trueresult, otherwise it returns the contents of falsere-
sult.

trueresult, falseresult

Values of any type, as long as both are of the same type. The return value of the function is therefore of the same type as
trueresult and falseresult.

Code Sample Example

This example changes the text to display according to the current value of a variable.

Example

show(if(&pagenumber=1,'Customer Copy','Store Copy'))

IsNumber (function)

Tests a string and returns true if the string is a measure or integer value.

Syntax

isnumber(string) Boolean value

Argument

string

String value.

Code Sample Example

This example displays the word Yes if the string is either a measure or an integer, and No if it is not.

Example

show(if(isnumber(@(1,1,10)),'Yes','No'))

IsPageEmpty (function)

Returns False if the current data page contains data, or True if it does not.

Syntax

ispageempty() Boolean

©2010 Objectif Lune Inc - 555 -

LE (function)

Compares two expressions of any type and returns true if the first is less than or equal to the second, false otherwise. This is
the functional equivalent to the <= operator.

Syntax

le(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Example

This example shows both ways of comparing two expressions.

Example

if(le(¤t.line, 15))

show('Top of page')

endif()

%Same statement, using the <= operator

if(¤t.line <= 50)

show('Top of page')

endif()

LT (function)

Compares two expressions of any type and returns true if the first is less than the second, false otherwise. This is the func-
tional equivalent to the < operator.

Syntax

lt(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Example

This example shows both ways of comparing two expressions.

Example

if(lt(¤t.line, 15))

©2010 Objectif Lune Inc - 556 -

show('Top of page')

endif()

%Same statement, using the < operator

if(¤t.line < 50)

show('Top of page')

endif()

NE (function)

Compares two expressions of any type and returns true if they are not equal, false otherwise. This is the functional equivalent
to the <> operator.

Syntax

ne(expression1, expression2) Boolean value

Arguments

expression1, expression2

Values of any type. Both expressions must be of the same type.

Code Sample Examples

Examples 1 and 2 show both ways of comparing two expressions.

Example 1

if(ne(¤t.line, 1))

show('Not a new page')

endif()

Example 2

if(¤t.line <> 1) %Same statement, using the <> operator

show('Not a new page')

endif()

©2010 Objectif Lune Inc - 557 -

Not (Boolean operator function)

Negates the specified expression. Not to be confused with the neg function: not is a Boolean operator function, not a math-
ematical one.

Syntax

not(expression1) Boolean value

Argument

expression1

Boolean value.

Code Sample Example

This example shows how NOT can be used in place of operators.

Example

define(&x,integer,1) %Define loop variable

for(&x,1,1,10) %Set loop

if(not(&x=5)) %Same as if(&x<>5)

show('This is NOT the 5th line') %Show some text

elseif()

show('This IS the 5th line') %Show alternate

endif()

endfor()

Or (Boolean operator function)

Returns true if either or both specified expressions are true, false otherwise.

Syntax

or(expression1, expression2) Boolean value

expression1 or expression2 Boolean value

Arguments

expression1, expression2

Boolean values.

Code Sample Examples

These examples illustrate the possible values for OR.

©2010 Objectif Lune Inc - 558 -

Example 1

or(true, false) %Returns true

Example 2

or(false, true) %Returns true

Example 3

or(false, false) %Returns false

Example 4

or(true, true) %Returns true

XOr (Boolean operator function)

Returns true if only one of two specified expressions is true, false otherwise.

Syntax

xor(expression1, expression2) ' boolean value

expression1 xor expression2 boolean value

Arguments

expression1, expression2

Boolean values.

Code Sample Examples

These examples illustrate the possible values for XOR.

Example 1

xor(true, false) %Returns true

©2010 Objectif Lune Inc - 559 -

Example 2

xor(false, true) %Returns true

Example 3

xor(false, false) %Returns false

Example 4

xor(true, true) %Returns false

Procedures (by category)
"Variables" (page 561)

"Global Functions" (page 563)

"Comments" (page 566)

"Graphics State" (page 567)

"Path" (page 572)

"Paragraphs and Text" (page 582)

"Styles" (page 587)

"Objects" (page 589)

"Bar Codes" (page 590)

"Resources" (page 610)

"Elements" (page 613)

"Emulation, Data File, and Data Pages" (page 614)

"Data Destined for PlanetPress Image, PlanetPress Fax and PlanetPress Search" (page 617)

"Document Pages" (page 621)

"PPDs and PostScript" (page 623)

"Program Control" (page 625)

"Debugging" (page 560)

Debugging

©2010 Objectif Lune Inc - 560 -

Breakpoint (procedure)

Stops the execution of a PlanetPress Talk object when the specified expression is True. This breakpoint is effective only when
running in debugmode in the PlanetPress Talk editor.

Syntax

breakpoint(expression1)

Argument

expression1

Boolean value.

Code Sample Example

This example sets up a loop, stops the loop on its 5th iteration, and then displays the value.

Example

define(&x,integer,1)for(&x,1,1,10)
breakpoint(&x = 5)
show(inttostr(&x))

endfor()

OutputDebugString (procedure)

Outputs a string to the PlanetPress Talk Messages window in PlanetPress.

Syntax

outputdebugstring(message)

Argument

message

String value to display in the PlanetPress Talk Messages window.

Variables

Define (procedure)

This command creates a new local variable, or redefines an existing one. The define procedure must appear before the var-
iable is actually used. PlanetPress Talk scripts require all variables to be defined either as a global variable in your document,
or a local scope variable within your PlanetPress Talk script.

Syntax

define(name, type, value)

Arguments

name

©2010 Objectif Lune Inc - 561 -

The name of the variable, prefixed with the ampersand (&) character. The name must conform to the rules for names
described in "Names" (page 221).

type

Constant value specifying the variable type, either integer, measure, string, Boolean, or an array type. The array types are
color, arrayinteger, arraymeasure, arraycurrency, arrayBoolean, arraystring or directory. Once a type is assigned to a var-
iable, it cannot be changed, unless the variable is redefined.

value

An initial value for the variable, of the same type as the variable (for example if the variable is of type integer, this value must
be an integer). This value can also be a valid PlanetPress Talk expression. In the case of any array variable other than a color
array or an array of type directory, the initial value can be either the number of elements you want the array to contain, or the
set of values you want the array to contain. In the former case you assign values to the array elements in subsequent com-
mands. In the latter case, you separate each value by a comma, and enclose the complete set of elements in square brackets.
In the case of a string array, youmust also quote each of the array elements. In an array of type directory, you specify the
pathname to the folder and the file name filter you want to apply to each of the files in that folder; this in turn determines the
number of elements in the array.

Code Sample Example

define(&customer_name, string, 'Smith')
define(&invoice_number, integer, strtoint(@(1,1,10)))
define(&left_margin, measure, 1.5)
define(&is_bottom, boolean, (¤t.line > 50))
define(&my_array,arrayinteger,[12,3,76,109,4])
define(&my_array,arrayinteger, 5)
define(&prices,arraycurrency, 6)
define(&greetings,arraystring,['hello','bonjour','ola'])
define(&mustard,color,[0,12,84,16])
define(&image_paths, directory, 'c:\\images*.JPG')
define(&cost, currency, 0.00)

Put (procedure)

Assigns a value to an element of an array.

Syntax

put(&array, index, value)

Arguments

&array

Array variable containing the element whose value you want to change.

index

Integer value representing the position of the element in the array.

value

©2010 Objectif Lune Inc - 562 -

The value you want to assign to the element. The value must be of the same the type as the array. Thus if the array is of type
string, the value must be of type string.

Set (procedure)

This command assigns a new value to a variable. Only user-defined variables can be set. System variables are read-only.
Note that you can also use the assignment operator to assign a value to a variable. See "= (operator)" (page 393).

Syntax

set(name, value)

Arguments

name

Variable name, prefixed with the ampersand (&) character. The variable name must already exist.

value

New value to store in the variable. This value can be any valid PlanetPress Talk expression, as long as its type is the same as
the variable's original type.

Code Sample Example

set(&invoice_number, (&invoice_number + 1))

set(&is_bottom, (not(&is_top) and not(&is_middle)))

&tax_rates[2] :=32

put(&tax_rates[2], @(1,3,5))

set(&months, ['JAN','FEB','MAR','APR','MAY'])

set(&mustard_color,[0,20,90,16])

set(&prices, [12.5632,18.9932,23.6651,27.0300])

put(&imagefiles[0], 'c\\images\\sushi.png')

Global Functions

@name (function/procedure)

Executes a global function or procedure created using the function() command.

The @ character can be the beginning of a data selection, a page call or a procedure or function call.

Syntax

@functionname(parameters) integer, measure, currency, string, Boolean or no return value

©2010 Objectif Lune Inc - 563 -

Arguments

functionname

String value specifying the name of the function or procedure.

parameters

Comma separated list of parameters required by the specified function or procedure.

Function @name (procedure)

Defines a new PlanetPress Talk function or procedure. If you define a function that you want to return a value, you assign that
value to the predefined variable&result on the last line of the function definition. You call the function or procedure you
define using the@name() command. See "@name (function/procedure)" (page 563).

You can reference a global function from within another global function only if the global function you are referencing already
exists.

You cannot reference a function from within itself, so recursive functions are not possible within PlanetPress Talk.

Syntax

Syntax for a function that returns a value:

function@name(arglist): type

...

&result := return-_value

endfunction()

Syntax for a function that does not return a value (procedure):

function@name(arglist)

...

endfunction()

Arguments

name

Name to use for the function, prefixed with the @ character. The name must conform to the rules for names described in
"Names" (page 221). It is good practice to be careful naming functions that you define in different documents, to ensure that if
at some point you want to copy code between documents, the names of functions do not conflict.

arglist

List of arguments the function requires, where each element in the list has the syntax varname : type. For example, &date :
string. An ampersand always precedes the first letter of varname. A comma separates each element in the list. Note that all
arguments are pass by value (as opposed to pass by reference). Pass by value means that the function you define cannot mod-
ify any of the arguments it receives. Any modifications youmake to an argument within the body of the function are made to a
local copy, and do not affect the original.

type

©2010 Objectif Lune Inc - 564 -

Type of value (integer, measure, currency, string, Boolean) the function returns.

Code Sample Example

This example displays a string.

function @showtext(&mystring: string)
moveto(1,1)
show(&mystring)

endfunction()

Code Sample Example

This example illustrates a procedure that creates a 3D pie chart.

Example

function @_3DPie(&W:measure, &H:measure, &HB:measure, &S:measure, &E:measure,
&L:string, &c:color)

%==
% &W is the total width of the pie chart
% &H is the total height of the pie chart
% &HB is the height of the lower band
% &S is the starting angle (0..360)
% &E is the ending angle (0..360 and bigger than &S)
% &L is the label text
%==
%Local variables
%==
define(&SB,measure,0)
define(&EB,measure,0)
define(&Scaling,measure,0)
define(&R,measure,&W/2)
%==
&Scaling := (&H-&HB)/&W
gsave()
if(&Scaling<0.01)

&Scaling := 0.01
endif()
if(&Scaling>1)

&Scaling := 1
endif()
scale(1,&Scaling)
setstyle(&Style1)
&HB := &HB / &Scaling
translate(&R,&R)
if(&E > 180)

if(&E > 360)
&EB := 360

elseif()
&EB := &E

endif()

©2010 Objectif Lune Inc - 565 -

%===
if(&S < 180)

&SB := 180
elseif()

&SB := &S
endif()
%===
set-

fill-
color([getcyan(&c),getmagenta(&c),getyellow(&c),if(getblack(&c)>50,100,getblack(&c)+20)])

moveto(cos(&SB) * &R,neg(sin(&SB) * &R))
rlineto(0,&HB)
arc(0,&HB,&R,&SB,&EB)
rlineto(0,neg(&HB))
closepath()
strokeandfill()

endif()
%==
setfillcolor(&c)
pie(0,0,&R,&S,&E)
strokeandfill()
&SB := (&S+&E)/2
%==
if(gt(&SB,180))

margin(cos(&SB) * &R,neg(sin(&SB) * &R)+&HB+(0.2/&Scaling))
elseif()

margin(cos(&SB) * &R,neg(sin(&SB) * &R)-(0.05/&Scaling))
endif()
%==
scale(1,1/&Scaling)
if(and(gt(&SB,90),lt(&SB,270)))

showright(&L+' ')
elseif()

show(' '+&L)
endif()
grestore()

Comments

% (procedure)

Comments out the line. This is useful for embedding documentation in your code, making it easier to read andmaintain. It is
also useful during debugging, for commenting out lines of code you do not want to execute.

Comments must not appear in the first line of the script you enter in the PlanetPress Talk Editor.

Syntax

%… comment….

©2010 Objectif Lune Inc - 566 -

Argument

None

Code Sample Example

This example illustrates comments in PlanetPress Talk code.

define(&x,integer,1)
% Creates a new local variable named x that is an
% integer and has a value of 1. The variable is used
% in a loop
for(&x,1,1,10)

show(inttostr(&x))
endfor()

Graphics State

GRestore (procedure)

This command restores all system parameters previously saved with the gsave command. If no gsave command was issued
previously, the results are unpredictable. For more information, refer to the gsave command.

Syntax

grestore()

Argument

None

Code Sample Example

See "GSave (procedure)" (page 567).

GSave (procedure)

This command saves all current system parameters, which can later be restored using the grestore command. By bracketing
parts of your PlanetPress Talk programs with gsave/grestore commands, you canmake sure the current system state is
preserved and remains unaffected by whatever operations your program executes. For instance, each PlanetPress object,
once converted to its PlanetPress Talk scripting language equivalent, begins with a gsave command and ends with a gre-
store, thus ensuring objects do not interfere with each other, or with the system.

The system parameters gsave saves include current line width, current stroke color, and current fill color.

Syntax

gsave()

©2010 Objectif Lune Inc - 567 -

Argument

None

Code Sample Example

In this example, the current position is set first and saved.

gsave and grestore are required to be issued in pairs, meaning that you need the equal number of gsave and grestore
commands to run in any given object. However, an uneven number of commands can be located in the code, if some of them
are within IF statements, so that when the code is actually run, the pairing occurs correctly in all instances.

Example

moveto(1, 1)

%Position is now 1,1

gsave()

%Save current state

lineto(2, 1)

%Position is now 2,1

lineto(2, 2)

%Position is now 2,2

grestore()

%Restore previous state: position is now 1,1

Scale (procedure)

Scales the result of all commands that follow the scale() command.

Syntax

scale(width, height)

Argument

width

Measure value specifying the factor by which to scale the width.

height

Measure value specifying the factor by which to scale the height.

Code Sample Example

scale(2,0.5)

©2010 Objectif Lune Inc - 568 -

SetAngle (procedure)

This command rotates all subsequent commands by the angle specified. Most commands and objects that are dis-
played/printed on the document are affected by the setangle command.

Syntax

setangle(angle)

Argument

angle

Measure value specifying the angle of rotation in degrees for all subsequent commands. Use a positive value for counter-clock-
wise motion and a negative value for clockwise motion. This value is relative to the current angle, not absolute.

Code Sample Example

This example illustrates setangle().

setangle() sets a rotation for all subsequent commands. Consequently, setangle commands are cumulative. Therefore, to
restore the previous angle of rotation, youmust issue a setangle command that negates whatever rotation applied.

Example

setangle(45.00) %Rotate subsequent commands by 45 degrees

show('Some text') %Display at a 45 degree angle

setangle(45.00) %Rotate subsequent commands by 45 degrees

show('Some text') %Display at a 90 degree angle

setangle(-90) %Cancel all rotations

SetDash(procedure)

Set the properties of a dashed line. Any drawing done after setdash() draws dashed instead of solid lines. You can revert to
solid lines by calling setdash()with an empty array as a parameter.

Syntax

setdash([dashlength, spacelength])

Argument

dash

Measure value specifying the length, in inches, of each of the dashes in the dashed line.

space

©2010 Objectif Lune Inc - 569 -

Measure value specifying the length, in inches, of the space between each of the dashes in the dashed line.

Code Sample Examples

These examples illustrate setdash().

Example 1

setdash([0.5,0.3])

Example 2

setdash([])

SetFillColor (procedure)

Sets the colour used to paint the insides of any closed shapes when issuing a fill or a strokeandfill command.

Syntax

setfillcolor(colour)

Argument

colour

Colour array that can be expressed expressed using one, three or four values ranging from 0 to 255. For Grayscale, a single
value is used in the form [K]. For the RGB model, three values are used in the form [R, G, B]. For the CMYK model, four values
are used in the form [C, M, Y, K].

Code Sample Example

This example draws three filled rectangles.

Example

setfillcolor([255]) %Sets fill colour to black using the Grayscale model

rectfill(1, 1, 1, 1) %Draws a black square

setfillcolor([125,0,0]) %Sets fill colour to medium red using the RGB model

rectfill(1, 1, 1, 1) %Draws a medium red square

setfillcolor([0,0,25,0]) %Sets fill colour to light yellow using the CMYK model

rectfill(0, 0, 1, 1) %Draws a light yellow square

©2010 Objectif Lune Inc - 570 -

SetLineWidth (procedure)

Sets the width of the pen used for drawing lines, boxes and other objects. When setting the line width, remember that the
exact location of the pen is on the middle of the line, with the stroke spilling over equally on both sides.

Syntax

setlinewidth(width)

Argument

widthSetLineWidth (procedure)

Measure value setting the width, in inches, of the drawing pen.

Code Sample Examples

Example 1

This example sets the pen width to 1/4 inch then draws a 2"x2" rectangle using that pen.

setlinewidth(0.25)
rectstroke(0,0,2,2)

SetStrokeColor (procedure)

Sets the colour of the pen used for drawing lines, boxes and other objects.

Syntax

setstrokecolor(colour)

Argument

colour

Colour array that can be expressed expressed using one, three or four values ranging from 0 to 255. For Grayscale, a single
value is used in the form [K]. For the RGB model, three values are used in the form [R, G, B]. For the CMYK model, four values
are used in the form [C, M, Y, K].

Code Sample Example

This example draws two empty rectangles of different colors.

Example

setstrokecolor([0,0,100]) %Sets stroke color to medium blue using the RGB model
rectstroke(0,0,1,1) %Draws a medium blue rectangle
setstrokecolor([0,0,255,0]) %Sets stroke color to bright yellow using the CMYK model
rectstroke(1,1,1,1) %Draws a bright yellow rectangle

Translate (procedure)

Offsets an object's position from its original spot on the page. The point of origin of any object is (0,0) by default. All com-
mands within an object are relative to that point of origin. Moving, or translating the point of origin allows you to reset the point

©2010 Objectif Lune Inc - 571 -

of origin within the boundaries of the object.

Syntax

translate(x, y)

Arguments

x, y

Measure values representing the horizontal/vertical offset, in inches, of the new point of origin within the object. These values
are relative to the current point of origin, not absolute.

Code Sample Examples

Example 1

This example moves the point of origin 1 inch right and down from the original point.

translate(1,1)

show('some text')

Example 2

This example moves the point of origin 1 inch right and down from the current point.

translate(1,1)

show('some more text')

Example 3

This example moves the point of origin back to its original position. Translate sets the new point of origin for all subsequent
commands. Consequently, translate commands are cumulative. Therefore, to restore the previous point of origin, youmust
issue a translate command that negates whatever offset was previously applied.

translate(-2,-2)

Path

©2010 Objectif Lune Inc - 572 -

Arc and ArcN (procedures)

Arc() draws an arc in a counter-clockwise direction, while ArcN() draws an arc in a clockwise direction. If there is a current
point set, the command draws a straight line from the current point to the start point of the arc. Whether or not a current point
is set when the command executes, after execution the current point is the end point of the arc.

You define the arc you want to draw by specifying the x and y coordinates of the center of the circle, the radius of the circle,
and the start and end points for the arc. You specify each of the start and end points of the arc as an angle; the command uses
the angle to position the point. For example, to position the start point, the command draws an invisible line at the specified
start angle from the center of the circle, the length of the radius; it positions the start point at the end of that line.

Example using Arc() Example using ArcN().

Example of an arc drawn from start point D to end point F: A. Center of circle (x,y) B. Radius C. Start angle D. Start point of arc
E. End angle F.

Syntax

arc(x, y, arc_length, start_angle, end_angle)

Arguments

x, y

Measure values representing the x and y coordinates respectively of the center of the circle.

arc_length

Measure value representing the length of the arc.

start_angle

Measure value representing the start angle, in degrees, for the arc. Degrees are relative to a standard X, Y axis, with a value
of 0 degrees lying flush with the X axis. The value of the start angle can be either positive or negative.

end_angle

Measure value representing the end angle, in degrees, for the arc. Degrees are relative to a standard X, Y axis, with a value of
0 degrees lying flush with the X axis. The value of the end angle can be either positive or negative.

©2010 Objectif Lune Inc - 573 -

Code Sample Examples

Example 1

Example 1 draws a 180 degree arc 3 inches in length. The center of the circle is at (0,0). The rmoveto() command that pre-
cedes the arc() command ensures the current point is set at the center of the circle and prevents a line from being drawn from
the current point to the start point of the arc.

rmoveto(3,0)
arc(0,0,3,0,180)
stroke()

Example 2

Example 2 draws an arc 2.5 inches in length. The center for the arc is four inches from the left edge of the page and three
inches from the top edge. The arc starts at 30 degrees and ends at 60 degrees. The rmoveto() command that precedes the
arc() commandmoves the current point to the center of the circle, resulting in a line that is drawn from the center of the circle
to the start point of the arc.

rmoveto(4,3)
arc(4,3,2.5,30,60)
stroke()

ClosePath (procedure)

Closes any open path and completes the current shape, if need be, by drawing a line from the last point in the shape to the
starting point. This ensures the shape is closed, thus enabling filling to take place if specified. Only closed shapes can be filled.

Syntax

closepath()

Argument

None

Code Sample Example

The first line of code sets the starting point of a triangle, the second and third lines of code draw the first and second lines (or
sides) of the triangle, the fourth line of code closes the triangle shape by implicitly issuing amoveto command.

Example

moveto(1.0,1.0)lineto(1.5,2.0)
lineto(0.5,2.0)
closepath()
fill()

CurveTo/RCurveTo (procedure)

Creates a Bezier curve. Bezier curves are shapes defined using 4 points: the starting and ending points are physical posi-
tioning points while the second and third points are control points on the curve. In PlanetPress Talk, the starting point is implicit

©2010 Objectif Lune Inc - 574 -

and automatically set to the current cursor position. The first control point defines the direction the curve takes whenmoving
from the starting point, and before shifting to the second control point, which defines a second curve before reaching the end-
ing point.

A complete explanation of Bezier curves is beyond the scope of this document. Feel free, however, to try out this command
using the PlanetPress Talk Editor in PlanetPress in order to study its possibilities.

To draw a simple curve, use the same (x,y) coordinates for both control points.

Syntax

curveto(x1, y1, x2, y2, x3, y3)

Arguments

x1, y1, x2, y2, x3, y3

Pairs of measure values representing the horizontal/vertical position, in inches, of each point defining the Bezier curve. When
using rcurveto, these values are relative to the current point of origin. When using curveto, they are absolute values.

Code Sample Example

This example draws a triangle with a twisted bottom side. The triangle has a blue outline and is filled with yellow.

Example

setstrokecolor([100,100,0,0])
setfillcolor([0,0,100,0])
moveto(1,1)
lineto(1.5,2)
curveto(1,1,1,3,0.5,2)
closepath()
strokeandfill()

Result:

Fill (procedure)

Fills the current closed shape, using the colour specified with the setfillcolor command. Only the inside of the shape is filled,
not its outline. To fill and outline the shape, use strokeandfill command instead. If you only want to outline the shape, use

©2010 Objectif Lune Inc - 575 -

stroke. Only closed shapes can be filled.

Syntax

fill()

Argument

None

Code Sample Example

This example draws a yellow filled triangle.

Example

setfillcolor([0,0,100,0])
moveto(1,1)
lineto(1.5,2)
lineto(0,2)
closepath()
fill()

LineTo/RLineTo (procedure)

Draws a line starting from the current point up to the specified coordinates.

Syntax

lineto(x, y)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the ending point of the line. When using rlineto,
these values are relative to the current point of origin. When using lineto, they are absolute values.

Code Sample Example

This example draws an empty triangle with a blue outline.

Example

setstrokecolor([100,100,0,0]) %Set pen colour to blue

moveto(1,1) %Set starting point

lineto(1.5,2) %Draw first line

lineto(0.5,2) %Draw second line

closepath() %Close shape

stroke() %Draw shape

©2010 Objectif Lune Inc - 576 -

MoveTo/RMoveTo (procedure)

Moves the current point to the specified coordinates.

Syntax

moveto(x, y)

Arguments

x, y

Measure values representing the new horizontal/vertical position, in inches, of the current point. In rmoveto, these values
are relative to the current point of origin. Inmoveto, they are absolute values.

Code Sample Example

This example displays a triangle within a rectangle.

Example

rectstroke(.5,.5,2,2) %Draw rectangle

moveto(1,1) %Reset current point

lineto(1.5,2) %Draw first line

lineto(0.5,2) %Draw second line

closepath() %Close shape

stroke() %Draw shape

Pie (procedure)

Creates a pie slice shape, which can then be rendered using stroke, fill, or strokeandfill.

Syntax

pie(x, y, radius, startangle, endangle)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of a circle's center representing the whole pie from
which to draw a slice.

radius

Measure value representing the length, in inches, of the segments of the pie, i.e. its radius.

startangle, endangle

Measure values representing the angles, in degrees, of both segments of the pie slice. Values increase counter clock wise,
with 0 extending right from the center of the circle.

©2010 Objectif Lune Inc - 577 -

Code Sample Example

This example draws a whole pie chart with a shadow effect.

Example

setfillcolor([0,0,0,50]) %Set shadow colour to gray

pie(1.5,1.5,1,60,290) %Create shadow for first slice

translate(0.2,0.2) %Separate shadows

pie(1.5,1.5,1,290,420) %Create shadow for second slice

fill() %Display shadows

translate(-0.3, 0.3) %Offset chart from its shadow

setstrokecolor([0,0,100,0]) %Set pen colour to yellow

setfillcolor([0,100,100,0]) %Set fill colour to red

pie(1.5,1.5,1,60,290) %Create first slice

strokeandfill() %Draw first slice

translate(0.2,0.2) %Separate slices

setfillcolor([100,100,0,0]) %Set fill colour to blue

pie(1.5,1.5,1,290,420) %Create second slice

strokeandfill() %Draw second slice

Rectangle (procedure)

Creates and draws a rectangle shape. The rectangle can optionally be filled using the colour specified with the setfillcolor
command. The border can optionally be drawn using the colour specified with the setstrokecolor command.

Syntax

rectangle(x, y, x1, y1, filled, stroked)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the starting point.

x1, y1

Measure values representing the horizontal/vertical position, in inches, of the bottom right corner of the rectangle.

filled

Boolean value specifying whether the shape should be filled using the colour specified with the setfillcolor command.

stroked

©2010 Objectif Lune Inc - 578 -

Boolean value specifying whether the shape should be outlined using the colour specified with the setstrokecolor command.

Code Sample Example

This example draws a yellow rectangle with a black border.

Example

setstrokecolor([0,0,0,100])

setfillcolor([0,0,50,0])

rectangle(0,0,3,3,true,true)

RectFill (procedure)

Creates and draws a filled rectangle shape. The colour used to fill the shape can be specified using the setfillcolor command.

Syntax

rectfill(x, y, width, height)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the starting point.

width, height

Measure values representing the width/height, in inches, of the rectangle shape.

Code Sample Example

This example draws two identical rectangles.

To draw a rectangle that is both stroked and filled, use rectstroke() and rectfill() in succession, or rectfillstroke().

Example

setfillcolor([0,100,100,0])

%Draw first rectangle using rectfill with red

rectfill(1,1,2,2)

%Offset starting position slightly to distinguish

%between each rectangle and fill second one with blue.

translate(.2,.2)

setfillcolor([100,100,0,0])

%Draw second rectangle using conventional commands

moveto(1,1) %Reset current point

©2010 Objectif Lune Inc - 579 -

lineto(3,1) %Draw first line

lineto(3,3) %Draw second line

lineto(1,3) %Draw third line

closepath() %Close shape

fill() %Draw shape

RectFillStroke (procedure)

Creates a rectangle that has both an outline and a fill color. You set the color for the outline using setstrokecolor and the fill
color using setfillcolor.

Syntax

rectfillstroke(x, y, width, height)

Arguments

x,y

Measure values representing the x and y coordinates respectively of the top left corner of the rectangle.

width, height

Measure values specifying the width and height respectively of the rectangle.

RectStroke (procedure)

Creates and draws an empty rectangle shape. The colour of the pen used to draw the rectangle can be set using set-
strokecolor.

Syntax

rectstroke(x, y, width, height)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the starting point.

width, height

Measure values representing the width/height, in inches, of the rectangle shape.

Code Sample Example

This example draws two identical rectangles.

To draw a rectangle that is both stroked and filled, use rectstroke and rectfill in succession.

Example

rectstroke(1,1,2,2) %Draw first rectangle

©2010 Objectif Lune Inc - 580 -

%Offset starting position slightly to distinguish

%between each rectangle; the second rectangle is blue.

translate(.2,.2)

setstrokecolor([100,100,0,0])

%Draw second rectangle using conventional commands

moveto(1,1) %Reset current point

lineto(3,1) %Draw first line

lineto(3,3) %Draw second line

lineto(1,3) %Draw third line

closepath() %Close shape

stroke() %Draw shape

Stroke (procedure)

Outlines the current shape using the pen colour and width specified with the setstrokecolor and setlinewidth command.
The shape is not filled. To fill and outline the shape, use strokeandfill instead. If you only want to fill the shape, use fill.

Syntax

stroke()

Argument

None

Code Sample Example

This example draws a blue triangle with a blue border.

Example

setstrokecolor([100,100,0,0]) %Set pen colour to blue

moveto(1,1)

lineto(1.5,2)

lineto(0,2)

closepath()

stroke()

©2010 Objectif Lune Inc - 581 -

StrokeAndFill (procedure)

Outlines the current shape using the pen colour and width specified with the setstrokecolor and setlinewidth command.
The shape is then filled using the colour specified with the setfillcolor command. To simply outline the shape, use stroke
instead. If you only want to fill the shape, use fill.

Syntax

strokeandfill()

Argument

None

Code Sample Example

This example draws a yellow triangle with a blue outline.

Example

setstrokecolor([100,100,0,0])

setfillcolor([0,0,100,0])

moveto(1,1)

lineto(1.5,2)

lineto(0,2)

closepath()

strokeandfill()

Paragraphs and Text

BeginParagraph … EndParagraph (procedure)

Delimits a paragraph of formatted text.

The beginparagraph … endparagraph structure can contain only the following commands: setstyle(), setstyleext(),
show(), and% (indicating a commented line). Any other command included within this structure will yield unpredictable
results. Amargin() command should precede the beginparagraph...endparagraph structure, and each variable you ref-
erence within the structure must have its own procedure., as demonstrated in the second of the examples below. Also note
that the first command within a beginparagraph...endparagraph structure must be the setstyle() command.

No crlf procedures are permitted inside a paragraph structure, since crlfs are paragraph delimiters.

If you do not need to change fonts or use variables within a paragraph, it is strongly recommended you use the text object in
PlanetPress, as PlanetPress optimizes text objects to improve performance.

©2010 Objectif Lune Inc - 582 -

When a long string containing no spaces between its characters appears in the context of a show() command and the begin-
paragraph ... endparagraph() command, the line of text will not wrap. The same is true for a text object; no wrapping
occurs when a long string has no spaces between its characters.

Note that when a Text object is converted to PlanetPress Talk, an extra argument is is added to the beginparagraph … end-
paragraph syntax. Ignore this argument since it is strictly for internal use.

Syntax

beginparagraph(lmargin, rmargin, firstindent, align, leading,[opt, forcedwordwrap])

…

endparagraph()

Arguments

lmargin

Measure value specifying the left margin, in inches, of the text relative to the left border of the object.

rmargin

Measure value specifying the right margin, in inches, of the text relative to the left border of the object.

firstindent

Measure value specifying the indent, in inches, of the first line of the paragraph, relative to the lmargin parameter.

align

String value specifying the text alignment within the paragraph. Possible values are 'left', 'right', 'center' and 'leftright' (for
both left and right justification of text).

leading

Measure value specifying the amount of vertical space, in inches, between each line of the paragraph.

opt

Optional boolean value used internally. Default value is false.

forcedwordwrap

Optional boolean value that forces wordwrap at the defined paragraph size. Default value is false.

Code Sample Examples

Example that displays a paragraph aligned to the right.

Example 1

beginparagraph(1,3,0,'right',0.16)
setstyle(&Default)
show('This long line of text should wrap around')
show('This long line of text should wrap around')

endparagraph()

Example that shows how to include a variable within a formatted paragraph.

©2010 Objectif Lune Inc - 583 -

Example 2

define(&var,string,'very')
beginparagraph(1,3,0,'left',0.16)

setstyle(&Default)
show('This ')
show(&var)
show(' long line of text should wrap around')

endparagraph()

BeginUTF8Paragraph … EndUTF8Paragraph (procedure)

Delimits a paragraph of formatted UTF8 text.

This procedure is based on BeginParagraph… EndParagraph (procedure), with the following differences:

l ShowUTF8 (procedure) must be used instead of show()
l SetStyleExt (procedure) must use a style that has been associated with the True Type Font "TT Host UTF8Arabic".
l Only UTF8 text can be displayed in a PlanetPress Talk object defined using the beginUTF8paragraph …
endUTF8paragraph structure. Non-UTF8 static text should therefore be converted to its UTF8 reference using the
Ansi/UTF8 Converter (place the cursor within the string and press CTRL+N). Variable text should be converted using
MapUTF8 (function).

Syntax

beginUTF8paragraph(lmargin, rmargin, firstindent, align, leading, majormode, [forcedwordwrap])

% Your Paragraph data here

endUTF8paragraph()

Arguments

Same as BeginParagraph… EndParagraph (procedure).

Code Sample Example

This example displays a justified paragraph with the UTF8 text running from right to left.

Example

setlinewidth(0.007)moveto(0,0)
rlineto(&width,0)
rlineto(0,&height)
rlineto(neg(&width),0)
rlineto(0,neg(&height))
closepath()
stroke()
moveto(&width/2,&height/18)
BeginUTF8Paragraph(0.0000,&width,0.0000,'leftright',0.1667,'rtl')

SetStyleExt(&Style1,12.0000,0,[100],100)
ShowUTF8('\u0623\u0633\u0627\u0633\u064B\u0627\u060C')

EndUTF8Paragraph()

©2010 Objectif Lune Inc - 584 -

CRLF (procedure)

Moves the current point by simulating a carriage return/line feed combination. The horizontal position is reset to the value of
the current left margin, while the vertical position is offset by the leading value specified.

Syntax

crlf([leading])

Argument

leading

Measure value setting the vertical distance, in inches, between two lines. If you do not provide this argument, the value by
default is 0.167 inches, which is roughly equivalent to a 6 LPI (lines per inch) setting.

Code Sample Example

This example demonstrates how to change the vertical spacing of lines within an object.

Example

margin(1,1)
show('These lines are displayed')
crlf(0.125)
show('at 8 LPI.')
crlf(0.5)
show('While these lines are displayed')
crlf(0.5)
show('at 2 LPI')

Margin (procedure)

Offsets text within a series of commands, relative to the original top left position of the object. Margin also sets the horizontal
position to be used when crlf commands are encountered. All text-rendering functions that make use of margins use this set-
ting.

Syntax

margin(x, y)

Arguments

x, y

Measure values representing the horizontal/vertical position, in inches, of the starting point for the text within an object.

Code Sample Example

This example displays shadowed text by repeating the same text commands twice, using styles of different colours and
slightly offsetting the margin.

Example

margin(1,1) %Set margins to (1,1)

setstyle(&blackfont) %Blackfont must already exist

©2010 Objectif Lune Inc - 585 -

show('This is shadowed text')

margin(.98,.98) %Offset margins slightly

setstyle(&bluefont) %Bluefont must already exist

show('This is shadowed text')

ShowLeftRight (procedure)

Displays a string of characters, in inches, using a specified width.

Syntax

showleftright(text, width)

Arguments

text

String value to be displayed.

width

Measure value representing the amount of horizontal space to use for displaying the string. showleftright adjusts the amount
of spaces between characters to insure the string fits exactly within the specified width.

Code Sample Example

This example shows how to fit strings of different sizes within the same box that has a width of 3 inches.

Example

margin(0,0)

rectstroke(0,0,3,3)

moveto(0,0.5)

showleftright('This fits well inside the box',3)

crlf(0.1599)

showleftright('But this one is a little more tight',3)

Show / ShowCenter / ShowRight (procedure)

These three commands are used to display simple text on the document. They are identical in all aspects, except in the way
they behave relative to the current margin settings: show uses the margin as a starting point to extend the string to the right;
showright uses the margin as the ending point of the string; and showcenter extends the string equally on both sides of
the margin. These commands are equivalent to print, echo or write commands in other scripting languages.

©2010 Objectif Lune Inc - 586 -

Syntax

show(text)

showcenter(text)

showright(text)

Argument

text

String value to be displayed.

Code Sample Example

This example illustrates the difference between all three variations of using the SHOW command.

Example

margin(3,1)
showright('This line is to the left of the margin')
crlf()
showcenter('This line is centered on the margin')
crlf()
show('This line is to the right of the margin')

Styles

SetStyle (procedure)

Sets the style to be used for all subsequent commands. The specified style must already exist in the document.

SetStyle() supercedes the SetFont() command. Although PlanetPress Talk still recognizes SetFont(), this behavior is
unlikely to continue in future versions, and it is therefore highly recommended that you use the SetStyle() command in your
scripts.

Syntax

setstyle(stylename)

Argument

stylename

Name of the style to use for all subsequent commands. The name of the style must be preceded by an ampersand. You can ref-
erence the bold, italic, or underlined versions of a font by appending the appropriate letter or letters to the name of the style.
Append .b for the bold version, .i for the italic version, .bi for the bold italic version, and .u for the underlined version.

Code Sample Example

This example displays a line of text using two different existing styles called Blackfont and Bluefont.

Example

©2010 Objectif Lune Inc - 587 -

margin(1,1)
setstyle(&blackfont)
show('The word ')
setstyle(&bluefont.i)
show('blue')
setstyle(&blackfont)
show(' is now in blue italic')

SetStyleExt (procedure)

Select an existing style and set the size, color, style property, or font ratio for its font. This eliminates the need to create sev-
eral styles that use the same font. setstyleext() does not support bold, italic, or underline styles with double-byte character
sets.

Syntax

setstyleext(stylename, fontsize, styleproperty, fontcolor, fontratio)

Arguments

stylename

The name of the style. The name of the style must be preceded by an ampersand. You can set the bold, italic, or bold italic
property of the style by appending .b, .i, or .bi respectively to the name of the style.

The ability to append .b, .i, or .bi to style names that have double-byte character sets is not supported.

fontsize

Measure value representing the point size for the font. A value of -1 use the default font size of the style specified by style-
name.

styleproperty

Integer value representing the style property for the font:

l 0: Normal
l 1: Underline
l 2: Outline

fontcolor

Colour array that can be expressed using one, three or four values ranging from 0 to 255. For Grayscale, a single value
between 0 and 100 is used in the form [K], representing percentage of gray (100 is black, 0 is white). For the RGB model,
three values are used in the form [R, G, B]. For the CMYK model, four values are used in the form [C, M, Y, K].

fontratio

Integer value representing the percentage by which to shrink or stretch the font spacing. This value adjusts both the width of
each glyph and the spacing between glyphs. This is in contrast to kerning, whichmodifies the spacing between characters with-
out modifying the width of characters.

Example

setstyleext(&Style2.bi, 25, [100], 100)

©2010 Objectif Lune Inc - 588 -

Objects

Object $name()... EndObject (procedure)

Creates an object. You can reference the object you create using the $ operator. See "$element (procedure)" (page 613).

This command can only be used from within the PressTalk Before and PressTalk After of a PlanetPress Design doc-
ument, and cannot exist within a page's properties or the PressTalk of any object, including

Syntax

object $name(top, left, width, height, condition, angle[, setsnappingpoint[, snap-
toprevious]])
%Object Contents

endobject()

Argument

$name (PressTalk Name)

Name to use for the object, preceded by the dollar sign character ($). The name must conform to the rules for names
described in "Names" (page 221).

top (Measure)

Measure value specifying the distance, in inches, to offset the top edge of the picture object, from the top edge of the doc-
ument page. If you set the snaptoprevious argument to a value other than 0, the value you set for the top argument becomes
the vertical offset for the Snap to previous snapping point.

left (Measure)

Measure value specifying the distance, in inches, to offset the left edge of the picture object, from the left edge of the doc-
ument page. If you set the snaptoprevious argument to a value other than 0, the value you set for the left argument becomes
the horizontal offset for the Snap to previous snapping point.

width, height (Measure)

Measure values specifying the width and height respectively, in inches, of the object.

condition (Boolean)

Boolean value, or PlanetPress Talk expression that resolves to a Boolean value, specifying a condition on the object.

angle (Measure)

Measure value specifying the angle of rotation, in degrees. The pivot point for the rotation is the bottom left corner of the
object.

setsnappingpoint (optional, Boolean)

Boolean value (True or False) specifying whether the object has its Set snapping point property set. If you set this argument to
True, the last line of the code for the object must be amoveto() command that moves the current point to the position at
which you want to set the object’s snapping point.

snaptoprevious (optional, Integer)

©2010 Objectif Lune Inc - 589 -

Integer value specifying whether the object has its Snap to previous property set, and if so, the position of that snapping point.
If you set the Snap to previous property, you can use the top and left arguments to specify, respectively, a vertical and hor-
izontal offset for the snapping point.

l 0 = do not set the Snap to previous snapping point
l 1 = top left
l 2 = topmiddle
l 3= top right
l 4= middle left
l 5 = middle middle
l 6= middle right
l 7 = bottom left
l 8 = bottommiddle
l 9 = bottom right

Code Sample Example

The following creates a rectangle object (2 inches wide by 3 inches high), rotates it 45 degrees, and sets its Snap to previous
snapping point at the top left of the object with a vertical offset of 1 inch and a horizontal offset of 1.5 inches.

object $Box2(1.0,1.5,2.0,3.0,true,45.0,false,1)
setstyle(&Style1)
MoveTo(0,0)
SetLineWidth(0.0070)
SetStrokeColor([0,0,0,100])
SetFillColor([0,0,0,0])
LineTo(&width,0.0)
LineTo(&width,&height)
LineTo(0.0,&height)
LineTo(0.0,0.0)
ClosePath()
Stroke()

endobject()

Bar Codes

ShowBarCode (procedure)

Note: This PressTalk command is deprecated. Use instead the barcode-specific commands.

Displays a specified string as a barcode.

Syntax

showbarcode(string)

Arguments

string

Value of type string to display as a barcode.

©2010 Objectif Lune Inc - 590 -

showbarcode needs 3 additional parameters before it can display the barcode. These parameters must be set before calling
showbarcode, using the following variables:

BarWidth

Measure value setting the width of each bar, in inches.

BarHeight

Measure value setting the height of each bar, in inches.

BarType

Integer value specifying the type of barcode to print. Current possible values include:

BarType: Code:
0 Code 39
1 Code 128
2 UPC_A
3 UPC_E
4 UPC/EAN 8
5 UPC/EAN 13
6 PostNet
7 PDF-417

Code Sample Example

This example prints a Code 128 barcode.

The BarWidth, BarHeight andBarType variables must be created exactly as shown here, with the same case changes in
the variable names.

Example

define(&BarWidth,measure,0.012)

define(&BarHeight,measure,1.000)

define(&BarType,integer,1)

%Set bar color to black and display barcode

setfillcolor([100,100,100,100])

showbarcode('Bar 128')

ShowBarcode2of5(procedure)

Displays a specified string as a Standard 2 of 5 barcode.

Syntax

showbarcode2of5(str, barwidth, readable, bearers)

©2010 Objectif Lune Inc - 591 -

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

readable

Boolean that enables display of the human readable portion of the barcode

bearers

Boolean that enables bearer bars surrounding the barcode

Code Sample Example

showbarcode2of5('123456789',12,true,true)

ShowBarcodeAustPost (procedure)

Displays a specified string as an Australia Post barcode.

Syntax

showbarcodeaustpost(str)

Arguments

str

Value of type string to display as a barcode.

Code Sample Example

showbarcodeaustpost('56439111ABA 9')

ShowBarcodeAztec (procedure)

Displays a specified string as an Aztec barcode.

Syntax

showbarcodeaztec(str, mode, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

©2010 Objectif Lune Inc - 592 -

mode

Mode to use for the barcode.

Value Mode

0 Normal

1 Compact

2 Full Range

errorcorrection

Error correction level to use in the barcode.

Mode Error Correction Range

0 0-99

1 0-4

2 0-32

barwidth

Measure value of the width a a single barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodeaztec('A 12345 B 434343',5,35,24)

ShowBarcodeCodabar (procedure)

Displays a specified string as a Codabar barcode.

Syntax

showbarcodecodabar(str, start, stop, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

Start

The Start character of the barcode

A

B

C

D

Stop

The Stop character of the barcode

©2010 Objectif Lune Inc - 593 -

A

B

C

D

barwidth

Width of one barcode bar, in mils (0.001 inch).

readable

Boolean that enables display of the human readable portion of the barcode

Code Sample Example

showbarcodecodabar('12345','A','A',12,true)

ShowBarcodeCodablockF (procedure)

Displays a specified string as a Codablock F barcode.

Syntax

showbarcodecodablockf(str, barwidth)

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodecodablockf('12345',12)

ShowBarcodeCode11 (procedure)

Displays a specified string as a Code 11 barcode.

Syntax

showbarcodecode11(str, barwidth, checksum, readable, readchecksum)

©2010 Objectif Lune Inc - 594 -

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

Checksum

Boolean allows the automatic calculation of the barcode checksum

readable

Boolean that enables display of the human readable portion of the barcode

readchecksum

Boolean that enables display of the checksum in the human readable portion of the barcode

Code Sample Example

showbarcodecode11('123456789',12,true,true,false)

ShowBarcodeCode128 (procedure)

Displays a specified string as a Code 128 barcode.

Syntax

showbarcodecode128(str, subset, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

subset

Integer specifying the subset of the barcode to use.

Value Subset

0 A

1 B

2 C

barwidth

Width of one barcode bar, in mils (0.001 inch).

readable

Boolean that enables display of the human readable portion of the barcode

©2010 Objectif Lune Inc - 595 -

Code Sample Example

showbarcodecode128('123456789',0,12,true)

ShowBarcodeCode16k (procedure)

Displays a specified string as a Code 16k barcode.

Syntax

showbarcodecode16k(str, mode, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Mode (0-7) of the Code 16k barcode

barwidth

Width of one barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodecode16k('12345',4,12)

ShowBarcodeCode39 (procedure)

Displays a specified string as a Code 3 of 9 barcode.

Syntax

showbarcodecode39(str, barwidth, checksum, readable, readchecksum)

Arguments

str

Value of type string to display as a barcode.

BarWidth

Measure value setting the width of each bar, in mils (0.001 inch).

Checksum

Boolean value that indicates if the checksum should automatically be calculated.

©2010 Objectif Lune Inc - 596 -

Readable

Boolean value that indicates if the human readable should be shown

ReadChecksum

Boolean value that indicates if the checksum value should be included in the human readable

Code Sample Example

showbarcodecode39('123456',12,true,true,false)

ShowBarcodeCode49 (procedure)

Displays a specified string as a Code 49 barcode.

Syntax

showbarcodecode49(str, barwidth)

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodecode49('12345', 12)

ShowBarcodeCode93 (procedure)

Displays a specified string as a Code 93 barcode.

Syntax

showbarcodecode93(str, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

©2010 Objectif Lune Inc - 597 -

readable

Boolean that enables display of the human readable portion of the barcode

Code Sample Example

showbarcodecode93('123456789',12,true)

ShowBarcodeDatamatrix (procedure)

Displays a specified string as a Datamatrix barcode.

Syntax

showbarcodedatamatrix(str, mode, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the Datamatrix Mode to use.

Value Mode

0 Square

1 Rectangular

errorCorrection

Error correction level to use with the barcode.

Mode Allowed Range

Square 1-24

Rectangular 1-6

barwidth

Width of one barcode bar, in mils (0.001 inch).

Code Sample Example

showbarcodedatamatrix('12345', 0, 5, 12)

ShowBarcodeEAN8 (procedure)

Displays a specified string as a EAN-8 barcode.

©2010 Objectif Lune Inc - 598 -

Syntax

showbarcodeean8(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of EAN-8 to use

0 EAN-8

1 EAN-8 ext.2

2 EAN-8 ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

showbarcodeean8('0133558',0)

ShowBarcodeEAN13 (procedure)

Displays a specified string as a EAN-13 barcode.

Syntax

showbarcodeean13(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of EAN-13 to use

0 EAN-13

1 EAN-13 ext.2

2 EAN-13 ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

©2010 Objectif Lune Inc - 599 -

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

showbarcodeean13('977147396801',0)

ShowBarcodeFIM (procedure)

Displays a specified string as a FIM barcode.

Syntax

showbarcodefim(str)

Arguments

str

Value of type string to display as a barcode.

Code Sample Example

showbarcodefim('A')

ShowBarcodeI2of5 (procedure)

Displays a specified string as an Interleaved 2 of 5 barcode.

Syntax

showbarcodei2of5(str, barwidth, checksum, readable, readchecksum, bearers)

Arguments

str

Value of type string to display as a barcode.

barwidth

Width of one barcode bar, in mils (0.001 inch).

Checksum

Boolean to add checksum automatically to barcode

readable

Boolean that enables display of the human readable portion of the barcode

©2010 Objectif Lune Inc - 600 -

readchecksum

Boolean that enables display of the checksum in the human readable portion of the barcode

bearers

Boolean that enables bearer bars surrounding the barcode

Code Sample Example

showbarcodei2of5('123456789',12,true,true,false,true)

ShowBarcodeISBN (procedure)

Displays a specified string as an ISBN barcode.

Syntax

showbarcodeisbn(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of ISBN to use

0 ISBN

1 ISBN ext.2

2 ISBN ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

showbarcodeisbn('978-1-86074-271-2-54495',2)

ShowBarcodeJapanpost (procedure)

Displays a specified string as a Japan Post barcode.

Syntax

showbarcodejapanpost(str, barwidth)

©2010 Objectif Lune Inc - 601 -

Arguments

str

Value of type string to display as a barcode.

BarWidth

Measure value setting the width of each bar, in mils (0.001 inch).

Code Sample Example

showbarcodejapanpost('6540123789-A-K-Z',12)

ShowBarcodeMaxicode (procedure)

Displays a specified string as a Maxicode barcode.

Syntax

showbarcodemaxicode(str, mode)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value (2-6) of the Maxicode Mode to use.

Code Sample Example

show-
bar-
codemaxicode('^059^042^041^059^040<RS>01^02996152382802^029840^029001^0291Z00004951^029UPSN^02906X610^029159^0291234567^0291/1^029^029Y^029634
ALPHA DR^029PITTSBURGH^029PA^030<ET>',2)

ShowBarcodeMicroPDF (procedure)

Displays a specified string as a Micro PDF-417 barcode.

Syntax

showbarcodemicropdf(str, mode, columns, barwidth)

©2010 Objectif Lune Inc - 602 -

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the Micro PDF mode to use.

Value Mode

0 Text

1 Numeric

columns

Integer value (1-4) of the number of columns to use.

barwidth

Integer value of the barwidth of a single bar in the Micro PDF

Code Sample Example

showbarcodemicropdf('123456',0,4,12)

ShowBarcodeMicroQR (procedure)

Displays a specified string as a Micro QR Code barcode.

Syntax

showbarcodemicroqr(str, mode, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the Micro QRmode to use.

Value Mode

0 Alpha

1 Numeric

errorcorrection

Integer value of the error correction level to use.

Value Correction Level

0 L

1 S

©2010 Objectif Lune Inc - 603 -

2 Q

barwidth

Integer value of the barwidth of a single bar in the Micro QR

Code Sample Example

showbarcodemicroqr('123456',0,2,12)

ShowBarcodeMSI (procedure)

Displays a specified string as a MSI barcode.

Syntax

showbarcodemsi(str, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

barwidth

Measure of the width of a single barcode bar, in mils (0.001 inch).

readable

Boolean value determining if the human readable portion of the barcode is visible.

Code Sample Example

showbarcodemsi('1234567')

ShowBarcodeOnecode (procedure)

Displays a specified string as a Onecode/IMB barcode.

Syntax

showbarcodeonecode(str)

Arguments

str

Value of type string to display as a barcode.

©2010 Objectif Lune Inc - 604 -

Code Sample Example

showbarcodeonecode('0123456709498765432101234567891')

ShowBarcodePDF417 (procedure)

Displays a specified string as a PDF 417 Code barcode.

Syntax

showbarcodepdf417(str, mode, columns, truncated, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the PDF 417mode to use.

Value Mode

0 Text

1 ASCII Plus

2 Numeric

columns

Integer value (1-20) of the number of columns to use.

truncated

Boolean value to decide to use the truncated version of the barcode

errorcorrection

Integer value (0-8) of the error correction level to use.

barwidth

Integer value of the barwidth of a single bar in the PDF 417

Code Sample Example

showbarcodepdf417('123456',0,2,false,5,12)

ShowBarcodePlessey (procedure)

Displays a specified string as a plessey barcode.

©2010 Objectif Lune Inc - 605 -

Syntax

showbarcodeplessey(str, barwidth, readable)

Arguments

str

Value of type string to display as a barcode.

barwidth

Measure of the width of a single barcode bar, in mils (0.001 inch).

readable

Boolean value determining if the human readable portion of the barcode is visible.

Code Sample Example

showbarcodeplessey('1234567')

ShowBarcodePostnet (procedure)

Displays a specified string as a Postnet barcode.

Syntax

showbarcodepostnet(str, subset)

Arguments

str

Value of type string to display as a barcode.

subset

Subset of the Postnet barcode to use

Subset Zipcode Length

0 5 digits

1 9 digits

2 11 digits

Code Sample Example

showbarcodepostnet('12345',0)

©2010 Objectif Lune Inc - 606 -

ShowBarcodeQRCode (procedure)

Displays a specified string as a QR Code barcode.

Syntax

showbarcodeqrcode(str, mode, errorcorrection, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the QR Code mode to use.

Value Mode

0 Numeric

1 Alpha

errorcorrection

Integer value of the error correction level to use.

Value Mode

0 L

1 S

2 Q

3 H

barwidth

Integer value of the barwidth of a single bar in the QR Code

Code Sample Example

showbarcodeqrcode('123456',0,2,12)

ShowBarcodeRoyalMail (procedure)

Displays a specified string as a Royal Mail barcode.

Syntax

showbarcoderoyalmail(str)

Arguments

str

Value of type string to display as a barcode.

©2010 Objectif Lune Inc - 607 -

Code Sample Example

showbarcoderoyalmail('LE28HS9Z')

ShowBarcodeRSS (procedure)

Displays a specified string as a RSS barcode.

Syntax

showbarcoderss(str, mode, barwidth)

Arguments

str

Value of type string to display as a barcode.

Mode

Integer value of the RSSmode to use.

Value Mode

0 RSS-14

1 RSS-Truncated

2 RSS-Limited

3 RSS-Stacked

4 RSS-Stacked Omni

5 RSS-Expanded

6 RSS-Expanded Stacked

barwidth

Integer value of the barwidth of a single bar in the RSS Code

Code Sample Example

showbarcoderss('123456',0,12)

ShowBarcodeUPCA (procedure)

Displays a specified string as a UPC-A barcode.

Syntax

showbarcodeupca(str, subset,[readable, barwidth])

Arguments

str

©2010 Objectif Lune Inc - 608 -

Value of type string to display as a barcode.

Subset

The subset of UPC-A to use

0 UPC-A

1 UPC-A ext.2

2 UPC-A ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

showbarcodeupca('123456789012',0)

ShowBarcodeUPCE (procedure)

Displays a specified string as a UPC-E barcode.

Syntax

showbarcodeupce(str, subset,[readable, barwidth])

Arguments

str

Value of type string to display as a barcode.

Subset

The subset of UPC-E to use

0 UPC-E

1 UPC-E ext.2

2 UPC-E ext.5

readable

Optional boolean that enables display of the human readable portion of the barcode. Default = True.

barwidth

Optional width of one barcode bar, in mils (0.001 inch). Default = 12mils.

Code Sample Example

©2010 Objectif Lune Inc - 609 -

showbarcodeupce('123456',0)

Resources

InStream... EndInStream (procedure)

Ceate an alias for a resource file (image, data file, attachment, etc.). You can then reference the resource file using the alias
instead of the path. This eliminates the need to repeat a path inmore than one place in your code, and thus makes your code
easier to maintain. For example, if you change the resource, you need only modify the path in the instream() command,
rather than everywhere you reference the original resource.

You cannot use the instream() command inside any function you define using function @name().

Syntax

instream external resname

path

endinstream()

If you want to create a reference to a text document (for example a sample data file), replace "external" by "cleartext.”

Argument

resname

String value specifying the alias to use to refer to this resource file.

path

String value specifying the path of the resource file.

Code Sample Example

This example creates the alias 'photo' that refers to the resource file c:\images\employees\JAdler.bmp.

Example

instream external photo

c:\images\employees\JAdler.bmp

endinstream()

%You can then reference the resource using the alias

showbitmap('photo',72,1,1)

©2010 Objectif Lune Inc - 610 -

ShowBitmap (procedure)

Displays a bitmap resource.

Syntax

showbitmap(resname, resolution, width, height[, transparent[, duotone]])

Arguments

resname

String value containing either the name of the bitmap resource within the document, or the path to a bitmap file.

resolution

Integer value specifying the resolution, in pixels per inch, at which the bitmap displays. A larger number yields a smaller,
clearer image, since more pixels are squeezed into a smaller space. But the bitmap then requires more memory. Except in
some very specific applications, it is rarely desirable to use resolutions exceeding 100 ppi.

width, height

Measure values specifying the width/height, in inches, the bitmap occupies when it displays. Specifying a value of zero for one
but not both of the two dimensions scales the bitmap to fit the non-zero dimension. Specifying both a width and a height scales
the bitmap to the best fit possible with that width and height, while maintaining its aspect ratio. Specifying both a width and a
height of zero displays the bitmap at its default resolution.

transparent

Boolean value specifying whether part of the bitmap is transparent. When set to true, the bitmap image is combined with the
background; otherwise it is pasted on top.

duotone

Colour array specifying the colour to paint all non-white pixels in the bitmap.

Code Sample Examples

Example 1

This example displays the bitmap image street_photo at a resolution of 72 pixels per inch, and a width of 1 inch, as a trans-
parent bitmap image with non-white pixels set to blue.

showbitmap('street_photo',72,1,0,true,[100,100,0,0])

Example 2

This example displays the bitmap image sunset at a resolution of 300 pixels per inch.

showbitmap('sunset',300,0,0)

©2010 Objectif Lune Inc - 611 -

Example 3

This example prints either an image, or, if the image cannot be found, the pathname to the image.

define(&image_paths, directory, 'c:\\images*.JPG')

define(&i, integer, 1)

if(resourcetype(&image_paths[&i]) <> 0)

showbitmap(&image_paths[&i], 300, 0, 0)

crlf(bitmapheight(&image_paths[&i]))

elseif()

show(&image_paths[&i])

crlf(0.16)

endif()

ShowEPS (procedure)

Displays an EPS image resource.

Syntax

showeps(resname, width, height)

Argument

resname

String value containing either the name of the EPS resource within the document, or the path to an EPS file .

width, height

Measure values specifying the width/height, in inches, the EPS occupies when it displays. Specifying a value of zero for one but
not both of the two dimensions scales the EPS to fit the non-zero dimension. Specifying both a width and a height scales the
EPS to the best fit possible with that width and height, while maintaining its aspect ratio. Specifying both a width and a height of
zero displays the EPS at its default resolution.

Code Sample Example

This example displays the EPS image ‘my_eps’, scaling it as necessary to fit a width of 4.5 inches.

Example

showeps('my_eps', 4.5, 0)

©2010 Objectif Lune Inc - 612 -

ShowPDF (procedure)

Displays a page of a PDF image resource.

Syntax

showpdf(resname, pagenum, width, height)

Argument

resname

String value containing either the name of the PDF resource within the document, or the path to a PDF file .

pagenum

Integer value specifying the page number within the PDF image resource.

width, height

Measure values specifying the width/height, in inches, the PDF page occupies when it displays. Specifying a value of zero for
one but not both of the two dimensions scales the PDF page to fit the non-zero dimension. Specifying both a width and a height
scales the PDF page to the best fit possible with that width and height, while maintaining its aspect ratio. Specifying both a
width and a height of zero displays the PDF page at its default resolution.

Code Sample Example

This example displays page 5 of the PDF image resource ’new_models’, at its default resolution.

Example

showpdf('new_models', 5, 0, 0)

Elements

$element (procedure)

Executes the specified document element (object, page, resource, etc.). Note that in the case of a page, this procedure
executes both the content of the page and the paper handling properties of the page. The height and width of the calling page
are therefore set to the same values as those set by the called page.

Recall that every element in a document has a unique name. You can therefore call any element in the document at any time.
For example, the first page of a medical record documentmay contain a header listing all of the patient information, while
other pages in the document scale that same header to fit in the lower left corner of each page. Any modification you sub-
sequently make to the header is automatically reflected throughout the document.

Syntax

$element

Arguments

element

©2010 Objectif Lune Inc - 613 -

String value specifying the name of the element you want to execute.

Examples

Example 1 illustrates basic usage of the syntax.

$my_square
$page1
$box5

Example 2 scales the $header element to one quarter of its original size, and rotates it 90 degrees.

scale(0.25, 0.25)
setangle(90)
$header

Example 3 creates a thumbnail of each of the first two pages and positions the thumbnails side-by-side.

scale(0.10, 0.10)
$page1
translate(8.5, 0)
$page2

Emulation, Data File, and Data Pages

ClearPage (procedure)

Clears the current data page and loads the next one. This command should only be used before reading the next page of data
from the input stream. It is strictly for use within a User-Define Emulation and generally follows DoForm (procedure).

Syntax

clearpage()

Argument

None

Example:

This example the default User-Defined Emulation that corresponds to a Line Printer data file.

search(&str,'\014')
set(¤t.line,¤t.line + 1)
store(¤t.line,&str)
doform()
clearpage()

endsearch()
set(¤t.line,¤t.line + 1)
store(¤t.line,&str)

©2010 Objectif Lune Inc - 614 -

if(ge(¤t.line,¤t.lpp))
doform()
clearpage()

endif()

DefineData (procedure)

Change the active data file to the one specified in the path parameter.

Changing the data file in the middle of document processing can have unexpected consequences and should only be
used if you understand the implications of doing so.

Syntax

definedata(path)

Argument

path

String value specifying the path of the data file.

DoForm (procedure)

Runs the current document. This command is usually issued once a complete data page has been received and committed to
buffer. This command should only be used before reading the next page of data from the input stream. It is strictly for use
within a User-Define Emulation.

Syntax

doform()

Argument

None

Code Sample Example

This example is an extract from a user-defined emulation. The search() command looks for a formfeed and adds its line
number. The line number is stored as a string and the document is run. The data page is cleared and the search is over.

Example

search(&str,'\014')
set(¤t.line,¤t.line + 1)
store(¤t.line,&str)
doform()
clearpage()

endsearch()

©2010 Objectif Lune Inc - 615 -

GetNextDataPage(procedure)

Advance to the next data page of the sample data file. Note that this commandmay have unpredicted behavior if not used cor-
rectly in documents that use a user-defined emulation.

This command should only be executed when printermode is not in designmode. The result will be incorrect on screen, but
there will be no
unexpected behaviors. Therefore, the only solution is for end-users to make sure the command doesn't get executed while in
Designmode by bracketing it within a if(&printermode<>0) ... endif()
structure.

Syntax

getnextdatapage()

SetDataPage(procedure)

Specify the data page of the sample data file.

Syntax

setdatapage(pagenum)

Argument

pagenum

Integer value representing the page number of the data page.

SetEmulation(procedure)

Sets the emulation to use.

Syntax

setemulation(emulation)

Argument

emulation

Integer value indicating the type of emulation.

Value: Emulation:
0 Line printer
1 ASCII
2 Comma Separated Value (CSV)
3 Channel skip
4 Database
5 XML
6 PDF

©2010 Objectif Lune Inc - 616 -

SetLPP(procedure)

Sets the number of lines per data page. This function is only useful when working with User-Defined Emulation, if you have a
method of determining the number of LPP from within your data.

Syntax

setlpp(lines)

Argument

lines

Integer value specifying the number of lines per page.

Store (procedure)

Stores a string of characters on a specific line in the current data page.

Syntax

store(line, string)

Arguments

line

Integer value specifying the line on which to store the string.

string

String value to store in the data page.

Code Sample Example

This example is taken for an OnReadDataPage event for a user defined emulation. It shows how to store lines of text in the cur-
rent data page. It searches for a formfeed, increases the current line, stores the string, executes the document, resets the
page, and then ends the search.

Example

search(&str,'\014')

set(¤t.line,¤t.line+1)

store(¤t.line,&str)

doform()

clearpage()

endsearch()

Data Destined for PlanetPress Image, PlanetPress Fax and PlanetPress Search

©2010 Objectif Lune Inc - 617 -

DefineImageIndex (procedure)

Defines a PlanetPress Search index term. PlanetPress Image uses this information to generate the .PDI file it creates for each
PDF file it creates. You use SetImageIndex (procedure) to associate a data value with the index term.

Syntax

defineimageindex(name, [length])

Arguments

name

String value specifying a name for the index term.

length

String value specifying a length for the index term.

Code Sample Examples

Example 1

This example defines the index term 'PONumber' and assigns it a length of 8 characters. The PDI file generated by PlanetPress
Image contains the line: ~IndexName=PONumber,8.

defineimageindex('PONumber', '8')

Example 2

This example defines the same index term, this time without defining a length for the term. In this case the line in the PDI file
becomes: ~IndexName=PONumber

defineimageindex('PONumber')

SetBodyText (procedure)

Defines the text that appears as the body of an email message sent by PlanetPress Image.

Syntax

setbodytext(bodytext)

Arguments

bodytext

String value specifying the text to use as the body of the email message.

SetEmailAddress (procedure)

Defines an email address for PlanetPress Image.

Syntax

setemailaddress(address)

©2010 Objectif Lune Inc - 618 -

Arguments

address

String value specifying the email address.

SetEmailSubject (procedure)

Defines the subject line of an email message sent by PlanetPress Image.

Syntax

setemailsubject(subjectline)

Arguments

subjectline

String value specifying the subject line.

SetFaxInformation (procedure)

Defines the fax description that appears in both the PlanetPress Fax dialog box and the PlanetPress Fax log file.

Syntax

setfaxinformation(info)

Arguments

info

String value specifying a description of the fax.

Code Sample Example

setfaxinformation('purchase confirmation')

SetFaxNumber (procedure)

Defines a fax number for PlanetPress Fax.

Syntax

setfaxnumber(faxnumber)

Arguments

faxnumber

String value specifying the fax number.

Code Sample Example

setfaxnumber('(514)276-7633')

©2010 Objectif Lune Inc - 619 -

SetImageIndex (procedure)

Associates a data value with a PlanetPress Search index term defined using theDefineImageIndex() command. Plan-
etPress Image uses this information when it generates the .PDI file it creates for each PDF file it creates.

This function has no effect when the output of the document is not a PDF file generated through PlanetPress Image.

Syntax

setimageindex(name, data)

Arguments

name

String value specifying the name of the index term with which you want to associate a data value.

data

String value specifying the data value you want to associate with the index term.

Code Sample Examples

These examples illustrate setimageindex().

Example 1

setimageindex('PONumber', '2005')

Example 2

setimageindex('PONumber', @(2,24,32))

SetPDFBookmark (procedure)

Creates a PDF bookmark at the current page, for the PDF files PlanetPress Image generates.

This function has no effect when the output of the document is not a PDF file generated through PlanetPress Image.

Syntax

setpdfbookmark(name)

Arguments

name

©2010 Objectif Lune Inc - 620 -

String value specifying the name of the bookmark that appears in the PDF.

Code Sample Examples

These examples illustrate setpdfbookmark().

Example 1

setpdfbookmark('Table of Contents')

Example 2

setpdfbookmark(@(10,23,45))

Example 3

setpdfbookmark(@(10,23,45) + '|' + @(11,23,45))

Document Pages

@page (procedure)

Executes the content of the specified document page, as if it were part of the calling page. The content of the page in this case
excludes the paper handling properties of the page. The height and width of the page content thus becomes the height and
width of the group that would result if you created a single group of all of the page elements. If you want to include the paper
handling properties in the page execution, use the $element syntax instead.

The @ character can be the beginning of a data selection, a page call or a procedure or function call.

The@page() and execpage() commands are functionally equivalent. However, the execpage() command has the
added ability of calling variable page names.

Syntax

@pagename()

Arguments

pagename

String value specifying the name of the page you want to execute.

©2010 Objectif Lune Inc - 621 -

Example

The following two lines of code are functionally equivalent and display the content of a page namedMyFirstPage:

@MyFirstPage
execpage('MyFirstPage')

ExecPage (procedure)

Executes the content of the specified document page, as if it were part of the calling page. The content of the page in this case
excludes the paper handling properties of the page. If you want to include the paper handling properties in the page execution,
see "$element (procedure)" (page 613).

The execpage() and@page() commands are equivalent.

Syntax

execpage(pagename)

Argument

pagename

String value specifying the name of the page to run. The page must exist, and its name is case insensitive.

Code Sample Example

In this example, the current page executes pages 2, 3 or 4 according to a data selection. This allows you to create pages of
'subroutines' that can be called from any other page.

Example

define(&x,integer,strtoint(@(7,4,8)))
if(&x < 1000)

execpage('PAGE1')
elseif()

if(&x > 1000)
%This is equivalent to execpage('PAGE3')

@PAGE3
elseif()

execpage('PAGE2')
endif()

endif()

ShowPage (procedure)

Instructs the printer to output the page andmove on to the next instruction.

This command has no effect on screen, because it is intended to be executed only inside the printer.

Syntax

showpage()

©2010 Objectif Lune Inc - 622 -

Argument

None

Code Sample Example

This example specifies the number of pages to print at line 1, between columns 1 and 5.

Example

Define(&NumberOfPages,integer,strtoint(trim(@(1,1,5))))

Define(&x,integer,1)

for(&x,1,1,&NumberOfPages)

execpage('Page1')

showpage()

endfor()

PPDs and PostScript

CallPPD (procedure)

Calls a section of the PostScript Printer Description (PPD) file and executes it on the printer. Use this to set printer options such
as the input tray or duplexing options. The tokens and subtokens you use as arguments with this functionmust be defined in
the PPD file associated with your document or page in the document’s or page’s Basic Attributes. PlanetPress searches the PPD
file for the token-subtoken combination and then prompts the printer to execute the corresponding code.

Syntax

callppd(token, subtoken)

Arguments

token

This is the string to search for in the PPD file (for example, Duplex).

subtoken

This is string to search for that is a setting for the token (for example, None).

Example

if((&Condition1) or (&Condition2))
callppd("Tray", "2")

elseif()
if((&Condition3) or (&Condition4))

callppd("Tray", "3")

©2010 Objectif Lune Inc - 623 -

elseif()
callppd("Tray", "4")

endif()
endif()

PassThrough (procedure)

Sends a literal PostScript command to the printer.

Syntax

passthrough(string, [mode])

Argument

string

String value to be sent to the printer. This string is sent as is, with no further modification.

mode

Integer used as a bitfield to specify when to send the passthrough. Use a value of 1 to send the passthrough in PostScript-
printer centric mode only, a value of 2 to send the passthrough in PostScript-Optimized PostScript Stream only, a value of 3 to
send the passthrough in both PostScript-printer centric AND PostScript-Optimized PostScript Streammodes (default behavior if
the parameter is not present), and a value of 4 to send the passthrough inWindows printingmode only.

Code Sample Example

Refer to your PostScript manual for valid commands.

RunPS (procedure)

This command is typically used to call resources, usually images, downloaded either with the Image Downloader in Plan-
etPress or Send Images to Printer action tasks in the PlanetPress Suite Workflow Tools. Note that this command does not
work with any other PostScript files.

Syntax

runps(filename)

Argument

filename

String value. Name of the resource file.

SelectMedia (procedure)

On screen, displays the physical page. On a PostScript printer, calls the specified paper.

Variables used as arguments in this command are not parsed when printing using the Optimized PostScript Streammode.

Syntax

selectmedia(width, height, [media], [color], [weight], orientation, mode)

Arguments

width, height

©2010 Objectif Lune Inc - 624 -

Measure values specifying the width and height of the physical page in inches.

media

A string value specifying the type of paper to use.

color

String value specifying the color of the paper.

weight

Measure value specifying the weight of the paper (in grams per square meter). You can convert weight in pounds to weight in
grams by multiplying by the weight in pounds by 3.76.

orientation

Integer representing the orientation of the page (0=Portrait, 1=Landscape, 2=Reverse portrait, and 3=Reverse landscape).

mode

Reserved for future use. Specify 0 for now.

Code Sample Example

define(&mcolor,string,'')

&mcolor := 'White'

selectmedia(8.5,11,'Danny',&mcolor,20,0,0)

The code above will generate the following PostScript code (notice how the variable was
not replaced by its value).

612 792 0 ^SM (Danny) &mcolor 20 ^SPM

Program Control

Exit (procedure)

Exits from a for...endfor or repeat...until loop.

Syntax

exit()

Argument

None

Code Sample Example

This example shows how to break from a loop when a specific word, in this case ’Invoice,’ is found somewhere on the data
page.

©2010 Objectif Lune Inc - 625 -

define(&x,integer,1)
for(&x,1,1,¤t.lpp)

if(pos('Invoice',@(&x,1,80))>0)
exit()

endif
endfor()

For… EndFor (procedure)

This command structure allows a series of nested commands to be repeated a specified number of times. Each for statement
must have a corresponding endfor statement in order for PlanetPress Talk to know which commands to include in the loop.
Note that you cannot increment the counter for a for() loop, inside the loop.

If you open a document created a with a version of PlanetPress earlier than 5.2.0, and if that document includes a for() loop
with an increment greater than 1, you will notice that the loop is executed one less time than with your older version software
both in PlanetPress itself and when you use the Optimized PostScript Stream option. The behavior on printers (using the Printer
Centric option), on the other hand, remains unchanged.

Syntax

for(varname, startvalue, increment, stopvalue)

…

endfor()

Arguments

varname

Name of the variable to use for iterations. The variable must already exist.

startvalue

Integer value to initialize varname.

increment

Integer value used to increment varname after each iteration.

stopvalue

Integer value after which iterations stop.

Code Sample Example

This example simply prints 5 lines of text.

To cycle backwards through values, make startvalue larger than stopvalue, and specify a negative increment.

Example

define(&x,integer,1)
for(&x,1,1,5)

show('Line nº '+inttostr(&x))

©2010 Objectif Lune Inc - 626 -

crlf()
endfor()

If … ElseIf… EndIf (procedure)

This command structure can define up to two conditional blocks. Statements nested within the first block are executed only if
the condition specified in the if statement returns true. If it returns false, the program branches to the first statement in the sec-
ond block, if one has been defined using the elseif statement. Otherwise, control flows to the first statement following the endif
command.

With PlanetPress Suite version 7.0, the elseif statement has been optimized to evaluate an argument, exactly like an if state-
ment, and elseif statements from other programming languages. In order to complete the if...elseif...endif command struc-
ture, however, an else statement was also added, acting exactly like the previous, empty elseif. Note that the use of the else
statement is strongly recommended, as it is optimized by comparison to the elseif statement. Also note that documents
created with previous versions and using the if...elseif...endif structure will not be updated, for full backward compatibility.

Syntaxes

Prior to version 7.0

if(condition)

…

elseif()

…

endif()

Version 7.0 and above

if(condition1)

...

elseif(condition2)

...

else()

...

endif()

Argument

condition, condition1, condition2

Value of type Boolean to evaluate.

Code Sample Example

This example simply prints 5 lines of text, selecting fonts according to line numbers.

Example prior to version 7.0

define(&x,integer,1)

©2010 Objectif Lune Inc - 627 -

%Define loop variable and then set up loop

for(&x,1,1,5)

if((&x mod 2)=0)

%If &x is an even number

setstyle(&bluefont)

%use the blue font

elseif() %otherwise

setstyle(&Default)

%use the default font

endif()

show('Some text to display')

%Display the text

crlf()

%Skip to the next line

endfor()

Example with version 7.0

define(&x, integer, inttostr(@(1, 1, 10)))

if(&x = 1)

setstyle(&bluefont)

elseif(&x = 2)

setstyle(&redfont)

else()

setstyle(&default)

endif()

Related topics:

©2010 Objectif Lune Inc - 628 -

l "If (function)" (page 554)

Repeat... Until (procedure)

Repeat a sequence of commands until a condition is true. It is similar to a for... endfor loop in that you can nest the loops. It is
different from a for... endfor loop in that the loop always executes at least once, and that you tie the number of times the
loop repeats to a Boolean condition. For example youmight tie the number of times the loop repeats to the occurrence of a
piece of data in the data stream.

Syntax

repeat

…

until(expression)

Argument

expression

Boolean value. If it evaluates to true, the loop ends. If it evaluates to false, the loop repeats.

Code Sample Example

This example prints the string ‘Cheers’ ten times, one underneath the other, with a dashed line above and below the ten
instances.

Example

show('---------------')

crlf(0.16)

&count := 1

repeat

&count := &count + 1

show('Cheers')

crlf(0.16)

until(&count = 10)

show('---------------')

crlf(0.16)

Search … EndSearch (procedure)

This command structure allows a series of nested commands to be repeated as long as a specific string of characters (the
search string) is found within another string (the target string). After each iteration, the target string contains all the data
between occurrences of the search string, excluding the search string. Once the loop is over, target contains the remaining
characters of the original data.

©2010 Objectif Lune Inc - 629 -

Syntax

search(target, search)

…

endsearch()

Arguments

target

Name of a variable of type string in which to perform the search.

search

String value to search for.

Code Sample Example

This example splits a string delimited with semi-colons.

In theOnReadDataPage event of the user-defined emulation, the&str system variable contains each new line of data
being fed to the document. Also, do not assign anything to the variable while inside the search-endsearch loop; it will get
overwritten.

Example

define(&v1,string,'This;is;a;test') %Create the variable

search(&v1,';') %Start loop

show(&v1) %Show token

crlf() %Skip line

endsearch()

show(&v1) %Show remaining text

StopJob (procedure)

Terminates execution of the document and returns control to the PostScript interpreter.

Syntax

stopjob()

©2010 Objectif Lune Inc - 630 -

Conversion Tables
This appendix contains an ASCII conversion table, a table for converting from points to inches, another for converting from
points to centimeters, and a table for determining the height of a line of text given the number of Lines Per Unit (LPU).

This appendix contains the following conversion tables:

l "ASCII Conversion Table" (page 632)
l "Points to Inches or Centimeters" (page 634)
l "Line Height as a Function of Lines Per Unit (LPU)" (page 638)

©2010 Objectif Lune Inc - 631 -

ASCII Conversion Table
DecHexOct Char
0 00 000NUL (null)
1 01 001SOH (start of heading)
2 02 002STX (start of text)
3 03 003ETX (end of text)
4 04 004EOT (end of transmission)
5 05 005ENQ (enquiry)
6 06 006ACK (acknowledge)
7 07 007BEL (bell)
8 08 010BS (backspace)
9 09 011TAB (horizontal tab)
10 0A 012LF (NL line feed, new line)
11 0B 013VT (vertical tab)
12 0C 014FF (NP form feed, new page)
13 0D 015CR (carriage return)
14 0E 016SO (shift out)
15 0F 017SI (shift in)
16 10 020DLE (data link escape)
17 11 021DC1 (device control 1)
18 12 022DC2 (device control 2)
19 13 023DC3 (device control 3)
20 14 024DC4 (device control 4)
21 15 025NAK (negative acknowledge)
22 16 026SYN (synchronous idle)
23 17 027ETB (end of trans. block)
24 18 030CAN (cancel)
25 19 031EM (end of medium)
26 1A 032SUB (substitute)
27 1B 033ESC (escape)
28 1C 034FS (file separator)
29 1D 035GS (group separator)
30 1E 036RS (record separator)
31 1F 037US (unit separator)
32 20 040SPACE
33 21 041!
34 22 042"
35 23 043#
36 24 044$
37 25 045%
38 26 046&
39 27 047 '
40 28 050(
41 29 051)

©2010 Objectif Lune Inc - 632 -

DecHexOct Char
42 2A 052*
43 2B 053+
44 2C 054 ,
45 2D 055-
46 2E 056 .
47 2F 057/
48 30 0600
49 31 0611
50 32 0622
51 33 0633
52 34 0644
53 35 0655
54 36 0666
55 37 0677
56 38 0708
57 39 0719
58 3A 072:
59 3B 073;
60 3C 074<
61 3D 075=
62 3E 076>
63 3F 077?
64 40 100@
65 41 101A
66 42 102B
67 43 103C
68 44 104D
69 45 105E
70 46 106F
71 47 107G
72 48 110H
73 49 111I
74 4A 112J
75 4B 113K
76 4C 114L
77 4D 115M
78 4E 116N
79 4F 117O
80 50 120P
81 51 121Q
82 52 122R
83 53 123S
84 54 124T
85 55 125U
86 56 126V
87 57 127W

©2010 Objectif Lune Inc - 633 -

DecHexOct Char
88 58 130X
89 59 131Y
90 5A 132Z
91 5B 133[
92 5C 134\
93 5D 135]
94 5E 136^
95 5F 137_
96 60 140
97 61 141a
98 62 142b
99 63 143c
100 64 144d
101 65 145e
102 66 146 f
103 67 147g
104 68 150h
105 69 151 i
106 6A 152 j
107 6B 153k
108 6C 154 l
109 6D 155m
110 6E 156n
111 6F 157o
112 70 160p
113 71 161q
114 72 162r
115 73 163s
116 74 164t
117 75 165u
118 76 166v
119 77 167w
120 78 170x
121 79 171y
122 7A 172z
123 7B 173{
124 7C 174|
125 7D 175}
126 7E 176~
127 7F 177DEL

Points to Inches or Centimeters
Points are PostScript points. A PostScript point measures 1/72 of an inch, or 0.035278 of a centimeter.

©2010 Objectif Lune Inc - 634 -

Points to Inches

Points Inches Points Inches
1 0.0138892 0.027778
3 0.0416674 0.055556
5 0.0694456 0.083334
7 0.0972238 0.111112
9 0.12500110 0.13889
11 0.15277912 0.166668
13 0.18055714 0.194446
15 0.20833516 0.222224
17 0.23611318 0.250002
19 0.26389120 0.27778
21 0.29166922 0.305558
23 0.31944724 0.333336
25 0.34722526 0.361114
27 0.37500328 0.388892
29 0.40278130 0.41667
31 0.43055932 0.444448
33 0.45833734 0.472226
35 0.48611536 0.500004
37 0.51389338 0.527782
39 0.54167140 0.55556
41 0.56944942 0.583338
43 0.59722744 0.611116
45 0.62500546 0.638894
47 0.65278348 0.666672
49 0.68056150 0.69445
51 0.70833952 0.722228
53 0.73611754 0.750006
55 0.76389556 0.777784
57 0.79167358 0.805562
59 0.81945160 0.83334
61 0.84722962 0.861118
63 0.87500764 0.888896
65 0.90278566 0.916674
67 0.93056368 0.944452
69 0.95834170 0.97223
71 0.98611972 1.000008
73 1.01389774 1.027786
75 1.04167576 1.055564
77 1.06945378 1.083342
79 1.09723180 1.11112
81 1.12500982 1.138898
83 1.15278784 1.166676
85 1.18056586 1.194454
87 1.20834388 1.222232

©2010 Objectif Lune Inc - 635 -

Points Inches Points Inches
89 1.23612190 1.25001
91 1.26389992 1.277788
93 1.29167794 1.305566
95 1.31945596 1.333344
97 1.34723398 1.361122
99 1.375011100 1.3889

©2010 Objectif Lune Inc - 636 -

Points to Centimeters

Points Centimeters Points Centimeters
1 0.035278 2 0.070556
3 0.105834 4 0.141112
5 0.176389 6 0.211667
7 0.246945 8 0.282222
9 0.3175 10 0.352778
11 0.388056 12 0.423334
13 0.458611 14 0.493889
15 0.529167 16 0.564445
17 0.599723 18 0.635
19 0.670278 20 0.705556
21 0.740834 22 0.776112
23 0.811389 24 0.846667
25 0.881945 26 0.917222
27 0.952500 28 0.987778
29 1.023056 30 1.058333
31 1.093611 32 1.128889
33 1.164167 34 1.199444
35 1.234722 36 1.270000
37 1.305278 38 1.340556
39 1.375833 40 1.411111
41 1.446389 42 1.481667
43 1.516945 44 1.552222
45 1.587500 46 1.622778
47 1.658056 48 1.693333
49 1.728611 50 1.763889
51 1.799167 52 1.834445
53 1.869722 54 1.905000
55 1.940278 56 1.975556
57 2.010833 58 2.046111
59 2.081389 60 2.116667
61 2.151945 62 2.187222
63 2.222500 64 2.257778
65 2.293056 66 2.328333
67 2.363611 68 2.398889
69 2.434167 70 2.469445
71 2.504722 72 2.540000
73 2.575278 74 2.610555
75 2.645833 76 2.681111
77 2.716389 78 2.751667
79 2.786945 80 2.822222
81 2.857500 82 2.892778
83 2.928056 84 2.963333
85 2.998611 86 3.033889
87 3.069167 88 3.104445

©2010 Objectif Lune Inc - 637 -

Points Centimeters Points Centimeters
89 3.139722 90 3.175000
91 3.210278 92 3.245556
93 3.280833 94 3.316111
95 3.351389 96 3.386667
97 3.421945 98 3.457222
99 3.492500 100 3.527778

Line Height as a Function of Lines Per Unit (LPU)
Use these tables to determine the height of an individual line, in inches, given a specific Lines Per Unit (LPU) value.

Line Height as a Function of Lines Per Inch

Use this table to determine the height, in inches, of an individual line when the unit of the LPU is inches.

LPI Line Height (inches) LPI Line Height (inches)
1 1 2 0.5
3 0.333333333 4 0.25
5 0.2 6 0.166666667
7 0.142857143 8 0.125
9 0.111111111 10 0.1
11 0.090909091 12 0.083333333
13 0.076923077 14 0.071428571
15 0.066666667 16 0.0625
17 0.058823529 18 0.055555556
19 0.052631579 20 0.05
21 0.047619048 22 0.045454545
23 0.043478261 24 0.041666667
25 0.04 26 0.038461538
27 0.037037037 28 0.035714286
29 0.034482759 30 0.033333333
31 0.032258065 32 0.03125
33 0.03030303 34 0.029411765
35 0.028571429 36 0.027777778
37 0.027027027 38 0.026315789
39 0.025641026 40 0.025
41 0.024390244 42 0.023809524
43 0.023255814 44 0.022727273
45 0.022222222 46 0.02173913
47 0.021276596 48 0.020833333
49 0.020408163 50 0.02

Line Height as a Function of Lines Per Centimeter

Use this table to determine the height, in inches, of an individual line when the unit of the LPU is centimeters.

©2010 Objectif Lune Inc - 638 -

LPCLine Height (inches) LPCLine Height (inches)
1 0.3937008 2 0.196850394
3 0.181233596 4 0.098425197
5 0.078740157 6 0.065616798
7 0.056242970 8 0.049212598
9 0.043744532 10 0.039370079
11 0.035790980 12 0.032808399
13 0.030284676 14 0.028121485
15 0.026246719 16 0.024606299
17 0.023158870 18 0.021872266
19 0.020721094 20 0.019685039
21 0.018747656 22 0.017895490
23 0.017117425 24 0.016404199
25 0.015748031 26 0.015142338
27 0.014581511 28 0.014060742
29 0.013575889 30 0.013123360
31 0.012700025 32 0.012303150
33 0.011930327 34 0.011579435
35 0.011248594 36 0.010936133
37 0.010640562 38 0.010360547
39 0.010094892 40 0.009842520
41 0.009602458 42 0.009373828
43 0.009155832 44 0.008947745
45 0.008748906 46 0.008558713
47 0.008376612 48 0.008202100
49 0.008034710 50 0.007874016

©2010 Objectif Lune Inc - 639 -

©2010 Objectif Lune Inc - 640 -

Tools and Utilities
This chapter describes specific tools and utilities that are available in the PlanetPress Design interface.

The Image Downloader

It is important to understand that the copy of the image file the Image Downloader downloads or copies is a PostScript file.
More precisely, the Image Downloader takes the image file you want to download or copy, applies any optimizations you
defined for it, and creates a PostScript file that contains the optimized image (since PostScript is ASCII, the image is rep-
resented as a sequence of hexadecimal values). Thus, although the downloaded or copied image may have the same filename
extension as the original file, it is not a copy of the original file.

To copy images to a folder on the host:

1. InWindows locate the external image files the dynamic image references. These images can be in any of the sup-
ported formats.

2. Copy the images to the folder on the host. This is the folder you specified in the Image box of the picture object that con-
tains the dynamic image. Recall that this folder must be accessible to the document at runtime.

To download images to one or more printers and/or to the local PlanetPress Design Suite virtual disk:

1. Choose Tools | Application | Image Downloader.
2. In the Image Downloader dialog box, select the image files you want to copy. All image files you select must be in one

of the supported image formats (BMP, EPS, JPEG, PDF, PNG, TIFF). If you want to download bitmapped images with a
mix of image qualities (some are line art, some are photo), you should download each type of image quality separately.
This is because you can set only one image quality for all images in a download.

3. In the Copy to list, select the destinations to which you want to copy the images. You can select one or more printers,
and/or the PlanetPress Design Suite virtual disk.

4. Adjust the image settings for the download. The Image Downloader applies these settings to all of the images in the
Files to download list. Note that they affect only the copy of each image; the original image remains unchanged.
Scan orientation: Select the scanline orientation for all bitmapped images in the Files to download list.
Color conversion: Define any color depth conversion you want PlanetPress Design to perform on any of the bit-
mapped images in the Files to download list, during the download. Select Leave as is to leave the color depth of each
image unchanged. Select Convert to grayscale to convert each color bitmapped image to grayscale. Select Convert to
monochrome to convert each color or grayscale bitmapped image to monochrome.
Naming convention: Specify the case and file name extension conventions you want PlanetPress Design to use for
the file names of the copied images.Select File name original to have the name of each copied file appear in upper case,
with the file name extension as it is on the original. Select File name no extension to have the name of each copied file
appear in upper case, with the file name extension dropped.
Naming convention: Specify the case and file name extension conventions you want PlanetPress Design to use for
the file names of the copied images. Select Filename [original] to have the name of each copied file appear in upper
case, and the file name extension to remain as it is on the original. Select Filename w/o extension to have the name of
each copied file appear in upper case, and to have the file name extension dropped. Select Filename lowercase to have
the name of the copied file appear in lower case, and the file name extension to remain as it is on the original. Select
Filename w/o extension lowercase to have the name of the copied file appear in lower case, and to have the file name
extension dropped.
Printer path: Specify the path on the printer where you want to download the copy of the images. This path can be
either a path on the hard disk or a path in flashmemory. This pathmust exist on all of the printers you select in the
Copy to list.
Image quality: Select the image quality for the bitmapped images in the Files to download list. Recall that image qual-
ity in PlanetPress Design refers to the type of content a bitmapped image contains. Select Line art if edges in the image

Tools and Utilities

©2010 Objectif Lune Inc - 641 -

are clearly defined and sensitive to any loss of image information. The compression PlanetPress Design applies to line
art images is lossless. Note that Line art quality only works with PostScript Level 3. If you select Line art for images,
and the PPD you select for the document is not for a PostScript Level 3 printer, PlanetPress Design automatically
switches the image quality from Line art to Photo, and applies the compression level set for Photo quality. Inmost
cases this results in a noticeable degradation of quality. One solution is to adjust the compression level to 100%. A com-
pression level of 100%means PlanetPress Design does not perform any compression. This preserves all of the image
information in the line art images, at the expense of not performing any compression on any of the images in the Files
to download list.
Image compression level: Set the compression level you want the Image Downloader to use when you select
Photo in the Image quality box. Legal values are 1 to 100.
Force PostScript mode: Select this option when the destination printer is used for printing jobs in other formats
such as PJL, and when PlanetPress Suite Workflow Tools is not sending the output to the printer’s hard disk. When this
option is selected, PlanetPress Design inserts the following command statement

[Esc]%-12345X@PJL ENTER LANGUAGE =

POSTSCRIPT
to precede the document as well as any other command statement.

5. Click Download.
For each of the image files in the Files to download list, the Image Downloader makes a copy of the file. It then applies
any resolution, scan orientation, color, or file name modifications you specified, to the copy. Finally it converts the copy
to PostScript and downloads it to each of the destinations selected in the Copy to list. If it cannot download some or all
of the images, it displays an error message to this effect.

To create a file of images, along with the PostScript code to install them on a printer:

1. Choose Tools | Application | Image Downloader.
2. In the Image Downloader dialog box, select the image files you want to copy. All image files you select must be in

one of the supported image formats (BMP, EPS, JPEG, PDF, PNG, TIFF). If you want to download bitmapped images
with a mix of image qualities, you should download each type of image quality separately. This is because you can set
only one image quality for all images in a download.

3. Adjust the image settings for the download. The Image Downloader applies these settings to all of the images in the
Files to download list.

4. Click Save to file.
5. In the Save As dialog box, navigate to folder in which you want to save the file, and enter a name for the file.
6. Click Save.

To select the images to download or save in a file:

1. In the Image Downloader dialog box, click the Browse button at the top right of the Files to download list to display
the Open dialog box.

Tools and Utilities

©2010 Objectif Lune Inc - 642 -

A. Browse B. Delete C. Clear
2. In theOpen dialog box, navigate to the folder containing the images, and select the images you want to download

and/or copy. To select more than one image file, click the first file you want to add, thenCTRL+click each additional
file you want to add to the selection. CTRL+click a file a second time to remove it from the selection. You can also
SHIFT+click to select a range of files. Click Open to exit the Open dialog box.

3. If necessary, you can edit the content of the Files to download list as follows:
l step 1
l To delete one or more images from the list, select the images then click Delete. To select more than one image
file, click the first file, thenCTRL+click each additional file to add it to the selection. CTRL+click a file a second
time to remove it from the selection. You can also SHIFT+click to select a range of files.

l To remove all images from the list, click Clear.

Adjust the Image Quality Options

To set the default image quality and the photo quality compression level:

Tools and Utilities

©2010 Objectif Lune Inc - 643 -

1. Double-click on theDocument node.
2. In theDocument properties dialog box, click Resource options and adjust the compression options.
Image quality: Select the image quality for this image resource.
Photo quality compression level: Set the compression level you want PlanetPress Design to use for image
resources of Photo image quality. Legal values are 1 to 100. Compressionmay affect print speed because each image
on the printer must be uncompressed at print time, whichmay affect print quality. Some formats such as JPEG com-
pressionmay cause image degradation, whereas LZW compression does not. The user can select the type and degree
of depression PlanetPress Design uses to send to the printer.

A. Force PostScript mode option; B. Refresh List button; C. Save to File button
Force PostScript mode: Select this option when the destination printer is used for printing jobs in other formats
such as PJL, and when PlanetPress Suite Workflow Tools is not sending the output to the printer’s hard disk. When this
option is selected, PlanetPress Design inserts the following command statement

[Esc]%-12345X@PJL ENTER LANGUAGE =

POSTSCRIPT
to precede the document as well as any other command statement.

Refresh List: Click this button to refresh the list of available hosts to which the images may be downloaded.

Tools and Utilities

©2010 Objectif Lune Inc - 644 -

Save to File: Click this button to save all the image files in the Files to download list to the filename you specify with a
PS file extension. The Image Downloader makes a copy of each image, applies the image settings to the copy, and then
converts the copy to PostScript.

3. Click OK.
4. When you add an image resource to the document, PlanetPress Design associates the specified image quality with that

image resource. If you selected Photo as the image quality, it uses the specified compression to compress the image
resource when it converts the document.

To adjust the compression algorithm for an individual image resource in the document:

l Edit the Image quality property of the image resource whose image quality you want to change.

Virtual Drive Manager

When you use the Send images to printer action in a given process, you have the option of, at the same time, sending the
images to the virtual drive (a local storage folder used by PlanetPress Suite applications) of any computer included in your net-
work. You need to do this, for instance, if you plan to run documents that contain dynamic images on those computers (using
theOptimized PostScript Stream option). You can then use the Virtual Drive Manager to see the images that were down-
loaded to your computer as well as to delete them from your virtual drive.

To add images to the virtual drive, use either of the following methods:

l Send a single resource file to the printer: see Download to Printer Action Task Properties.
l Send one or more images to the printer: see Send Images to Printer Action Task Properties.
l Use The Image Downloader.

To delete images from your virtual drive:

1. In the PlanetPress Suite Ribbon, Go to the Tools tab, then click onVirtual Drive Manager.
The Virtual Drive Manager dialog box is displayed. It lists all the images currently stored in your computer’s virtual
drive.

2. Select the images you want to delete.
3. Press the Delete key.

Access Manager
Use the Access Manager to control access to those services running on your computer.

Tools and Utilities

©2010 Objectif Lune Inc - 645 -

http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2588.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2588.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2588.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2588.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2588.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2588.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2599.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2599.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2599.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2599.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2599.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2599.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#2599.html

To open the Access Manager

l OpenPlanetPress Design or PlanetPress Workflow Configuration Tool.
l In the Ribbon, go in Tools |Managers | Access Manager.

The Access Manager dialog box is displayed. It lists all IP and IP ranges that have PlanetPress Design, PlanetPress Suite
Workflow Tools, PlanetPress Fax or PlanetPress Image installed in the same network.

To add a new entry in the list

l Open the Access Manager
l Make sure you are in theMessenger tab.
l In the IP address box, enter the IP address of the remote machine.
l Click on the button.

The format of the IP address must be one of the following:

l 127.0.0.1: The local computer. Typically this IP should have all the accesses checked.
l 255.255.255.255: Everyone on the same subnet. This is equivalent to hard-coding the current subnet, such as
192.168.1.255 or 10.0.0.255.

l 192.168.0.42 : A single IP address. This can be any valid address on the same subnet.
l 10.0.255.255: Any IP in the 10.0.X.X range.

The following considerations are to be understood when using the Access Manager to configure IP limitations:

l Each permission type (column) is evaluated from top to bottom (column per column) in the order they are visible in the
Access Manager window. This means that wide ranges should always be at the top to increase performance. For

Tools and Utilities

©2010 Objectif Lune Inc - 646 -

example, if you accept HTTP connections from any IP, the first entry should be 255.255.255.255 with the Allow check-
mark in the HTTP Input box. PlanetPress does not continue processing after it has found an "Allow" checkmark. There
is no concept of "Deny", meaning if any "Allow" permission is given, there is no way to later remove it for certain IPs or
IP ranges.

l Messenger communications (between different part of the PlanetPress Suite) was limited to within the same Class
C subnet. This means that PlanetPress Workflow on 192.168.1.23 cannot send a job to a PlanetPress Image on
192.168.100.54. This limitation has been removed in PlanetPress Suite 7.3

l HTTP, FTP and SOAP communication is not limited to the local subnet on any version where these plugins appear.

To modify permissions

Permissions are given simply by adding and removing options in the permission grid. Access to the services installed on this
computer is granted or denied by checking the corresponding boxes next to the listed IP ranges. For each IP range, the fol-
lowing information is displayed:

l Host name: The name of those computers on which PlanetPress Suite software are currently installed or which have
beenmanually added.

l IP address: The IP address or IP address range to give permission to.
l Permissions

l HTTP Input:Grants access to send HTTP Requests to this server.
l LPD Input: Grants access to send LPD Queue jobs to this server.
l Send Job: Grants access to the selected computer or server to send jobs to PlanetPress Fax and PlanetPress
Image installed on this server.

l Send Document: Grants access to the remote computer to send new or updated PlanetPress Design Doc-
uments to this server.

l Send Config:Grants access to the remote computer to overwrite the configuration on the local PlanetPress
Workflow service

In order for the changes made here to be effective, you will need to restart the PlanetPress Messenger service. This
can be done via the PlanetPress Suite Service Console.

SOAP Access
The SOAP tab of the Access Manager controls access from SOAP clients to local processes and SOAP processes. Each user-
name entered in this dialog can have access to one or more processes.

Tools and Utilities

©2010 Objectif Lune Inc - 647 -

To add a new SOAP user

l Click on the button.
l Enter the following information in the Username section for the new entry that was created:

l Username: An alphanumerical username for the user.
l Password: A password to protect the user. Note that the password will always revert to ******** (8
stars) when clicking outside of this box - that is normal and is meant to protect the length of the password as
much as its contents.

l Administrator: Choose the permission type
l User: Can access none, some, or all of the processes, selected individually in the Permissions section.
l Admin: Has access to all processes and features. When this option is selected, the Permission section is
greyed out an all options are selected in it.

l Disabled: Has access to nothing. The result is the same as not having this user defined at all, but has the
advantage that a disabled user can be reactivated with a simple click.

l Define the permissions for the user (see below).
l Click OK to save the changes.

To define or change the permissions for a SOAP User

The Permissions section of the SOAP tab displays all of the processes that are available in the live configuration (the one that
the PlanetPress service uses). To change or define the permissions:

l In the top Username section, click on the username of which to modify permissions.
l Place a checkmark in each process that the user should have access to.
l Click OK to save the changes.

Tools and Utilities

©2010 Objectif Lune Inc - 648 -

In order for the changes made here to be effective, you will need to restart the PlanetPress Messenger service. This
can be done via the PlanetPress Suite Service Console.

Tools and Utilities

©2010 Objectif Lune Inc - 649 -

©2010 Objectif Lune Inc - 650 -

Managing Documents and Printers
This section presents the features of PlanetPress Design that you can use to manage document on a printer, and to adjust
printer settings.

Obtain Information from a Printer

To obtain information from a printer:

1. Choose Tools |Managers | Printer Utilities.
2. In the Select information to request list, select the information you require.
PlanetPress Design printer status page: Select to request a PlanetPress Design printer status page.
Printer variable content document listing: Select to request a list of all variable content documents installed on
the printer. The list includes all PlanetPress Design documents on the hard drive, in RAM, and in the flashmemory of
the printer. The information for each document includes the comments you defined in the Notes box of the Document
properties dialog box.
Printer files listing: Select to request a list of all files on the printer.

3. In the Select printers list, select the printers for which you want to obtain the selected information.
4. Select Send to file if you want to save the information as a PostScript file rather than output it on the printer(s).
5. Click OK.

If you selected Send to file, for each of the selected information sheets you requested PlanetPress Design prompts you
to specify the name of the file to which you want to save the information. Thus if you selected all three information
sheets, PlanetPress Design prompts you three times.
If you did not select Send to file, the information prints on each of the selected printers.

Delete Documents or Files on the Printer

To delete files on a printer:

1. Choose Tools |Managers | Printer Utilities to display the Printer Information dialog box.
2. In the Select information to request list, selectDelete files from printer’s file system.
3. In theName of document to delete box, enter the path of the first document or file you want to delete. The path

syntax depends on whether the file is located on the hard disk or in flashmemory.
Path syntax: Deletes a file:

%<DISKNAME>%<DOC_
OR_FILE_NAME>

On the hard disk. If the printer has more than one hard disk, youmust specify the one onwhich
the document or file you want to delete resides. For example:

%sales%sale_flyer
deletes the document or file “sale_flyer” on the hard disk named “sales.”

%FLASH%<DOC_OR_
FILE_NAME>

In flashmemory. For example:

%flash%tax_bill
deletes the document or file “tax_bill” from the flashmemory of the printer.

<DOC_OR_FILE_NAME> On a printer that has either only flashmemory or only a single hard disk.
4. If you want to delete additional documents or files, at the end of the path, press ENTER and enter the path for the next

document or file.
5. Repeat step 4 for each additional document or file you want to delete.
6. Select either Send to file or select one or more printers in the Select printers list:

l If you want to save the request to a file and perform the deletion at a later time, select Send to file.
l If you want to perform the deletion at this time, in the Select printers list, select the printer(s) from which you
want to delete the document or file.

7. Click OK.

©2010 Objectif Lune Inc - 651 -

If you selected Send to file, PlanetPress Design prompts you to specify the name of the file to which you want to save
the deletion request. Once you enter the file name and click Save, PlanetPress Design saves the request as a Post-
Script file.
If you did not select Send to file, PlanetPress Design attempts to delete the specified files and/or documents from the
selected printer(s) and prints a confirmation sheet. The confirmation sheet either confirms the printer deleted the
files/documents or reports that it could not delete the file.

Printer Firmware Version

What can prevent my printer from printing PlanetPress Design documents?

Some older PostScript printers do not integrate the full PostScript Level 2 language. This may cause PlanetPress Design print
jobs to crash and the printer to display the following error message:

l Error: undefined; OffendingCommand: execform.

To fix this problem, you should upgrade your printer’s firmware. If this cannot be done, you will need to disable caching in the
document options.

Control Versions of a Document

You can assign a version number to a document and increment the number each time you update and reinstall the document.
When you execute a document that uses a version number, the document verifies its version number against the one you spec-
ify in the trigger, and it proceeds with execution only if the two version numbers match.

Youmight use the version option in the following situations:

l You have a single document installed on several different printers, and youmust update it on all printers. If you are
unable to install the updated document on all the printers, different versions of the document exist. To ensure you don’t
accidentally print a job with the wrong version of the document, you include a version number in the document. When
you send a trigger to the printer, in the trigger you specify the version number of the document you want to use. The
document checks its version number against the one in the trigger. If it determines it is not the latest version, it prints a
page reporting it is not the latest version and does not execute.

l Youwant to install multiple versions of a document on a printer and have a means of controlling which one you execute
at any given time.

To set the version number of a document:

1. Double-click on theDocument node in the Document Structure area.
2. Click Conversionoptions and locate the version options.
3. Adjust the version options.
Use document versioning at printer level: Select to use version numbers with the document. Use the Doc-
ument version box to enter the version number for this document.
Document version: Enter the version number of the document, or use the spin buttons to adjust the value. In a doc-
ument that uses version numbers, you normally increment the version number each time you update and reinstall the
document.

4. Install the document. Youmust include the version number of the document in the trigger.

To execute a document that uses version numbers:

To execute a document that uses version numbers, insert the version number of the document in the trigger, just before the
“run” command. The following trigger examples all execute version 3 of the document named PAY.

Trigger: Document location:

<CRTL-D> Hard drive of a printer that has a single hard drive.

©2010 Objectif Lune Inc - 652 -

Trigger: Document location:

%!PS-Adobe
<CR><LF>
(PAY) run 3 PAY
<CR><LF>

In this example, the document named PAY is loaded from the printer’s hard drive to RAM. The trigger executes
version 3 of the PAY document which is stored in RAM.

<CRTL-D>
%!PS-Adobe
<CR><LF>
(Accounting\PAY)
run 3 PAY
<CR><LF>

Accounting folder of a printer with a single hard drive. This example uses a relative path (a back slash does not
precede Accounting). Whether you use an absolute or relative path depends on your printer configuration. For
example, a printer may not have access to the root folder of its disk when it is running in PostScript mode, and
would thus require a relative path.

<CRTL-D>%!PS-
Adobe
<CR><LF>
(%admin%PAY)
run 3 PAY
<CR><LF>

Hard drive named “admin” of a printer. Printer may or may not have more than one hard drive.

<CRTL-D>%!PS-
Adobe
<CR><LF>
3 PAY
<CR><LF>

Random Access Memory (RAM) of a printer.

<CRTL-D>%!PS-
Adobe
<CR><LF>
(%flash%PAY)
run 3 PAY
<CR><LF>

Flashmemory of a printer.

Adjust Printer Settings

There are five printer settings you can set from PlanetPress Design: Form cache, Manual feed timeout, Wait timeout, Print
PostScript error, and Do Sys/Start.

To adjust printer settings:

1. Choose Tools |Managers | Printer Utilities.
2. In the Select information to request list, select Set printer’s advanced options.
3. In the Select printers list, select the printer(s) for which you want to adjust the options.
4. In the Advanced options area, adjust the options you want to set for the selected printer(s).
Max form items: Set the size, in bytes, of the largest single EPS, PDF, or bitmapped image that the form cache can
contain. This option applies to all documents that execute on the printer. You use the size of the largest andmost
frequently used image in your document to determine an appropriate value for this option.
Max form cache: Set the size, in bytes, of the PostScript printer form cache. This sets the cache size for all doc-
uments that execute on the printer. You base the setting for this option on the number of images in your documents,
their sizes, and how frequently each image repeats in a document.
Manual feed timeout: Enter the maximum amount of time, in seconds, you want the printer to wait for paper from
a manual feed before terminating the current job.
Wait timeout: Enter the maximum amount of time, in seconds, you want the printer to wait for input before ter-
minating the current job.
Do Sys/Start: Select to have the printer execute its Sys/Start file at boot time.
Print PostScript error: If the printer encounters a PostScript error during execution of a job, it terminates the job.
Select this option to have the printer print an error page that reports the offending PostScript command and the status
of the print stack. This can be useful in debugging a document.

5. Click OK.

©2010 Objectif Lune Inc - 653 -

Form Cache

What is the form cache?What options can I adjust with respect to the form cache?

The form cache is an amount of RAM set aside to hold images that the document references during execution. The cache
improves performance by providing faster access to images that the document uses more than once.

The size of the cache and the order in which the document executes the images determine the contents of the cache at any
given point in time. As the cache fills, the printer may have to remove images to make room for the most recent image. When
it must remove an image, the printer removes the least recently referenced one.

In PlanetPress Design, you can set both the size of the printer form cache and the maximum size of an individual cache item.
You can set these options for all documents that execute on the printer.

When you set the cache options, you should know that the images in the cache have already undergone part of the ras-
terization process and that this may have increased their size, sometimes quite substantially. Since this difference in size
depends on the individual image the best approach for determining appropriate values for the cache options is empirical: if doc-
ument execution is slow, adjust the value and see if performance improves.

PlanetPress Design Printer Status Page

The PlanetPress Design printer status page contains the following information about the printer.

l The serial number and the full version number of the copy of PlanetPress Designmaking the request
l Printer information
l Information on the current job
l Information on the installed devices
l Memory size information
l Input and output tray information
l Paper handling and finishing information
l System settings

Remove Background Color

In the Color Picker, a new option called Remove background color is available with the CMYK color model.

The main purpose of this feature is to reduce the amount of colored ink used by the printer.

Bear in mind that this option will modify the colors as they come out at the printer. Also note that colors on the printed page
may differ depending on various factors, such as the color itself, the printer and the paper.

©2010 Objectif Lune Inc - 654 -

A. The new under color removal feature; B. The amount of ink the printer will use to print the selected color; C. The selected
color

In the case of the red selected in the previous illustration, using the Remove background color feature saves a considerable
amount of cyan, magenta and yellow ink, as shown below.

A. The Remove background color feature selected, colored ink is replaced by black ink when possible; B. The amount of cyan,
magenta and yellow ink used to print the selected color is now 50% less and the amount of black ink is now 50%

Named Colors

To display the Color Picker:

©2010 Objectif Lune Inc - 655 -

l In the properties dialog box of an object, click .

To select a color using the color box:

1. In the color spectrum box, click on a point, or click and drag a point to a new color.
2. Release when the pointer is over the color you want.

To select a color from the palette:

l Click in the color pot that contains the color you require.

To select a color using a CMYK or RGB settings:

1. Choose the color model you want to use in the drop-down list.
2. Click and drag the sliders for each one of the basic colors.

To select a grayscale value:

1. Choose the GRAY color model.
2. Click and drag the slider to the new value.

To select a color that appears anywhere on the screen:

1. In the Color Picker, click .
2. Position the crosshair over the color you want to select and click.

To create a custom palette:

You create a custom palette whenever youmake any change to the colors displayed by default in the color palette.

1. If necessary, change the current color to one you want to add to the custom palette.
2. Click in the current color and drag it to one of the color pots. The color pot may or may not be empty. A color wheel ()

indicates an empty color pot.
3. Enter the name of the color and click OK.
4. Repeat step 1 through step 3 for each color you want to add to your custom palette.

To reset the color palette to its default colors:

1. Right-click in any of the color pots in the palette.
2. Click Reset Custom Colors to Defaults.

Create a Graybar Report

You use the Graybar Wizard to:

l Enter a name for the graybar report document.
l Associate a data file with the document.
l Select the PPD youwant the document to use.
l Define the properties of the graybar page. These properties are the page format, page orientation, duplexing, and the
height, color, and border of each bar in the band.

In PlanetPress Design, a graybar report document contains at most one graybar page. It can contain as many other pages as
you need. You can create the graybar page using the Graybar Wizard, and any other pages you need by adding pages to the
document once you exit the Graybar Wizard.

You use the Graybar Wizard once, and only once, to set up the graybar document. Once you exit the Graybar Wizard, you can
design the rest of the graybar report document using any of the features available in PlanetPress Design. Note that the

©2010 Objectif Lune Inc - 656 -

graybar page you created using the Graybar Wizard contains a set of box objects, where each box object is a bar on the gray-
bar page. You can edit the properties of, or delete, any of these box objects. If you want to change any of the bar and/or page
properties you set in the Graybar Wizard, youmust start a new document and begin a new session with the Graybar Wizard.

To create a graybar report document:

1. From the PlanetPress Design Button, choose New.
2. Choose Tools | Application |Graybar Wizard.
3. In the Graybar Wizard, click Introduction and enter a name for the graybar report document.
Document name: Enter a name for the document. PlanetPress Design uses the name you enter here as the value of
the Name box in the Document properties dialog box for this graybar report document. If you install the document on a
printer, this is the name under which the printer stores the converted document. Note that when you convert a doc-
ument for PlanetPress Suite Workflow Tools, the converted document bears the name of the PP4 file for the document,
not the name you enter here.

4. In the Graybar Wizard, click Select data file and select the sample data file for the document.
Data file: Displays the path of the sample data file associated with the graybar report document. Click the Browse
button to the right of the box to use the Data Selector to select a sample data file. You can also set up the emulation you
want to use with the graybar report in the Data Selector.

5. In the Graybar Wizard, click Page setup, select a PostScript Printer Definition (PPD) file, and define the default
paper format and orientation for the graybar report document.
Printers: Select the PPD for the graybar report document. PlanetPress Design uses the PPD you select here as the
value of the Designed for box in the Document properties dialog box for this graybar report document. The contents of
the PPD subfolder in the PlanetPress program folder determine the contents of this list. The PPD that appears by default
here is the one selected in the Default printer box of the User Options dialog box.
Paper type: Select the default paper format for the graybar page. The format that appears here by default is the one
set in the User Options dialog box. The formats available depend on the PPD you selected in the Printers box. Note that
you should not adjust the paper format for the graybar page once you exit the Graybar Wizard; the bands of the gray-
bar page do not adjust to reflect any change.
If you are printing in 2-upmode, the Default page size box in the Document properties dialog box determines the size
of the paper on which the two pages print; the page size you select here determines the scaling required to fit the two
pages on that paper size.
Paper orientation: Select the orientation for the graybar page (Portrait, Landscape, Rotated portrait, Rotated land-
scape). PlanetPress Design uses the paper orientation you select here as the value of the Paper orientation box in the
Page properties dialog box for the graybar page. Rotated options rotate the paper 180 degrees, and can be useful when
you are working with perforated paper or using an attachment created in another application. You rotate the document
page instead of the attachment. Note that you should not adjust the paper orientation for the graybar page once you
exit the Graybar Wizard; the bands of the graybar page do not adjust to reflect a change.
Duplexing: Select the duplexing options for the document. The duplexing options available depend on the PPD you
selected for the document. Note that duplexing options apply only to normal pages since these are the only pages that
can print. If you want to print simplex and duplex in the same document, and your printer supports switching between
simplex and duplex in the same job, you can set the duplexing options on a page-by-page basis using the Duplexing
option in the Page properties dialog box. If your printer does not support switching between simplex and duplex in the
same job, you can simulate the switch by setting the duplexing option here and printing a blank page on the back of
each page that you want to print simplex. If you select Default, no command is issued to the printer regarding duplex-
ing for this document; the document uses the printer setting in effect at execution time. Consult the PlanetPress Talk
lesson related to duplex mode for an example of the latter approach.

6. In the Graybar Wizard, clickMargins and set the top, bottom, right, and left page margins, and the border options
for the graybar page.
Left: Enter the left margin, relative to the left edge of the physical page.
Right: Enter the right margin, relative to the right edge of the physical page.
Top: Enter the topmargin, relative to the top edge of the physical page.

©2010 Objectif Lune Inc - 657 -

Bottom: Enter the bottommargin, relative to the bottom edge of the physical page.
Border: Select to display a border along the margins of the graybar page. Use the Line width box to specify the width
of the line the border uses.
Line width: Enter the width of the line you want to use as the border. Units are typographical points. This option is
available only when you select Border.

7. Click Bar definitions and define each bar that makes up the band that repeats to create the graybar page.
Bar list: Lists all the bars that make up the band, in the order in which they appear in the band. The band can contain a
maximum of ten bars. The default band contains a gray and white bar. The height of a band is the sum of the heights of
all bars. PlanetPress Design creates the graybar page by repeating this band from top to bottom on the page.

8. In the Graybar Wizard, click Finish.
The graybar page contains a set of box objects, where each box object is a bar on the graybar page.
The graybar page also contains a data selection object that displays a page of the sample data file or a set of data selec-
tion objects that together reference a record set. If the single data page fits neatly on to the graybar page, youmay not
need to adjust these data selection objects. If this is not the case you can adjust or delete any or all of these data selec-
tions, as well as add new data selection objects to the page.

9. Design the rest of the graybar report document using any of the features available in PlanetPress Design.

To add a bar:

1. If necessary, in the Graybar Wizard, click Bar definitions.
2. Click Add Bar.
3. In the Bar list, select the newly added bar, and adjust the properties for that bar.

Bar Properties
Height: Displays the height of the bar currently selected in the Bar list.
Color button: Click to select the color for the bar using the Color Picker.
Color box: View the current color for the bar.
Line: Select to display a black border around the bar.
Line width: Enter the width of the line the border uses.

To edit the properties of a bar:

1. In the Bar list, select the bar you want to edit.
2. Edit the height, color, and border properties for that bar.

To delete a bar:

1. In the Bar list, select the bar you want to delete.
2. Click Remove Bar.

The Hex Viewer

The Hex Viewer is a tool for viewing the characters in the sample data file as hexadecimal values. ASCII characters appear on
the right side of the Hex Viewer, and the corresponding hexadecimal values on the left side. This is useful when you are select-
ing an emulation or fine-tuning the size and structure of the data page.

The Hex Viewer is also a standalone tool and can also be used outside of PlanetPress Design. It is located in the fol-
lowing folder:
C:\Program Files\Common Files\Objectif Lune\PlanetPress Suite 7\Tools

Working with the Hex Viewer

To open the Hex Viewer from PlanetPress Design:

©2010 Objectif Lune Inc - 658 -

l From the Tools tab in the PlanetPress Suite Ribbon, click onHex Viewer. The default active data file is automatically
opened.

l In the Data Selector, click the Hex Viewer button. Note that this button is not available if you select a database emu-
lation.

To exit the Hex Viewer:

l In the Hex Viewer, choose File | Exit.
l Click the X button at the top-right corner of the Hex Viewer.
l Press ALT+F4 on your keyboard.

To open a different file in the Hex Viewer:

l In the Hex Viewer, choose File | Open then navigate to the file you want to examine and click Open.

To save a file from the Hex Viewer:

l Choose File | Save.

To save the sample data file as a binary or hexadecimal text file:

1. Choose File | Save As and choose one of the following:
l Bin file: Choose to save the sample data file as a binary file.
l Hex file: Choose to save the sample data file as a text file, where each two-character text string is the hex-
adecimal code for a byte of data.

2. Use the Save As dialog box that appears to save the file.

To adjust the view:

l Choose View and set the option:
l Line size: Choose the number of bytes of input data you want to display on each line. You can choose 16, 32,
or 64 bytes per line.

l Column width: Choose the number of bytes of input data you want to represent in each column of the hex-
adecimal display area. You can choose 1, 2, or 4 bytes per column.

l Caret style: Choose a style for the pointer. You can choose among an empty rectangle (Full block), a left line
(Left line), and an underscore (Bottom line). You can also choose Auto to switch from one style to another.
When you switch from one style to another, the Hex Viewer also switches between insert and overwrite mode.

l Offset display: Choose the representation for the byte offset numbers that appear on the left of the Hex
Viewer. You can choose among Hexadecimal, Decimal, Octal, or None if you want to hide the byte offset
numbers.

l Translation: Choose the character set you want to use to represent the input data in the Hex Viewer. You can
choose among ANSI, ASCII 7 bit, DOS 8 bit, Mac, and IBM EBCDIC CP 38.

l Grid: Choose to toggle the Hex Viewer grid on or off.
l Show markers: Choose to show or hide all markers. Markers appear in a column between the hexadecimal
line number and the first hexadecimal value of the line. You create markers to make it easy to jump to specific
lines in the file.

l Swap nibbles: Choose to swap the nibbles in the hexadecimal representation of each byte of input data.
l Mask whitespaces: Choose to turn the marking of carriage returns in the input data on or off. When it is on,
an empty rectangle appears around each carriage return in the input data.

To navigate through the input data:

l Scroll through the file using the scrollbar on the right.

To get a hard copy of the Hex Viewer presentation of the file:

©2010 Objectif Lune Inc - 659 -

1. Be certain that you want to print the complete sample data file as it appears in the Hex Viewer. If it is quite large and
you only want the first few pages, youmay want to cancel the print job after those pages print. Alternatively, youmight
copy and paste the portion of interest into a separate Hex Viewer file and get a hard copy of that file.

2. Choose File | Print Layout and choose the representation you want to use for the values that represent the input
data.

l Hex: Choose to print the values that represent the input data as hexadecimal values.
l Decimal: Choose to print the values that represent the input data as decimal values.
l Octal: Choose to print the values that represent the input data as octal values.

3. Choose File | Print Setup.
4. Choose File | Print.

To determine the hexadecimal value of a byte of input data or vice-versa:

l Click on a value.
l If you clicked on a hexadecimal value, a rectangle appears around the corresponding byte of input data.
l If you clicked on a byte of input data, a rectangle appears around the first nibble of the corresponding hex-
adecimal value.

To search for a hexadecimal value or text string:

1. Position the pointer in the Hex Viewer at the point at which you want to start the search.
2. Choose Edit | Find.
3. In the Find Data dialog box, enter the hexadecimal value or text string. If you are searching for a text string, you can

specify the case sensitivity of the search.
l To enter a hexadecimal value, type the value. You can also precede the value with a dollar sign ($).
l To enter a text string, enter the letter t or T, followed by the text string. A lower case t specifies a case-sensitive
search. An upper case T specifies a case-insensitive search.

4. Click OK.
5. If necessary, choose Edit | FindNext to find the next occurrence of the search term.

To edit the sample data file:

l Type data directly in the Hex Viewer. Click in the input data to enter byte values and in the hexadecimal values to enter
nibble values. When you enter nibble values, each byte of data requires two keystrokes.

To copy and paste a portion of the input data into a separate Hex Viewer file:

1. Select the portion of the input data you want to paste into a separate file.
2. Choose Edit | Copy.
3. Choose Edit | New to display an empty file in the Hex Viewer.
4. Choose Edit | Paste.

To undo commands:

1. Choose Edit |Undo.
2. Repeat step 1 as many times as necessary. The Hex Viewer supports multiple Undo commands.

Date and Time Format

What format should I use to enter dates and times?

To simplify things and to prevent errors, date and time formats have been standardized.

l Date are entered and displayed as yyyy/MM/dd (2007/06/13, for example).
l Times are entered and displayed using the 24 hour format as HH:mm:ss (3:38:54 PM, for example, is entered and

©2010 Objectif Lune Inc - 660 -

displayed as 15:38:54).

©2010 Objectif Lune Inc - 661 -

©2010 Objectif Lune Inc - 662 -

Document Output and Preview
This chapter will explain the different methods of outputting a document. It covers previewing and soft-proofing your doc-
ument before output, as well as printing to a printer and installing documents on a printer, from PlanetPress Design. It also cov-
ers sending a document to PlanetPress Workflow for further processing in a workflow.

It does not describe platform-specific procedures for inserting triggers, or how to create or run a PlanetPress Suite process.
Consult the Trigger and Data Capture Guide and the PlanetPress Workflow Tools User Guide, respectively, for
information on these topics.

About Previewing and Printing
PlanetPress Design is a WYSIWYG (WhatYou See Is WhatYouGet) interface, whichmeans the result in print should be very
similar, if not identical, to what you see on the screen. You can also preview your documents using the Print Preview function
(see "Preview a Document On Screen" (page 663)), print a soft proof (see "Generate a Soft Proof" (page 670)) or a print whole
job using PlanetPress Design.

Once your design is stable, you can also send your document to the PlanetPress Suite Workflow Tools in order for it to be used
in an automated workflow (see the PlanetPress Workflow Tools User Guide).

Preview a Document On Screen

It is common to preview a document often during the creation process and it is strongly recommended you preview the final
document before you install it.

When you preview a document, you preview one output type at a time. If your document contains more than one output type,
youmust preview each separately. You can preview the document with all data pages, or a range of the data pages in the sam-
ple data file for the document.

An on-screen preview displays the generated document as a PDF file on-screen. The Preview command gives you two options
to generate PDFs: you can use the PlanetPress Design internal interpreter or you can use your system’s default PostScript
interpreter. Note that if you choose the second option, youmust make sure that the system’s default PostScript interpreter is
correctly configured (if you are using Adobe Distiller, for example, the Output options, such as the Ask for PDF file destination,
must not be selected).

If you are previewing a document that uses dynamic images that reference external images, remember that to see the ref-
erenced images in the preview, those images must be accessible from the environment in which the preview executes. Thus
the PlanetPress Talk expression you entered in the Image box for each of the dynamic images that reference external images,
must resolve to the correct pathnames for the external images in the preview environment.

The minimum time required to run a document for a preview is approximately 10 times longer onWindows 2000 than onWin-
dows XP/2003.

Note that if you look at a document that uses one of the 35 standard PostScript fonts and that includes the Euro glyph, you are
likely to find out that although this glyph is displayed at design time it does not show up in previews. If this is the case, faxes
and archives generated using PlanetPress Suite Workflow Tools will also lack this glyph. Try printing to see if the printer is able
to recognize and print this glyph.

To perform an on-screen preview:

Document Output and Preview

©2010 Objectif Lune Inc - 663 -

http://www.objectiflune.com/documentation/en/planetpress-trigger-and-data-capture/
http://www.objectiflune.com/documentation/en/planetpress-trigger-and-data-capture/
http://www.objectiflune.com/documentation/en/planetpress-trigger-and-data-capture/
http://www.objectiflune.com/documentation/en/planetpress-trigger-and-data-capture/
http://www.objectiflune.com/documentation/en/planetpress-trigger-and-data-capture/
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/Documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/Documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/Documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/Documentation/en/planetpress-workflow-tool-user-guide/
http://www.objectiflune.com/Documentation/en/planetpress-workflow-tool-user-guide/

1. From the PlanetPress Design Button, choose Preview.

A. PlanetPress Image Options button
2. Select the data pages you want to use for the preview in theData page range group.
All data pages: Select to use all data pages (or in the case of a database emulation, all record sets) in the sample
data file. It is important to understand that this refers to data pages and not document pages. The presence or absence
of an individual document page in the preview depends on the output type (printer, PlanetPress Image, PlanetPress
Fax) and the condition, if any, set on the page.
Use data page range: Select to specify the range of data pages in the sample data file that you want to use for this
preview. Use the From and To spin boxes to enter the range. It is important to understand that this refers to data pages
and not document pages. The presence or absence of an individual document page in the preview depends on the out-
put type and the condition, if any, set on the page.
From: Enter the page number of the first data page in the range of data pages you want to use for the preview. You
can type the page number or use the spin buttons to adjust the value. Remember that if you start document execution
at a given data page, any effects the preceding data pages may have had on execution up to that point, are not avail-
able. This option is available only when you select Use data page range.
To: Enter the page number of the last data page in the range of data pages you want to use for the preview. You can
type the page number or use the spin buttons to adjust the value. This option is available only when you select Use data
page range.

3. Select the type of output you want to preview in the Simulation group.
Printer Queue: Select to preview the result of executing the document on a printer.
PlanetPress Fax: Select to preview the result of executing the document in PlanetPress Fax.
PlanetPress Image: Select to preview the result of executing the document in PlanetPress Image.

4. If you selected PlanetPress Image, click the PDF Options button to display the PDF Options dialog and set the display
options for the PDF files.

Document Output and Preview

©2010 Objectif Lune Inc - 664 -

Zoom factor: Select the zoom factor at which you want Adobe Acrobat or Adobe Reader to open the PDF file gen-
erated by the preview. Select Fit in window to adjust the zoom factor such that each page of the PDF occupies a full
screen, or select a specific zoom factor. This is the same option available in the PDF options for the PlanetPress Image
output task in PlanetPress Suite Workflow Tools. Consult the PlanetPress Suite Workflow Tools User Guide for more
complete information.
View: Select the information you want Adobe Acrobat or Adobe Reader to display along with the pages of the PDF file
generated by the preview. Select Page only to leave the tabs area to the left of the PDF pages empty. Select Book-
marks and page to display the contents of the Bookmarks tab alongside the PDF pages. Select Pages tab and page to
display the content of the Pages tab alongside the PDF pages. Select Full screen to hide all screen contents except the
PDF page, and expand the PDF page to the maximum size it can occupy on screen. You can press ESCAPE to restore
the screen contents. Note that Full screen overrides the setting in the Zoom factor box. This is the same option avail-
able in the PDF options for the PlanetPress Image output task in PlanetPress Suite Workflow Tools. Consult the Plan-
etPress Workflow Tools User Guide for more complete information.

5. Select your preferred runmode in the Run mode group. Note that this option is important if your document contains
dynamic images that reference external images.
Printer centric: Select to have PlanetPress Design execute the preview as if the document were run on the printer
itself. Note that for screen previews, documents are always physically run on the host on which you are running Plan-
etPress Design.
Optimized PostScript Stream: Select to have PlanetPress Design execute the preview using the Optimized Post-
Script Stream option. Note that the external images included in the documentmust reside in a folder on the host on
which PlanetPress Design is running. Obviously the PlanetPress Talk expression you entered in the Image box for each
of the dynamic images that reference external images, must resolve to the correct pathnames for the external images
in the preview environment.

6. Select the PostScript interpreter you want to use in the PostScript interpreter group.
Internal interpreter: Select to use the PostScript interpreter built in to PlanetPress Design.
System default: Select to use the PostScript interpreter your system uses as its default. Note that this option will use
whatever application is associated with the .ps extension to create the preview file. If this application is not able to per-
form postscript conversions and to generate PDF files, the preview process will fail. Refer to your Windows doc-
umentation for information on how to associate filename extensions and applications.
To verify the program associated with a PS file:

l OpenWindows Explorer.
l Choose Tools | Folder Options.
l Click theFile Types tab.
l Scroll to select the PS file type and the associated program. In this example, the associated program is Adobe®
Distiller®. This program is appropriate for converting PS files to PDF files. Programs such as Microsoft®Word
and Notepad cannot convert PS files to PDF files.

7. If your document uses database emulation, set the refresh option.

Document Output and Preview

©2010 Objectif Lune Inc - 665 -

Refresh data from database: Select to have PlanetPress Design refresh the sample data file by repeating the SQL
query before creating the preview. Clear to have PlanetPress Design use the sample data file in its current state. This
option is available only when your document uses database emulation.
Refresh Metadata: Select to have PlanetPress Design refresh the metadata file before creating the preview. Clear
to have PlanetPress Design use the metadata file in the current state, without regenerating it.

8. Click OK.
PlanetPress Design closes the Preview dialog box, performs the preview, and displays the resulting PDF file.

The Objectif Lune watermark appears on all on-screen previews, unless an activated installation of PlanetPress Pro-
duction can be found on the same computer or another computer on the same network subnet.

If you are using color management, recall that color in on-screen previews may notmatch color in printed output. The color
settings of the PDF viewer you use for on-screen previews determine the color in an on-screen preview of a document, and
thus whether that color matches that in the printed output.

Previews of Documents that Use ASCII Emulation

What should I know about previews of documents that use ASCII emulation?

If your document uses the ASCII emulation, the appearance of any hard copy and on-screen previews you performmay differ
from the appearance of the document in the Page area of the PlanetPress Design Program window. The following describes
why and when this discrepancy can occur.

Discrepancies can occur when the PostScript interpreter that performs the preview and the internal code that displays the doc-
ument in the Page area, do not have the same Read in binary mode setting. Thus discrepancies can occur in any of the fol-
lowing three cases.

If you perform a: And you: A discrepancy occurs because:

Hard copy preview
on a printer run-
ning in binary
mode

Clear Optimized
PostScript
Stream in the
Print dialog box.
Clear Read in
binary mode.

PlanetPress Design displays the document in the Page area with data in which it has per-
formed end of line character replacements, while the printer prints the document with
data that has not had any end of line character replacements.

Hard copy preview
on a printer that
does not run in
binary mode

Clear Optimized
PostScript
Stream in the
Print dialog box.
Select Read in
binary mode.

PlanetPress Design displays the document in the Page area with data that has not had
any end of line character replacements, while the printer prints the document with data
that has end of line character replacements.

On-screen preview

Clear Optimized
PostScript
Stream in the
Print dialog box.
Clear Read in
binary mode.

PlanetPress Design displays the document in the Page area with data that has not had
any end of line character replacements, while the PostScript interpreter performs the pre-
view with data that has end of line character replacements. These PostScript interpreters
always run in binary mode.

The PlanetPress Suite Access Manager is available in both the PlanetPress and PlanetPress Suite Workflow Tools applications
to facilitate the transfer of files among computer systems connected over a network. An exclusive service component called
PlanetPress Suite Messenger allows PlanetPress Suite components to work together across the network and identifies work-

Document Output and Preview

©2010 Objectif Lune Inc - 666 -

stations on which PlanetPress Suite products are installed (note that PlanetPress Suite Messenger 6 only works with version 6
components). In this way, users can share image files, documents, and jobs.

Use the Access Manager to assign permission for other computers to access your workstation.

Preview a Capture-Ready document

PlanetPress Capture-Ready documents can be previewed using the regular Preview functions of PlanetPress Design. When
you preview and print a Capture-Ready document, it contains a special reserved pattern for this purpose.

When signing a Capture-Ready document and docking the pen, the PGC file form the pen is placed in a special location in the
PlanetPress Design folder. To view the result of signing the document, simply use the Preview function again and the ink data
will be present on the preview.

Some important notes on previewing Capture-ready documents:

l Only one pattern is available and will be used. Even when printingmultiple pages, the same pattern will be used on all
the pages.

l When doing the second preview with the pen docked, only the first page will contain ink. In a multi-page preview, if you
write onmore than one page, all of the ink (of every page) will appear on the first page of the preview.

l Capture patterns have to be printed in full-quality at a minimum of 600DPI on a Laser printer. Ink savers, draft versions
and fast printing features may cause patterns not to print correctly and not to be visible by the Anoto Digital Pen.

l When printing, disable any scaling or resizing feature of your PDF software.
l Because of the resolution change (96dpi on screen, 600dpi on the printer) and the way in which patterns are displayed,
it is expected to see a different in size between the field as displayed from a PDF on screen and the printed version on
paper. In order to test your design, make sure to actually print a preview to see the final result.

l Further considerations are present in the PlanetPress Workflow Tools User Guide.

For more information on PlanetPress Capture, see the following topics:

l "Capture Field Object" (page 166)
l PlanetPress Capture (PlanetPress Workflow User Guide)

Print a Document Preview

It is common to preview a document often during the creation process and it is strongly recommended you preview the final
document before you install it.

A hard copy preview prints the output the document yields when it executes on a printer. When you perform a hard copy pre-
view, PlanetPress converts the document, adds a trigger to the PostScript code, and sends the document to the printer along
with the contents of the sample data file. In a hard copy preview, you cannot preview PlanetPress Image or PlanetPress Fax
output. You can preview the document on any printer available on your local system. The printer you use for the preview and
the printer on which the document is destined to execute must both use the same, or a compatible, PPD file for the preview to
be reliable. In a hard copy preview, you can also save the output destined for the printer to a file instead of sending it to the
printer.

If you are previewing a document that uses dynamic images that reference external images, remember that to see the ref-
erenced images in the preview, those images must be accessible from the environment in which the preview executes. Thus
the PlanetPress Talk expression you entered in the Image box for each of the dynamic images that reference external images,
must resolve to the correct pathnames for the external images in the preview environment.

To print a document preview:

Document Output and Preview

©2010 Objectif Lune Inc - 667 -

http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#PPCapture-General-Considerations.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#PPCapture-General-Considerations.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#PPCapture-General-Considerations.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#PPCapture-General-Considerations.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#PPCapture-General-Considerations.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#AboutPlanetPressCapture.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#AboutPlanetPressCapture.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#AboutPlanetPressCapture.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#AboutPlanetPressCapture.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#AboutPlanetPressCapture.html
http://help.objectiflune.com/en/planetpress-workflow-user-guide/Default_CSH.html#AboutPlanetPressCapture.html

1. From the PlanetPress Design Button, choose Print.
2. In the Select printers list, select the printer or printers on which you want to perform the preview.
3. If you also want to save a copy of the converted document to a file, selectPrint to file.
4. Select the data pages you want to use for the preview.
All data pages: Select to use all data pages in the sample data file. It is important to understand that this refers to
data pages and not document pages. The presence or absence of an individual document page in the preview
depends on the output type of the page and the condition, if any, set on the page.
Use data page range: Select to perform the preview using a range of the data pages in the sample data file. Use the
From and To spin boxes to enter the range. It is important to understand that this refers to data pages and not doc-
ument pages.
From: Enter the page number of the first data page in the range of data pages you want to use for the preview. You
can type the page number or use the spin buttons to adjust the value. This option is available only when you select Use
data page range.
To: Enter the page number of the last data page in the range of data pages you want to use for the preview. You can
type the page number or use the spin buttons to adjust the value. This option is available only when you select Use data
page range.

5. Specify whether you want to execute the preview host-based or printer-based. This option is important if your doc-
ument contains dynamic images that reference external images.
Optimized PostScript Stream: Select to have PlanetPress Design execute the preview host-based. Clear to have
PlanetPress Design execute the preview printer-based. If you clear Optimized PostScript Stream, the external images
must reside on the printer on which you are printing the preview. If you select Optimized PostScript Stream, the exter-
nal images must reside either on the host on which PlanetPress Design is running, or on the printer on which you are
executing the preview. Obviously the PlanetPress Talk expression you entered in the Image box for each of the
dynamic images that reference external images, must resolve to the correct pathnames for the external images in the
preview environment. Executing a document host-based decreases the time the printer spends executing the doc-
ument and can be useful if your concern is minimizing the time the document requires to execute on the printer.

6. In theNumber of copies box, enter the number of copies of the preview youwant to print, or use the spin buttons to
adjust the value. This box is available only if you have at least one printer selected in the Select printers list.

7. If your document uses database emulation, set the refresh option.
Refresh data from database: Select to have PlanetPress Design refresh the sample data file by repeating the SQL
query before creating the soft proof preview. Clear to have PlanetPress Design use the sample data file in its current
state. This option is available only when your document uses database emulation.
Refresh Metadata: Select to have PlanetPress Design refresh the metadata file before creating the soft proof pre-
view. Clear to have PlanetPress Design use the metadata file in the current state, without regenerating it.

8. Click OK to exit the Print dialog box and execute the preview.
PlanetPress Design converts the document and adds a trigger to the PostScript code. It then sends the document to
each printer you selected in the Select printers list, along with the pages (or record sets) of the sample data file you
specified for the preview. The preview prints on each of those printers. If you selected a Host based execution, Plan-
etPress Design performs a partial execution of the document before sending it to each of the printers.
If you selected Print to File, PlanetPress Design prompts you to specify the name of the file to which you want to
save the converted document. Once you enter a file name and click Save, PlanetPress Design saves a copy of the con-
verted document (a PostScript file).

Print Using a Windows Driver

PlanetPress Design generates the job file and hands it over with the available print options to the Windows print driver, which
takes the relay for the actual printing part.

When printing using a Windows Driver, PDF image resources will lose their transparency, because they are

Document Output and Preview

©2010 Objectif Lune Inc - 668 -

rasterized before being printed. If you place a PDF with transparency on top of another object, the object in the back
may be partially or completely hidden in your output.

To print using a Windows driver:

1. From the PlanetPress Design Button, choose Print Using a Windows Driver.

Windows displays the Print dialog box. Those options which are greyed out are not available when printing from Plan-
etPress Design. Any options, such as the paper size or media type, youmay set by clicking the Preferences button
are managed by the Windows print driver. Although PlanetPress Design provides available to the Windows print driver,
it cannot ensure that these options will be correctly applied.

2. From the Select Printer box, select the printer to which you want to print.
3. To print to a file, select the Print to file option.
4. Select the data pages you want to use for the printout in the Page range group. Bear in mind that you are selecting

data pages, so the number of actual pages being printed will vary based on such things as the number of data pages
selected, the amount of data on each page, on the number of pages in the document, as well as page conditions.
All: Select to use all data pages (or in the case of a database emulation, all record sets) in the sample data file. It is
important to understand that this refers to data pages and not document pages. The presence or absence of an individ-
ual document page in the printout depends on the condition, if any, set on the page.
Pages: Select to specify the range of data pages in the sample data file that you want to use for this printout. In the
edit box to the right of the radio button, enter the number of the first data page followed by a hyphen and then by the
number of the last data page in the range of data pages you want to use for the printout.

5. To print multiple copies, enter a value in theNumber of copies edit box or use the spin buttons.
6. Click OK.

The dialog box is closed and the print job is sent to the selected printer

Because of the way in whichWindows Driver Output works, if a partial job has already been sent to the printer and an

Document Output and Preview

©2010 Objectif Lune Inc - 669 -

error occurs that stops the output in PlanetPress Design, the partial job will continue to print. This is because Plan-
etPress has no way to tell Windows to stop its printing and remove the job from its printer queue.

Printing Using a Windows Driver

Can I print using a Windows driver and how does it differ from other printingmethods?

PlanetPress Design lets you print your document and data using any Windows printer driver. Note that this option generates
large print files and that it therefore does not provide the same level of speed and performance as the Optimized PostScript
Stream and Printer Centric methods (the latter being the fastest andmost efficient). See "Print Using a Windows Driver" (page
668).

Generate a Soft Proof

Soft proofs are document previews that show no watermarks. Each soft proof has a maximum of 10 pages, so if your Plan-
etPress Design document has only 1 page, the soft proof can show as many as 10 records, but if your document has 10 pages,
the soft proof can show only a single record.

As with document previews, soft proofs must be generated one output type at a time. If your document contains more than
one output type, youmust preview each separately.

Note that if you look at a document that uses one of the 35 standard PostScript fonts and that includes the Euro glyph, you are
likely to find out that although this glyph is displayed at design time it does not show up in previews. If this is the case, faxes
and archives generated using PlanetPress Suite Workflow Tools will also lack this glyph. Try printing to see if the printer is able
to recognize and print this glyph.

To generate a soft proof:

1. From the PlanetPress Design Button, choose Soft Proof.

2. Select the data pages you want to use for the preview in theData page range group.
All data pages: Select to use all data pages (or in the case of a database emulation, all record sets) in the sample
data file. It is important to understand that this refers to data pages and not document pages. The presence or absence

Document Output and Preview

©2010 Objectif Lune Inc - 670 -

of an individual document page in the preview depends on the output type (printer, PlanetPress Image, PlanetPress
Fax) and the condition, if any, set on the page.
Use data page range: Select to specify the range of data pages in the sample data file that you want to use for this
preview. Use the From and To spin boxes to enter the range. It is important to understand that this refers to data pages
and not document pages. The presence or absence of an individual document page in the preview depends on the out-
put type and the condition, if any, set on the page.
From: Enter the page number of the first data page in the range of data pages you want to use for the preview. You
can type the page number or use the spin buttons to adjust the value. Remember that if you start document execution
at a given data page, any effects the preceding data pages may have had on execution up to that point, are not avail-
able. This option is available only when you select Use data page range.
To: Enter the page number of the last data page in the range of data pages you want to use for the preview. You can
type the page number or use the spin buttons to adjust the value. This option is available only when you select Use data
page range.

3. Select the type of output you want to preview in the Simulation group.
Printer Queue: Select to preview the result of executing the document on a printer.
PlanetPress Fax: Select to preview the result of executing the document in PlanetPress Fax.
PlanetPress Image: Select to preview the result of executing the document in PlanetPress Image.

4. If you selected PlanetPress Image, click the PDF Options button to display the PDF Options dialog and set the display
options for the PDF files.

Zoom factor: Select the zoom factor at which you want Adobe Acrobat or Adobe Reader to open the PDF file gen-
erated by the preview. Select Fit in window to adjust the zoom factor such that each page of the PDF occupies a full
screen, or select a specific zoom factor. This is the same option available in the PDF options for the PlanetPress Image
output task in PlanetPress Suite Workflow Tools. Consult the PlanetPress SuiteWorkflow Tools User Guide for more
complete information.
View: Select the information you want Adobe Acrobat or Adobe Reader to display along with the pages of the PDF file
generated by the preview. Select Page only to leave the tabs area to the left of the PDF pages empty. Select Book-
marks and page to display the contents of the Bookmarks tab alongside the PDF pages. Select Pages tab and page to
display the content of the Pages tab alongside the PDF pages. Select Full screen to hide all screen contents except the
PDF page, and expand the PDF page to the maximum size it can occupy on screen. You can press ESCAPE to restore
the screen contents. Note that Full screen overrides the setting in the Zoom factor box. This is the same option avail-
able in the PDF options for the PlanetPress Image output task in PlanetPress Suite Workflow Tools. Consult the Plan-
etPress SuiteWorkflow Tools User Guide for more complete information.

5. Select your output options in the Soft Proof Options group. Note that youmay select all three available outputs for a
single soft proof.
Open in PDF viewer: Select to have PlanetPress Design display the generated soft proof using your PDF viewer.
Save to file: Select to have PlanetPress Design save the generated soft proof. You can use the box to the right to spec-
ify a name and location. If no name is provided, the document’s name is used. If no location is provided, a dialog box
will be generated when the soft proof is actually generated.

Document Output and Preview

©2010 Objectif Lune Inc - 671 -

Send to Email recipient: Select to have PlanetPress Design attach the generated soft proof to an Email message
created within your default Email program.

6. If your document uses database emulation, set the refresh option.
Refresh data from database: Select to have PlanetPress Design refresh the sample data file by repeating the SQL
query before creating the preview. Clear to have PlanetPress Design use the sample data file in its current state. This
option is available only when your document uses database emulation.
Refresh Metadata: Select to have PlanetPress Design refresh the metadata file before creating the preview. Clear
to have PlanetPress Design use the metadata file in the current state, without regenerating it.

7. Click OK.
PlanetPress Design closes the Soft Proof dialog box and generates the soft proof. If you are using color management,
recall that color in on-screen previews may notmatch color in printed output. The color settings of the PDF viewer you
use for on-screen previews determine the color in an on-screen preview of a document, and thus whether that color
matches that in the printed output.

Convert a Document and Save It to a File

Compiling a document and saving it to a file can also be useful for debugging purposes or for acquainting yourself with the con-
tents of a converted document. Before you convert a document, youmay want to optimize it to create a smaller andmore effi-
cient converted document.

To convert a document with the PostScript code to install it on a printer:

1. Verify the Compilation options and Resource options settings in the Document properties dialog box are the ones you
want for this document.

2. From the PlanetPress Design Button, choose Send to | Printer.
3. Select the printer location you want the converted document to reference.
Printer storage: Select the printer location. When PlanetPress Design converts the document, it includes the Post-
Script code to install the document in the selected location.

4. If you want to include the PostScript code for producing a confirmation page in the converted document, in the Con-
firmation page box, select Embedded confirmation page (less accurate). If you want to save this PostScript
code to a separate file, selectConfirmation page.
Embedded confirmation page is useful if the printer on which you eventually want to install the document is not con-
nected to the computer running PlanetPress Design.

5. Click Save Printer File.
6. Enter the name of the file in which you want to save the converted document and click Save.

If you selected Confirmation page in the Confirmation page box, PlanetPress Design prompts you again, this time to
specify the name of the file to which you want to save the PostScript code for producing the confirmation page.

7. In the Send to Printers dialog box, in the Select printers list, clear any selected printers. If any printers are
selected when you exit the Send to Printers dialog box, PlanetPress Design installs the document on each of those
printers.

8. Click OK.

To convert a document without the PostScript code to install it on a printer:

1. Verify the Compilation options and Resource options settings in the Document properties dialog box are the ones you
want for this document.

2. From the PlanetPress Design Button, choose Send to |Host.
3. Click Save Host File.
4. Enter the name of the file in which you want to save the converted document and click Save.

To send a document to a UNIX or Linux print spooler system:

Document Output and Preview

©2010 Objectif Lune Inc - 672 -

1. Verify the Compilation options and Resource options settings in the Document properties dialog box are the ones you
want for this document.

2. From the PlanetPress Design Button, choose Send to |Host.
3. In the Host Type box, select Codehost BrightQ.
4. Set options for document output.
Host name or IP address: Enter the host name or the IP address of the UNIX or Linux workstation. PlanetPress
Design transfers the document to the UNIX or Linux workstation and print spooler system using TCP/IP. Be sure to
specify the accompanying password.
Port: The default port number is 5662. The port number may be modified under the specification of the network admin-
istrator. PlanetPress Designmust connect to the specified TCP port and send a document conforming to the following
specifications.
Password: Enter the password for the workstation.
Document name: Enter the file name for the converted document. This must be a file name, not a path. The name
must be no longer than 10 characters.
Printer storage: Select the printer location of the installed document. PlanetPress Design sends both the trigger and
compiled document.
Force PostScript mode: Select this option when the destination printer is used for printing jobs in other formats
such as PJL, and when PlanetPress is not sending the output to the printer’s hard disk. When this option is selected, Plan-
etPress Design inserts the following command statement

[Esc]%-12345X@PJL ENTER LANGUAGE = POSTSCRIPT
to precede

the document as well as any other command statement.
Save Host File button: When clicked, saves the document as a postscript file in a specified folder.
Send to Host button: When clicked, sends the document from PlanetPress Design to BrightQ.
Sent to Printer button: When clicked, sends the document only to the printer. Once you choose that option the win-
dow remains open.

5. To output the document, click Save Host File, Send to Host, or Send to Printer.
A message appears indicating the document has been sent successfully, otherwise an error message appears. If you
want a printer based document sent through Codehost BrightQ, first send the document to the printer, and then send
the document to Codehost BrightQ.

Install a Document
Once a document is ready to be used, it must be sent to a location where it will be used for merging with a data file and output.
A document can be sent (or installed) in multiple locations.

Before sending your document, verify that the Conversion options and Resource options settings in the Document properties
dialog box are the ones you want for this document.

Install a document on one or more printers

1. From the PlanetPress Design Button, choose Send to | Printer....
2. In the Send to Printers dialog box, set the options for the install.

l Select printers list: Select each of the printers on which you want to install the document. If the printers on
which you want to install the document require either a password, a hard drive path, or both, be sure you have
set these properly in the Document properties dialog box (see Set Up a Document).If two or more of the printers
you select require different passwords and/or hard drive paths, youmust perform separate installs for each,
making the necessary adjustments in the Document properties dialog box before performing each install.

l Printer storage: Select the printer location. When PlanetPress Design converts the document, it includes the
PostScript code to install the document in the selected location. The locations are Hard Drive, Flash and RAM.

Document Output and Preview

©2010 Objectif Lune Inc - 673 -

l Confirmation page: Select the type of confirmation you want to receive when PlanetPress Design performs
the installation. When you select either of these two options, you should be sure that the location where you
want to install the document in fact exists.

l SelectNone to prevent a confirmation page from printing after the install. In this case, nothing confirms
the installation of the document. You can of course subsequently print a listing of all documents installed
on a printer to determine whether or not the document installed.

l SelectConfirmation page, to have each of the selected printers print a confirmation sheet reporting
the success or failure of the installation. PlanetPress Design sends two PostScript jobs to each printer.
The first installs the document, the second verifies the installation and prints a confirmation page.

l Select Embedded confirmation page to send the document installation and the confirmation printout
as a single job instead of two separate postscript job.

3. Click OK to immediately send the document to the printer(s).
You can also click on Save Printer File. PlanetPress Design will instead prompt you for a name of a file to which you
want to save a copy of the converted document. Once you enter a file name and click Save, PlanetPress Design saves
a copy of the converted document. If you also selectedConfirmation page in the Confirmation page box, PlanetPress
Design prompts you again, this time to specify the name of the file to which you want to save the PostScript code for pro-
ducing the confirmation page.

Send the document to one or more local PlanetPress Workflow servers

The PlanetPress Messenger service must be running on both the PlanetPress Design and PlanetPress Workflow com-
puters for this procedure to work.

1. From the PlanetPress Design Button, choose Send to | PlanetPress Suite Workflow.
The Send to PlanetPress Suite Workflow interface appears.

2. The Host Name box displays a list of available PlanetPress Workflow servers. Put a checkmark next to eachHost
Name of the PlanetPress Suite Workflow server(s) you want to send your document to. If a Host Name is grayed out,
it means that your computer has not been given permission to send documents to it (see Control Access to Your Locally
Installed Services).

3. Click OK.

In this dialog, you can also do the following actions:

l Click the Refresh button at the bottom-left to scan the local network for PlanetPress Workflow servers other that the
local machine.

l Click on the Add Host button at the bottom-left to add a new host if it is not detected or if the host resides outside of
the current subnet. Enter the IP address of the server and click Refresh to make it available.

l Put a checkmark in Refresh Metadata to refresh the document's metadata for each of the document's data files before it
is sent to PlanetPress Workflow.

l Put a checkmark in Attach a document preview to include a 10-page PDF preview when sending the document to Plan-
etPress Worfklow.

Depending on the version of PlanetPress Workflow, either a PTK or PTZ file will be sent. Note that the file format is determined
by the version of the PlanetPress Workflow server that the document is being sent to, not the version of the local PlanetPress
Design installation.

l In PlanetPress Suite 7.0 and older, a PTK file is sent. PTK files only include the document itself, they do not include any
peripheral files.

l In PlanetPress Suite 7.1.0 up to 7.2.4, a PTZ file is sent to PlanetPress Workflow. The PTZ is a compressed format that
includes the document in PTK format along with its data files, image resources and any metadata file that has been gen-
erated during the creation of the document.

Document Output and Preview

©2010 Objectif Lune Inc - 674 -

l In PlanetPress Suite 7.3.0 and higher, the PTZ also contains a PDF preview of the document's output, multiple data files
with their associatedmetadata and an XML file detailing the emulation used by the document.

You can verify that a given installation succeeded by navigating to the Documents folder of the appropriate PlanetPress Suite
Workflow Tool installation and locating the .ptk file for the document. The .ptk file bears the same name as the PP7 file for
the document. For example, if the name of your document is invoice, the name of the PP7 file is invoice.PP7 and the name
of the .ptk file is invoice.ptk.

Save a PTK or PTZ file to send to a remote PlanetPress Workflow installation

1. From the PlanetPress Design Button, choose Send to | PlanetPress Suite Workflow .
2. In the Send to PlanetPress Suite Workflow Tools dialog, click Save to file... (previously Save PTK File).
3. In the save dialog, a button lets you choose between the PTK and the PTZ format. Enter the name of the file in which

you want to save the document and click Save. The produced PTK or PTZ file can be sent via any method and imported
into PlanetPress Workflow.

Send a document to PlanetPress iWatch or a UNIX or Linux CodeHost BrightQ print
spooler system:

1. From the PlanetPress Design Button, choose Send to | Host.
2. In the Host Type box, selectCodehost BrightQ or PlanetPress iWatch.
3. Set options for document output.

l Host name or IP address: Enter the host name or the IP address of the target host. Be sure to specify the
accompanying password.

l Port: The default port number is 5662. The port number may be modified under the specification of the net-
work administrator. PlanetPress Designmust connect to the specified TCP port and send a document con-
forming to the following port specifications.

l Password: Enter the password for the workstation.
l Document name: Enter the file name for the converted document. This must be a file name, not a path. The
name must be no longer than 10 characters.

l Send Group: Defines what to send to the target host
l Trigger: Sends the trigger definition to be used when printing.

l Printer storage: Select the location where to send the file. In the case of CodeHost BrightQ,
this is the only option enabled in the Send group, and both the trigger and document are sent
together.

l Document: Only sends the document to the host.
l Force PostScript mode: Select this option when the destination printer is used for printing jobs
in other formats such as PJL, and when PlanetPress is not sending the output to the printer’s hard
disk. When this option is selected, PlanetPress Design inserts the following command statement
[Esc]%-12345X@PJL ENTER LANGUAGE = POSTSCRIPT to precede the document as well
as any other command statement.

4. Save Host File button: When clicked, saves the document as a postscript file in a specified folder.
5. Send to Host button: When clicked, sends the document from PlanetPress Design to BrightQ.
6. Sent to Printer button: When clicked, opens the Send to Printer dialog (see above in this topic).

If you want a printer based document sent through Codehost BrightQ, first send the document to the printer, and then
send the document to Codehost BrightQ.

Document Output and Preview

©2010 Objectif Lune Inc - 675 -

Perform a Batch Conversion and/or Installation
 You can have PlanetPress Design perform one or more of the following in a single operation:

l Install each document on one or more printers.
l Install each document in one or more installations of a PlanetPress Suite Workflow Tool.
l Install each document in a PlanetPress Design iWatch installation.
l Convert each document and save it to a file, along with the PostScript code for installing the document on the printer.
l Save the PTZ (or PTK) version of each document to a file.

To start a batch conversion and/or installation, from the PlanetPress Design Button, choose Batch Send To.

To use the Batch Send To wizard

l In the Introduction screen, simply click Next >>.
l In Select Documents, select the documents you want to convert and/or install. To add a document, simply browse
to its location on the left and drag it to the right part of the screen. Click Next >>.
All of the subsequent conversion and/or installation operations you define in the wizard are performed on all of the doc-
uments you select here.

l If you want to install the documents on one or more printers, place a checkmark next to each printer you want to send
to in the Select printers screen. Refer to Install a Document for the Send to Printer settings. Click Next >>.

l InPlanetPress Suite Workflow, select any PlanetPress Workflow workstation where you want to send the doc-
ument(s). Refer to Install a Document for the Send to PlanetPress Workflow settings. Click Next >>.

l In PlanetPress iWatch, enter the host of any iSeries printer where you want to send the document(s). Refer to Install a
Document for the Send to PlanetPress iWatch settings. Click Next >>.

l In Send, a list of operations will appear. Click Next >> to start the Batch Send To process.
PlanetPress Design performs the batch conversion and/or installation you defined in the wizard, displaying status mes-
sages as it progresses through the operations.

l Click Finishto exit the wizard. The Batch Send To window disappears and returns to PlanetPress Design.

Batch Send To does not support sending to BrightQ hosts. To send to a BrightQ host, see Install a Document.

Move a Document between PlanetPress Design Installations

Tomove a document:

1. Locate the PP7 file for the document you want to move.
2. If the document contains dynamic images that reference external images, verify it can access those images from the

new location. If necessary, perform the necessary steps to move those images available to the document in its new
location.

3. Copy the PP7 file to the new location.

Trigger

What is a trigger?

A trigger is two lines of PostScript that immediately precede the input data, and “triggers” the execution of a document.The
trigger puts the printer in PostScript mode, and tells the printer which document to launch.

Document Output and Preview

©2010 Objectif Lune Inc - 676 -

You print a document installed on a printer by sending a trigger to the printer, followed by the input data. If you run your doc-
ument into your PlanetPress Suite Workflow Tool, it takes care of inserting the trigger. If you run your document directly on a
printer, youmust manually insert the trigger at the head of the data stream.

How a Variable Content Document Runs on a Printer
How does a variable content document runs on a printer?

If you run a document installed on a printer directly, you send a trigger, followed by the input data, to the printer. If you run a
document into your PlanetPress Suite Workflow Tool, the documentmay or may not be installed in the printer, depending on
the PlanetPress Suite process you created for the document. If it is not installed in the printer, the PlanetPress Suite Workflow
Tool sends the document, followed by the trigger, followed by the input data, to the printer. If it is already installed in the
printer, the PlanetPress Suite Workflow Tool sends the trigger, followed by the input data, to the printer.

When the trigger arrives at the printer, it puts the printer in PostScript mode, gives it the name and location of the document in
the printer, and tells it to launch the document. The document launches, takes control of the printer, initializes all its global var-
iables and starts processing its data stream. The document then cycles through three distinct processing phases for each data
page in the data stream until it reaches the end of the data stream, at which point it relinquishes control of the printer.

The three phases are:

l "Phase 1: Data Reading" (page 677)
l "Phase 2: Global Condition Resolution" (page 677)
l "Phase 3: Document Page Printing" (page 677)

Phase 1: Data Reading

In phase 1, the document reads a complete data page and loads it in the data page buffer.

Phase 2: Global Condition Resolution

In phase 2, the document runs any attachments you selected to run before the document prints, and then resolves all global
conditions for the current data page.

Phase 3: Document Page Printing

In phase 3, the document processes each page of the document. It uses the conditions it resolved in phase 2 to determine
whether to run and print the page and, if it prints the page, which objects to include in the output. In this phase it also evaluates
all local conditions as it encounters them. Thus the document evaluates conditions at two distinct points in time. It evaluates all
global conditions immediately after it fills the data page buffer, andmaintains the results in memory for reference as it merges
the data page. It evaluates all other conditions as it prints each page of the document.

When it finishes processing all pages of the document, it re-initializes, empties the buffer and reads the next data page.

Techniques for Inserting Triggers
What are the common techniques for inserting a trigger?

Document Output and Preview

©2010 Objectif Lune Inc - 677 -

How you create and insert a trigger is operating system dependent. There are four common techniques to insert a trigger man-
ually:

1. Manually concatenating two files
With this technique, you add a trigger by concatenating two files where the first contains the trigger and the second con-
tains the input data. You send the concatenated file to the printer using the DOS Copy command or the file transfer pro-
tocol (FTP).

2. Setting up the print server to automatically insert triggers
This technique works with a print server running either Novell or Windows NT. You create a print queue or print device
for each document installed in the printer, and associate the appropriate trigger for the document with the queue you
set up for it. All queues point to the same physical printer. When you send a job to that queue, the server automatically
inserts the trigger associated with that queue before it forwards the printer job to the printer.

3. Setting up the host to automatically insert triggers
This is the same technique as setting up the print server to automatically insert triggers. The only difference here is that
you set up the queues on the host on which the input data resides. The host inserts the trigger ahead of the spool file
when it sends the print job to the printer. This technique does not work with all hosts.

4. Including the trigger in application output
With this technique, youmodify the output of the application that generates the print file so that it adds a trigger for the
appropriate document. It is important to understand that this hampers your ability to print these jobs using other
printers since two additional lines are added to the print file.

Printer-Specific Control Characters

You can precede a trigger with printer-specific control characters. The most common reason to do so is to ensure the printer
receives the job you send as a new job.

A printer expects each job that it handles to end with a special character that tells the printer it has reached the end of the input
data. Until the printer receives this special character, it continues to process all input it receives as part of that job. If there is
no input, the printer waits for a defined period of time, then times out and proceeds to the next job. If a new job arrives during
the period of time the printer is waiting for input, the printer does not recognize it as a new job; rather it processes it as input
for the current job.

It is thus common practice to include an end of job character at the beginning of the trigger to ensure that the printer rec-
ognizes your job as a new print job. For certain printers, <CTRL D> or ASCII 04 is a valid end of job character, while more
recent printers require a Printer Job Language (PJL) sequence such as <ESC>%-12345X<CR><LF>.

As an example, the following trigger includes <CTRL D> as an end of job character:

<CRTL-D>%!PS-Adobe <CR><LF>

run INVOICE<CR><LF>

Trigger Syntax
What is the syntax of a trigger?

In all syntax descriptions in this section, italics denote a variable, square brackets indicate the element is optional, <CR>
denotes a carriage return and <LF> denotes a line feed.

The general syntax for the first line of the trigger is the same for all triggers.

[printer-specific_commands] %!PS-Adobe <CR><LF>

Document Output and Preview

©2010 Objectif Lune Inc - 678 -

The first line of the trigger uses the string “%!PS-Adobe” to put the printer in PostScript mode. It may also include printer-
specific commands.

The syntax of the second line of the trigger depends on where the document is installed in the printer: on the hard drive, in
RAM, or in Flashmemory. The second line, written in PostScript, tells the printer the name and location of the document, and it
launches the document. If you are using version numbers in your documents, this line also contains the version number.

Trigger Syntax for Documents Installed on a Hard Disk

The general syntax of a trigger for a document that resides on the printer’s hard drive is:

[printer-specific_commands] %!PS-Adobe <CR><LF>

[[(location_of_document)] run] name_of_document <CR><LF>

In this example, a document named INVOICE resides on the printer’s single hard drive:

%!PS-Adobe <CR><LF>

(INVOICE) run INVOICE<CR><LF>

If the printer has more than one hard disk, youmust include the name of the hard disk. In this example, the name of the hard
disk is “presswork” and the name of the document is INVOICE.

%!PS-Adobe <CR><LF>

(%presswork%INVOICE) run INVOICE<CR><LF>

Trigger Syntax for Documents Installed in RAM

The general syntax of a trigger for a document that resides in the printer’s RAM is:

[printer-specific_commands] %!PS-Adobe <CR><LF>

name_of_document <CR><LF>

An example of the trigger for a document named FORMLETTER that resides in the printer’s RAM:

%!PS-Adobe <CR><LF>

FORMLETTER <CR><LF>

Trigger Syntax for Documents Installed in Flash Memory

The general syntax of a trigger for a document that resides in the printer’s Flashmemory is:

[printer-specific_commands] %!PS-Adobe <CR><LF>

(%flash%name_of_document) run name_of_document <CR><LF>

An example of the trigger for a document named PAYROLL that resides in the printer’s Flashmemory:

%!PS-Adobe <CR><LF>

(%flash%PAYROLL) run PAYROLL <CR><LF>

Note that using this syntax on some printers that have only Flashmemory (no hard disk) may return an error messages say-
ing that the file or the Flash device cannot be found. This can usually be fixed by using the trigger syntax for documents

Document Output and Preview

©2010 Objectif Lune Inc - 679 -

installed on the printer’s hard disk (see above). With these types of printers, the syntax for documents that reside in the prin-
ter’s Flashmemory must only be used if the printer has both a hard disk and Flashmemory.

Run a Document Installed on a Printer

If you installed your document directly on a printer, you print it by sending a trigger to the printer followed by the input data.
The Trigger and Data Capture Guide provides platform-specific procedures for creating the appropriate trigger and
inserting it at the head of the data stream you send to the printer.

Most PostScript printers also support Printer Control Language (PCL). For this reason, you should configure your printer to
detect the language of the incoming job and automatically switch to the appropriate language. This is particularly important in
environments where people send both PCL and PS jobs to the printer. Consult your printer manual for help configuring the
printer.

To run a document installed on a printer:

1. Create the trigger.
To create the trigger, youmust know the operating system of the host on which the input data resides, and how that
host is connected to the printer (direct connection, serial line, print server).
You also need to determine the technique you intend to use to create the trigger and insert it at the head of the data
stream.

2. Send the trigger, followed by the input data, to the printer.

Run a Document Installed in a PlanetPress Suite Workflow Tool

Consult the PlanetPress Workflow Tools User Guide for complete information on creating and executing a PlanetPress Suite
process.

To run a document in a PlanetPress Suite Workflow Tool:

1. Install the document into the PlanetPress Suite Workflow Tool.
2. Create a PlanetPress Suite process to run your document.
3. Run the PlanetPress Suite process.

When you install a document on a PlanetPress Suite Workflow Tool server, you should make sure the fonts included in the doc-
ument are actually available on the PlanetPress Suite Workflow Tool server. To install TrueType fonts, use the standardWin-
dows procedure. To install PostScript fonts, use the Install PostScript Font command in your PlanetPress Suite Workflow
Tool.

Run a Document that Uses a Database Emulation

You cannot install a document that uses database emulation on a printer and send a trigger along with the data to have the doc-
ument print. Only PlanetPress Design and PlanetPress Suite Workflow Tools can perform the necessary conversion of the data
before sending it to the document.

Inmost cases you run a document that uses database emulation in a PlanetPress Suite Workflow Tool. This makes it possible
to automate the execution of the document, and ensures that the data sent to the document always reflects the contents of the
database at the time the document prints. Consult the PlanetPress Workflow Tools User Guide for help printing a document
that uses a database emulation.

You can also use the hard copy preview capability in PlanetPress Design to print the document with all or some of the data-
base. In this case, in the hard copy preview options, you should select Refresh data from database to update the contents of
the sample data file before executing the preview. This ensures the preview reflects the latest changes to the database.

Document Output and Preview

©2010 Objectif Lune Inc - 680 -

Run Several Documents as a Single Job

If you have several documents to run on a printer, and you are not using the PlanetPress Suite Workflow Tools to print your
documents, youmay find it convenient to send a single job to the printer that contains the triggers and input data for all those
documents. The single job has the format:

trigger1data1trigger2data2trigger3data3...

Embedded within this single job are End Of Job (EOJ) strings that permit each document to detect the end of its input data.
These strings prevent each document in the job from treating everything that follows it as its own input data.

You define the EOJ string you want a given document to use. Youmay choose to define a different EOJ string for each doc-
ument, or to use the same EOJ string for all documents or for all documents of a certain category. The choice youmake
depends on your environment and preferred way of working. If you choose a different EOJ string for each document or cat-
egory of document, youmust pay close attention to how you construct the single job to ensure you specify the proper EOJ
string for a given document.

You can embed the EOJ strings in the single job in one of two ways: either within the triggers or at the end of input data.

This section describes how to construct a job by embedding EOJ strings within a trigger and how to construct a job by append-
ing EOJ strings to the end of input data. It also includes a procedure that explains how to define an EOJ string for a document.

Troubleshoot Execution Problems

You should also be aware that there are two printer settings that can help you troubleshoot a problematic document.

1. Print PostScript Error
If you enable this setting, the printer prints an error page if it encounters an error during document execution. The
error page reports the offending PostScript command and the status of the print stack. Although these errors are terse,
they are sometimes all you need to pinpoint and resolve the problem. You can set this printer setting from PlanetPress
Design.

2. Print in Hexadecimal Mode
Most printers let you print the incoming data exactly as it arrives at the printer, as hexadecimal values. This is useful for
determining exactly what characters the printer receives and for spotting unexpected characters in the data stream, or
characters that are not arriving in the proper order. The following table shows the hexadecimal codes the printer
dumps for a carriage return followed by a line feed, and a line feed followed by a carriage return, respectively. The
equivalent ASCII codes appear on the right.
HexadecimalASCII
0A 0D LF CR
0D 0A CR LF
Because a document page can generate hundreds of pages of hexadecimal code, if you print in hexadecimal mode, you
should be prepared to cancel the print job once the first few pages have printed.

Objectif Lune Printer Driver (PS)

Introduction

The Objectif Lune Printer Driver (PS) allows end-users to print directly to the PlanetPress Suite Workflow Tools from any Win-
dows application, by using the familiar File|Print option. At the other end, PlanetPress Office and PlanetPress Production spe-
cifically can capture the incoming stream and convert it internally into a PDF file along with its metadata.

Although it is available with every PlanetPress Suite Workflow Tools, this feature becomes evenmore useful in environments

Document Output and Preview

©2010 Objectif Lune Inc - 681 -

where the Document Input emulation is available (with PlanetPress Office or PlanetPress Production).

Install a Objectif Lune Printer Driver (PS)

The Objectif Lune Printer Driver (PS) is automatically installed during the PlanetPress Suite setup, along with a default Win-
dows Printer Queue calledPlanetPress Printer.

Install a Windows Printer Queue using the Objectif Lune Printer Driver (PS)

A Windows Printer Queue using the Objectif Lune Printer Driver (PS) can be installed from the PlanetPress Design Data Cap-
ture window.

Creating a new Windows printer queue from PlanetPress Design:

1. Start PlanetPress Design.
2. Choose Tools | Data Capture | Windows Queue Input.
3. Click New.
4. Enter aName for the printer queue.
5. Click OK.

Every new Windows printer queue using the Objectif Lune Printer Driver (PS) is shared by default. Once such a shared queue
is created, end-users can install it on their own computer by going through the same steps they would when installing a new
remote printer in their Operating System. By default, connecting to a shared printer will automatically result in the Objectif
Lune Printer Driver being downloaded to the connecting host.

Printer Properties setup

A printer queue using the Objectif Lune Printer Driver (PS) can be configured to produce one of 3 different types of datafiles:
EMF, PostScript, or PDF.

Possible printer properties settings, along with the datafile type it will produce:

Spool Print Jobs in EMF Format:

l This will create an EMF datafile.
l This format is usally reserved for use with the Windows Print Converter action plugin (see PlanetPress Suite Workflow
Tools documentation).

l This format can be obtained using any PlanetPress Suite Product; PlanetPress Design or any of the PlanetPress Suite
Workflow Tools.

Spool Print Jobs in RAW Format:

l This will create a PostScript datafile when the optionCreate PDF (with Medatada) is unchecked.
l This format can be obtained using any PlanetPress Suite Product; PlanetPress Design or any of the PlanetPress
Suite Workflow Tools.

l This will create a PDF datafile when the optionCreate PDF (with Medatada) is checked.
l This format can be obtained using PlanetPress Design and PlanetPress Office or PlanetPress Production.

By default, the Create PDF option is:

l Checked if the incoming stream has been produced with the Objectif Lune Printer Driver.
l Unchecked if the incoming stream comes from some other PostScript Driver.
l Grayed out and unchecked if the incoming stream is not PostScript.

Document Output and Preview

©2010 Objectif Lune Inc - 682 -

Data Capture from PlanetPress Design

Once a sharedWindows printer queue using Objectif Lune Printer Driver (PS) is installed on both the server and the client
sides, data capture can be achieved the same way as with any other Windows printer queues.

Data Capture from PlanetPress Design:

1. Start PlanetPress Design.
2. Choose Tools | Data Capture | Windows Queue Input.
3. Select a Windows print queue using the Objectif Lune Printer Driver (PS) from the drop-down list.
4. Click Capture.
5. Start the windows application from which you want to capture data.
6. Open your selected document.
7. Click File | Print.
8. Choose the sameWindows print queue as in step 4.

Note that steps 5-7 can be performed at any time, even if PlanetPress Design is not yet in data capture mode. This is because
every Windows printer queue using Objectif Lune Printer Driver (PS) is paused by default. Once the data capture has started,
it captures the first queued job. If there are more than 1 job, the user will have to use the data capture button again.

PDF Creation Parameters

PDF files retrieved from a Windows print queue using Objectif Lune Printer Driver (PS) have the following properties:

l PDF 1.4
l Optimized PDF (subject to change)
l No down-sampling of images

These settings are pre-configured and cannot be changed by the user.

About Metadata

Metadata files are files containing information on the job itself rather than containing the job per se. A job sent to the Objectif
Lune Printer Driver (PS) creates its ownmetadata, allowing users to retrieve relevant information, such as, for instance, the
time and date the print request was sent. For more on this, see the "Working with Metada" (page n)documentation
pages.

Document Output and Preview

©2010 Objectif Lune Inc - 683 -

../../../../../Content/5642.html
../../../../../Content/5642.html
../../../../../Content/5642.html
../../../../../Content/5642.html
../../../../../Content/5642.html

©2010 Objectif Lune Inc - 684 -

Keyboard Shortcuts
This appendix provides a complete list of all keyboard shortcuts available in PlanetPress Design6. Most Common User Access
(CUA) shortcuts, the shortcuts available onmost personal computers, also work in PlanetPress Design6. Where a CUA short-
cut conflicts with a PlanetPress Design shortcut, the PlanetPress Design shortcut takes precedence.

PlanetPress Design General
"Exit PlanetPress Design" (page 685)

"Use the Help System" (page 685)

"Adjust the Zoom" (page 688)

"Show or Hide Areas of the ProgramWindow" (page 686)

"Work with Hierarchies" (page 686)

"Work in the Document Structure Area" (page 686)

"Work with Documents" (page 686)

"Preview and Install Documents" (page 687)

"Work with Pages" (page 687)

"Use Basic Editing Commands" (page 688)

"Work in the Data Pane" (page 688)

"Work with the Data File" (page 689)

"Work with Data Selections" (page 689)

"Work with Objects" (page 691)

"Work in the Text Properties of a Text Object" (page 692)

"Use the Hex Viewer" (page 690)

Exit PlanetPress Design

Use: To:
CTRL+QQuit PlanetPress Design.

Use the Help System

Use: To:
F1 Display the online help manual.

Keyboard Shortcuts

©2010 Objectif Lune Inc - 685 -

Show or Hide Areas of the Program Window

Use: To:
SHIFT+CTRL+T Show/hide the Document Structure area.
SHIFT+CTRL+I Show/hide the Object Inspector.
SHIFT+CTRL+M Show/hide the PlanetPress Talk Messages area.
SHIFT+CTRL+P Show/hide the Data Pane.

Work with Hierarchies

Use: To:

CTRL+T
Move the focus to the hierarchical view. For example, in the Program window, the focus moves to the Structure area.
In a properties dialog box, the focus moves to the hierarchical view on the left side of the dialog box. In the Plan-
etPress Talk Editor, it moves to the Commands area.

UP
ARROW,
DOWN
ARROW

Move up or down in the hierarchy. For example, move up or down in the Structure area, in the Commands area of the
PlanetPress Talk Editor, or in the hierarchy on the left side of a properties dialog box.

LEFT
ARROW,
RIGHT
ARROW

Expand an item or move left one level (LEFT ARROW), or collapse an item or move right one level (RIGHT ARROW).
This works in the Structure area and in the Commands area of the PlanetPress Talk Editor.

Work in the Document Structure Area

Use: To:
SHIFT+UP ARROW,
SHIFT+DOWN
ARROW
(when at least one
element is selected)

Add the next element above or below the currently selected elements, to the selection. Recall that you
can only add elements to the selection that are at the same level in the hierarchy.

CTRL+A Select all elements at the same level in the hierarchy.
F2 (after selecting an
element)

Rename the element.

Work with Documents

Use: To:
CTRL+N Create a new document.
CTRL+O Open an existing document.
CTRL+S Save the current document.
CTRL+SHIFT+SSave the current document under a new name.
F4 Display the Document properties dialog box.

F5
Refresh the document. PlanetPress Design reads anew the contents of the PP4 file and updates the Program
window. This includes a refresh of the Structure area (collapses all open elements into the default view of the
Structure area). The read of the PP4 file includes a read of the sample data file.

Keyboard Shortcuts

©2010 Objectif Lune Inc - 686 -

Preview and Install Documents

Use: To:
F9 Perform an on-screen preview.
CTRL+P Perform a hard copy preview.
CTRL+ALT+P Install the document on one or more printers.
CTRL+ALT+WInstall the document in one or more installations of PlanetPress Suite Workflow Tools.
CTRL+ALT+H Install the document on one or more hosts.

Work with Pages

Use: To:
F6 Display the Page properties dialog box for the current page.
UP ARROW,
DOWN ARROW
(in the Page area)

Scroll the page up or down in the Page area.

MOUSEWHEEL Scroll the page up or down in the Page area.
SHIFT+MOUSE
WHEEL

Scroll the page left or right in the Page area.

CTRL+F10 Switch to the Work tool.
CTRL+F11 Switch to the Hand tool.
CTRL+F12 Switch to the Zoom tool.

CTRL+SPACEBAR
(in the Page area)

Switch to the next tool in the sequence for the duration of the press on the spacebar. For example, if the cur-
rent tool is the Work tool, CTRL+SPACEBAR switches to the Hand tool. You could then use the Hand tool to
move the page. When you release the spacebar, you return to the Work tool. Note that you can only move
to the next tool in the sequence; you cannot cycle through the sequence by pressing CTRL+SPACEBAR
repeatedly.

Keyboard Shortcuts

©2010 Objectif Lune Inc - 687 -

Adjust the Zoom

Use: To:
Plus sign (+) sign on numeric
keypad

Zoom in on the Page area using the Zoom factor set in the User Options dialog box. If the
pointer is over the Page area, PlanetPress Design centers the zoom around the pointer.

SHIFT+ plus sign (+) key on
numeric keypad

Zoom in on the Page area using the Fine zoom factor set in the User Options dialog box. If
the pointer is over the Page area, PlanetPress Design centers the zoom around the pointer.

Minus sign (-) key on numeric
keypad

Zoom out on the Page area using the Zoom factor set in the User Options dialog box. If the
pointer is over the Page area, PlanetPress Design centers the zoom around the pointer.

SHIFT+minus sign (-) key on
numeric keypad

Zoom out on the Page area using the Fine zoom factor set in the User Options dialog box. If
the pointer is over the Page area, PlanetPress Design centers the zoom around the pointer.

CTRL+SHIFT+HOME
Adjust the zoom and page position such that the width of the page fits the current width of
the Page area.

CTRL+HOME
Adjust the zoom and page position such that the entire page is visible within the current size
of the Page area.

Right-click/left-click (in the Page
area when using the Zoom tool)

Zoom in (left-click) or zoom out (right-click) on the page using the Zoom factor set in the
User Options dialog box.

SHIFT+right-click,
SHIFT+left-click
(in the Page area when using the
Zoom tool)

Zoom in (left-click) or zoom out (right-click) on the page using the Fine zoom factor set in the
User Options dialog box.

CTRL+F12 Switch to the Zoom tool.

Use Basic Editing Commands

Use: To:

CTRL+Z
Undo the most recent command. Repeat to move backwards through the sequence of commands entered to
date, undoing one command at a time.

CTRL+SHIFT+Z
Reverse the effect of the most recent undo command. Repeat to move backwards through the sequence of
undo commands entered to date, reversing the effect of each command.

CTRL+X Cut the currently selected items.
CTRL+C Copy the currently selected items.
CTRL+V Paste the currently copied or cut items.
ESC Cancel the current cut.
DELETE Delete the currently selected items.

Work in the Data Pane

Note: Some of these shortcuts may not apply when using the PDF emulation.

Use: To:
HOME
END

Move the currently active cell to the first cell of the current line (HOME), or the last cell of the current line
(END). This shortcut collapses the current data selection to include only the currently active cell.

PAGE DOWN
PAGE UP

Move the currently active cell forward (PAGE DOWN) or backward (PAGE UP) one screen, where the size of a
screen is defined as the number of lines currently visible in the Data Pane. Thus you can adjust the size of a
screen by resizing the Data Pane. This shortcut collapses the current data selection to only the currently active
cell.

SHIFT+ARROWAdd cells to, or remove cells from, a data selection.

Keyboard Shortcuts

©2010 Objectif Lune Inc - 688 -

Use: To:
ALT+ARROW
or
CTRL+SHIFT+
ARROW

Move the current data selection region within the Data Pane. Note that this does not work with database emu-
lation.

ARROW
Move the currently active cell. This shortcut collapses the current data selection to only the currently active
cell.

Work with the Data File

Use: To:
SHIFT+PAGE UP
SHIFT+PAGEDOWN
(anywhere in the Data Selector, or after
you click in a Data page box)

Move forward (SHIFT+PAGE UP) or backward (SHIFT+PAGEDOWN) one page (or
record set in the case of a database emulation) in the data file.

Work with Data Selections

Use: To:
ALT+ARROW
(after selecting
one or more
data selection
objects on the
document
page)

Move the data selection in a data selection object. The size of the data selection remains stable; the shortcut
changes the position of the selection on the data page. This adjusts the values of the line and/or column prop-
erties (or, in the case of a database emulation, the Field name, and/or the From/To record properties) of the
data selection. Use the UP ARROW tomove the selection up one line (or record), the DOWN ARROW tomove
the selection down one line (or record), the LEFT ARROW to move the selection one column (or field) to the
left, and the RIGHT ARROW tomove the selection one column (or field) to the right. The Data Pane also
updates to reflect the changes to the data selections.

SHIFT+ARROW
(after selecting
one or more
data selection
objects on the
document
page)

Resize the data selection in a data selection object. This adjusts the values of the line and/or column prop-
erties (or, in the case of a database emulation, the Field name, and/or the From/To record properties) of the
data selection. Use the DOWN ARROW or UP ARROW to respectively increase or decrease the size of the data
selection by one line (or record in the case of a database emulation), along its bottom edge. Use the RIGHT
ARROW or LEFT ARROW to respectively increase or decrease the size of the data selection by one column (or
field in the case of a database emulation), along its right edge. The Data Pane also updates to reflect the
changes to the data selections.

Keyboard Shortcuts

©2010 Objectif Lune Inc - 689 -

Use the Hex Viewer

Use: To:
CTRL+P Print a hexadecimal dump of the input data.

CTRL+Z
Undo the most recent command. Repeat to move backwards through the sequence of commands entered to
date, reversing the effect of each command. Not all commands can be undone.

CTRL+X Cut the currently selected data.
CTRL+C Copy the currently selected data.
CTRL+V Paste the currently copied or cut data.
CTRL+SHIFT+V Paste the hexadecimal values of the currently copied or cut data into the input data as text values.
CTRL+SHIFT+I Insert a nibble at the current pointer position. Each bit of the nibble is a 0.
CTRL+SHIFT+DDelete the nibble at the current pointer position. Each bit of the nibble is a 0.
CTRL+G Go to a specific byte offset.
CTRL+J Jump forward the number of bytes set in the Jump Amount dialog box.
CTRL+SHIFT+J Jump backward the number of bytes set in the Jump Amount dialog box.
CTRL+F Search for a string of data.
F3 Find the next occurrence of the search string.

Keyboard Shortcuts

©2010 Objectif Lune Inc - 690 -

Work with Objects

Use: To:
F2
(in the Structure
area, after selecting
an object or a group)

Rename the object or group.

CTRL+click
(on an object or a
group in the Structure
area)

Add the object or group to the current selection, or, if it is already selected, remove it from the selection.

SHIFT+click
or
CTRL+click
(on an object or a
group in the Page
area)

Add the object or group to the current selection, or, if it is already selected, remove it from the selection.

ALT+click
(on an object or a
group in the Page
area)

Select all objects and groups that lie under the current pointer position.

CTRL+A
(in the Structure area
or in the Page area)

Select all objects and groups at the same level in the Structure area hierarchy.

CTRL+click+drag
(on a selection of one
or more objects
and/or groups)

Move the selected object(s) and/or group(s) along only the X axis or only the Y axis.

CTRL+ARROW Move the selected object(s) and/or group(s).
SHIFT+ARROW
(in the Page area)

Resize the selected object(s) and/or group(s). You set the magnitude of the resize that occurs with each
press of the ARROW key, in the User Options dialog box, Nudge factor box.

CTRL+L Display the Align dialog box to define the alignment for the selected objects and/or groups.
CTRL+G Group the selected objects and/or groups.
CTRL+U Ungroup the selected group(s).

CTRL+D
Duplicate the currently selected objects and/or groups using the displacement and data page offsets set
in the User Options dialog box.

CTRL+SHIFT+D
Duplicate the currently selected objects and/or groups and align the copy along the X axis, to the right
of, and flush with, the most recent copy. This overrides the Duplicate style setting in the User Options
dialog box. It uses the data page offsets set in the User Options dialog box.

CTRL+ALT+D
Duplicate the currently selected objects and/or groups and align the copy along the Y axis, under and
flush with, the most recent copy. This overrides the Duplicate style setting in the User Options dialog
box. It uses the data page offsets set in the User Options dialog box.

CTRL+SHIFT+
UP ARROW

Move the currently selected objects and/or groups backward one layer.

CTRL+SHIFT+
DOWN ARROW

Move the currently selected objects and/or groups forward one layer.

CTRL+SHIFT+
PAGE UP

Move the currently selected objects and/or groups to the bottom layer.

CTRL+SHIFT+ Move the currently selected objects and/or groups to the top layer.

Keyboard Shortcuts

©2010 Objectif Lune Inc - 691 -

Use: To:
PAGE DOWN

Work in the Text Properties of a Text Object

Use: To:

CTRL+Z
Undo the most recently entered editing operation. Repeat to move backwards through the sequence of
editing operations entered to date, reversing the effect of each command.

CTRL+SHIFT+Z
Reverse the effect of the most recent Undo command. Repeat to move backwards through the
sequence of undo commands entered to date, reversing the effect of each command.

CTRL+Z
Undo the most recently entered editing operation. Repeat to move backwards through the sequence of
editing operations entered to date, reversing the effect of each command.

CTRL+SHIFT+Z
Reverse the effect of the most recent Undo command. Repeat to move backwards through the
sequence of undo commands entered to date, reversing the effect of each command.

CTRL+A Select all of the text in the Text area. The text can include variables.

SHIFT+ARROW
Increase or decrease the selected region one line at a time (up or down arrow), or one character at a
time (left or right arrow).

CTRL+SHIFT+
ARROW

Increase or decrease the selected region one paragraph at a time (up or down arrow), or one word at a
time (left or right arrow).

ALT+SHIFT+ARROW
Increase or decrease the region one line at a time (up or down arrow), or one character at a time (left or
right arrow).

CTRL+X Cut the currently selected region.
CTRL+C Copy the currently selected region.
CTRL+V Paste the last region copied.
DELETE Delete the currently selected region.
CTRL+B Toggle the bold property for the currently selected style on and off.
CTRL+I Toggle the italic property for the currently selected style on and off.
CTRL+U Toggle the underline property for the currently selected style on and off.
CTRL+W Turn word wrap on or off.
SHIFT+CTRL+M Display the Margins dialog box.
CTRL+D Create a local variable using the Data Selector.
CTRL+E
(after you click on a
variable)

Display the Variables dialog box.

F2
(in the Variables
dialog box)

Rename the currently selected local variable. You cannot rename global variables.

DELETE
(in the Local Variable
dialog box)

Delete the currently selected local variable. You cannot delete global variables.

PlanetPress Talk Editor
"General" (page 693)

"Show or Hide Areas of the Editor" (page 693)

"Print the Script" (page 696)

Keyboard Shortcuts

©2010 Objectif Lune Inc - 692 -

"Expand or Collapse Groups in the Commands Area" (page 693)

"Work in the Code Area" (page 694)

"Use Command Name Completion/Argument Insertion" (page 694)

"Undo Commands" (page 694)

"Work with Selections" (page 694)

"Add/Remove Comments" (page 695)

"Indent Code" (page 695)

"Search" (page 695)

"Jump to a Specific Line" (page 695)

"Use Bookmarks" (page 695)

"Execute a Program" (page 695)

"Debug Code" (page 696)

General

Use: To:
ALT+F10
(in either Commands or Code area)

Display the menu that appears when you right-click in that area.

Show or Hide Areas of the Editor

Use: To:
CTRL+SHIFT+TShow/hide the Commands area.
CTRL+SHIFT+S Show/hide the Spy list.
CTRL+SHIFT+P Show/hide the Object Preview.

Expand or Collapse Groups in the Commands Area

Use: To:
Multiplication symbol (*) followed by minus sign
(–)
(on numeric keypad)

Expand or collapse the selected command group.

LEFT ARROW,
RIGHT ARROW

Expand (LEFT ARROW), or collapse (RIGHT ARROW) the selected command
group.

CTRL+SHIFT+O Collapse all command groups.
CTRL+SHIFT+E Expand all command groups.

Keyboard Shortcuts

©2010 Objectif Lune Inc - 693 -

Work in the Code Area

Use: To:
CTRL+N Insert a carriage return.
INSERT Toggle between Insert and Overwrite mode.
CTRL+ LEFT or RIGHT ARROWMove forward or backward in the code, one word at a time.
CTRL+HOME Move to the first character of the first line of the Code area.
CTRL+END Move to the last character of the last line of the Code area.

Use Command Name Completion/Argument Insertion

Use: To:

CTRL+SPACE

Launch command name completion or argument insertion. The position of the pointer determines which
operation the shortcut launches. Press ESCAPE to abort the operation. See “Use Command and Variable
Name Completion” on page 405 and “To enter arguments:” on page 403 for more complete explanations
of this shortcut.

CTRL+SHIFT+SPACE

Display the list of arguments the command requires. This shortcut functions only when you use it
between the opening and closing parentheses of the argument list. The current argument (the one at the
current insertion point in the Code area) appears in bold. You canmove the insertion point forward or
backward by pressing the right and left arrows respectively; the current argument changes to reflect the
move from one argument to another.

Undo Commands

Use: To:

CTRL+Z
or
ALT+BACKSPACE

Undo the last command or group of editing commands entered, depending on the setting of the Group undo
check box in the User Options dialog box. If you selected Group undo, the Editor undoes the last group of
editing commands entered. If you cleared Group undo, the Editor undoes only the last editing command
entered. Repeat to continue undoing each preceding editing command or group of editing commands.

Work with Selections

Use: To:
CTRL+A Select the complete contents of the Code area.

SHIFT+ARROW
Increase or decrease the size of the current selection one line at a time (up or down arrow), or one char-
acter at a time (left or right arrow).

CTRL+SHIFT+
LEFT/RIGHT ARROW

Increase or decrease the size of the current selection one word at a time.

ALT+SHIFT+ARROW

Increase or decrease the size of the current selection one character at a time (left or right arrow) or one
line at a time (up or down arrow). One line in this case refers to only that portion of the line currently in
the selection. For example, if a selection contains only characters 3 through 10 of the line and you press
the down arrow, the selection adds only characters 3 through 10 of the next line. This is often referred to
as a “block select”.

CTRL+X Cut the currently selected region of code.
CTRL+C Copy the currently selected region of code to the clipboard.
CTRL+V Paste the contents of the clipboard to the current pointer position.
DELETE
or
BACKSPACE

Delete the currently selected region of code.

Keyboard Shortcuts

©2010 Objectif Lune Inc - 694 -

Add/Remove Comments

Use: To:

CTRL+SHIFT+/
Add the comment character (%) to the start of each line of the selected block of code, or if no block is cur-
rently selected, to the start of the line indicated by the current pointer position.

CTRL+SHIFT+.
(period)

Remove the comment character (%) from the start of each line of the selected block of code, or if no block is
currently selected, from the start of the line indicated by the current pointer position.

Indent Code

Use: To:

CTRL+SHIFT+I
Indent the current line or selected region of code. You set the number of spaces to advance with each indent
in the Block indent box of the User Options dialog box.

CTRL+SHIFT+U
Move the current line or selected region of code towards the left one indent. You set the number of spaces to
move with each indent in the Block indent box of the User Options dialog box.

Search

Use: To:
CTRL+F Display the Find Text dialog box.
F3 Find again.
CTRL+RReplace.

Jump to a Specific Line

Use: To:
ALT+GDisplay the Go to Line dialog box. This shortcut functions only when the current pointer position is in the Code area.

Use Bookmarks

Use: To:
CTRL+SHIFT+
digit

Set or remove a bookmark, where digit is the number (0 through 9) of that bookmark. If the bookmark is
already set, this sequence removes it. Otherwise it sets the bookmark at the current pointer position.

CTRL+digit Jump to a bookmark, where digit is the number (0 through 9) of the bookmark to which you want to jump.

Execute a Program

Use: To:

F9
Run the program to completion. If breakpoints occur before the end of the program, the properties of those break-
points may mean execution stops before reaching the end of the program.

F4
Execute the program forward to the line indicated by the current cursor position. If breakpoints occur before the pro-
gram reaches the pointer position, the properties of those breakpoints may mean execution stops before reaching
the pointer position.

F8 Execute only the current line of the program.
CTRL+F2Exit the current execution of the program.

Keyboard Shortcuts

©2010 Objectif Lune Inc - 695 -

Debug Code

Use: To:
F5 Add or remove a breakpoint at the line indicated by the current pointer position.
CTRL+F7Display the Evaluate dialog box in order to evaluate an expression, edit the value of a variable, or create a spy.
CTRL+F5Create a spy.

Print the Script

Use: To:
CTRL+PPrint the contents of the Code area.

Converted Document

A converted document is the final format of a document in PlanetPress Design: a PostScript program. A single document can
contain pages destined to execute on a printer, pages destined to execute in PlanetPress Image, and pages destined to
execute in PlanetPress Fax. For discussion purposes, we refer to each of these as an output type. When PlanetPress Design or
a PlanetPress Suite Workflow Tool converts a document, it converts it for only one type of output at a time: printer, Plan-
etPress Image, or PlanetPress Fax.

PlanetPress Design converts a document automatically when you preview it on-screen, or install it on a printer or in Plan-
etPress Design iWatch. It uses the information in the document’s PP7 file to generate the PostScript code of the converted doc-
ument.

If you install a document in a PlanetPress Suite Workflow Tool, PlanetPress Design uses the information in the document’s PP7
file to generate a PlanetPress Talk version of the document, a PTK file, that it then installs in a PlanetPress Suite Workflow
Tool. The PTK file contains all of the information PlanetPress Suite Workflow Tools require to generate the PostScript code for
any output type. When you execute a PlanetPress Suite process that references the document PlanetPress Suite Workflow
Tools use the PTK file to generate the PostScript code for the specific output type.

You can also manually convert a document that executes on a printer.

The file name extension on a converted document indicates the type of output it produces.

Extension: Indicates:
PS The converted document produces printer output.

PSI
The converted document produces PlanetPress Image output. The converted document in this case includes Post-
Script code to generate the PDI file PlanetPress Search uses to search archives created by PlanetPress Image.

PSF The converted document produces PlanetPress Fax output.

The font information included in a converted document depends on the type of output the document produces. If it produces
PlanetPress Image or PlanetPress Fax output, the converted document contains font information for all fonts that the doc-
ument uses. If it produces printer output, it consults the PPD you selected in the Document properties dialog box, and includes
font information only for fonts that the document uses that are not printer-resident.

About Documents
A document is essentially anything such as an invoice, financial statement, monthly report, brochure, booklet, cheque, form
letter, catalogue, price list, graybar report, survey, shipping label, cheque, insurance policy, tax return, bank statement,
receipt, notice, price list, and direct mail material.

Keyboard Shortcuts

©2010 Objectif Lune Inc - 696 -

A variable content document is one that can dynamically change its content and appearance based on the data it receives at
runtime.

About Document Elements

WhileObjects are generally placed in the Workspace Area (on your page), Elements are a broader term that include con-
ditions, variables, functions andmetadata fields. Here is a list of all the elements available in PlanetPress Design.

Sample Data Files

A Sample Data file is a file that, while it follows the same structure as the one you will use when actually processing your doc-
ument, only contains part of the actual data. It is used to create your document while having an example of the data file, and
can even be fake, computer-generated data in some cases. For more information about data, please see the chapter on "Data
in PlanetPress Design" (page 83).

Document

A Document is generally described as any number of pages that are destined for one recipient. For example, a document can
be an invoice (or multiple invoices) sent to a client, a receipt or a report on one particular department. In a PlanetPress Design
document, the termDocument is the element that includes all the pages of your document and controls the global document
properties. For more information about documents, see the chapter on "Setting Up a Document" (page 105).

Styles

Styles are basically specific font configurations can be applied to an object in any of your document's pages. You need at least
one style in your document, but can have multiple styles applied to different objects. The styles contain properties that control
the font type, size, color, spacing, etc. For more information about styles, see the chapter on "Fonts and Styles" (page 29).

Conditions

Conditions can be applied to objects to make them appear or not, and can also be used within objects as PlanetPress Talk Bool-
ean variables to display one value or another. For more information about conditions, see the chapter on "Conditions" (page
187).

Metadata Fields

Metadata is generally defined as data about data, and in the PlanetPress Suite world is more precisely information about your
document that is not part of your sample data file. Metadata includes things like page counts, page size properties, etc. It is
divided inmultiple levels including the Job, Group, Document, Data Page and Page levels, and can contain properties and
fields at any of those levels. Metadata fields are user-defined strings that can be added at different levels of your metadata.
For more information onMetadata and Metadata fields, please see Working with Metadata.

Global Variables

Global variables are variables that can be shared between pages and datapages within your document. Global variables will
not change unless you change them using a PlanetPress Talk definition. For more information on global variable, see Global
Variables.

Global Functions

Global functions are PlanetPress Talk functions that are available from any page or datapage within your document. Global
functions cannot be changed during runtime so they are static. Functions can accept multiple parameters and return different
types of variables. For more information on global functions, see "Create a Global Condition" (page 190).

Keyboard Shortcuts

©2010 Objectif Lune Inc - 697 -

../../../../../Content/5642.html
../../../../../Content/5642.html
../../../../../Content/5642.html
../../../../../Content/1528.html
../../../../../Content/1528.html

PostScript Attachments

PostScript attachments are PostScript files (.ps) that are imported into your document and can be used as resources by your
pages and will print after the page where you attach the postscript file. For more information on PostScript attachments, see
the chapter on "Document Resources" (page 173).

Picture Resources

Picture resources are images of different formats that are imported into your document and can be used as image resources in
your pages, generally using the Picture object. Picture resources, however, can also be external to the document such as on a
PlanetPress Suite Workflow Tools server or a printer hard drive. For more information on images, see the chapter on "Doc-
ument Resources" (page 173).

Pages

Pages are the canvas of your document and are where objects are added to build your document. Each page in your document
generally represents one printed page on your printer (or one PDF page depending on your output). Conditions, overflows and
PlanetPress Talk objects, however, canmodify when and where pages appear. For more information on pages, see the chap-
ter on "Setting Up Pages" (page 117).

About Data Selections
A data selection could be compared to an address. It indicates a location within a data file using coordinates. PlanetPress
Design includes a tool called the Data Selector that helps youmake data selections. The Data Selector does two things:

l It uses the current emulation to format the data.
l It displays the formatted data to let youmake selections easily using the mouse pointer.

About Objects
Objects are the pieces of your document that are inserted in your page, such as text boxes, barcodes, images and data selec-
tions. Each object has its own properties, some being common to all objects and others being unique to each type of object.

Objects may be both variable or static. Static objects are generally design information such as addresses, table lines and
logos. Variable objects are those that will change within your design, such as conditional objects, data selections, etc.

To learnmore about each object, please see the chapter on "PlanetPress Design Objects" (page 123).

PPD File
PostScript Printer Definition. A PPD is a file ending with .ppd which is generally associated with a printer model or family. It con-
tains the PostScript commands that the printer recognizes and can use in its operation.

PP7 File

A PP7 file is a file that contains all the information PlanetPress Design requires to convert and execute the document. It
includes a description of the visual layout of the document, the sample data file, the PPD for the document, all the static images
for the document, and all page and document attachments.

By default it also includes the sample data file.

Keyboard Shortcuts

©2010 Objectif Lune Inc - 698 -

You create a PP7 file for a document the first time you save the document. You can also set a password on a PP7 file.

PTZ File

A PlanetPress Document Package, or PTZ, is a file format consisting of a ZIP file, which contains all the document's data and
resources. With a PTZ, resources are extracted and uncompressed only once when the PlanetPress Suite Workflow Tool
receives the file. All the resource files are stored in a sub-folder from where they are used as needed by the PlanetPress Suite
Workflow Tool, and a smaller PTK file is placed in the Documents folder.

PTK File

A PTK file is a file that is destined to execute in PlanetPress Suite Workflow Tools. It is the file PlanetPress Design copies into
the Documents folder of the PlanetPress Suite Workflow Tool installation when it installs a document into the PlanetPress Suite
Workflow Tool.

The content of the PTK file is a PlanetPress Talk program that describes the document and contains all of the information Plan-
etPress Suite Workflow Tools require to convert the document for any output type. Thus it includes all of the information con-
tained in the PP7 file for the document.

About Resources

A resource is a PostScript Attachment or an image that is added to your document. Once you add a resource, it becomes avail-
able for re-use throughout the document. All resources in the document appear in the Resources area of the document’s Struc-
ture area. For more information about resources, see the chapter on "Document Resources" (page 173).

Keyboard Shortcuts

©2010 Objectif Lune Inc - 699 -

©2010 Objectif Lune Inc - 700 -

	Copyright Information
	Table of Content
	Fonts and Styles
	Create a Style
	Apply a Style
	View or Edit the Properties of a Style
	Delete a Style
	Set the Default Style for New Objects and Groups
	Create a MICR Style for Account Information on Cheques
	Arabic Content in PlanetPress Design Documents
	CID-Keyed Fonts
	Double-byte Character Sets
	Encoding Tables
	Why have different encoding tables?
	Encoding Tables in PlanetPress Design
	Edit the Encoding Table for a Style
	Set a Default Encoding Table
	Export an Encoding Table
	Refresh the Font Lists
	Install a PostScript Font in PlanetPress Design

	Overview
	Icons used in this guide
	Other Documentation

	Getting Started
	Environment Considerations
	Terminal Server/Service
	VMWare/ESX
	32-Bit or 64-Bit?

	Network Considerations
	Mapped Drives

	Activate Your Printers
	The Nature of PlanetPress Design

	The PlanetPress Design Program
	Start PlanetPress Design
	The PlanetPress Suite Button
	Open a Document
	Save a Document
	Save and Open a Document Template
	Change the Interface Language
	Exit PlanetPress Design

	The Quick Access Toolbar
	The PlanetPress Design Ribbon
	Undo and Redo Commands
	Navigate Data Pages

	Document Structure Area
	Selecting and moving elements

	Add a Metadata Field
	Add a Document Page
	Edit the Order of Pages
	Duplicate a Page
	Delete a Page
	Object Layering Order
	Group and Ungroup Objects and/or Groups

	Data Pane
	Object Inspector
	Workspace Area
	Using the Select Tool in the Workspace
	Zoom in and out of the Workspace
	Pan the Workspace
	Use Guides
	Right-Click Menu in the Workspace

	Detailed Directions
	Debug an Object or Group
	Select Objects and/or Groups
	Lock and Unlock Objects and Groups
	Reposition Objects and/or Groups
	Resize Objects and/or Groups
	Delete Objects and/or Groups
	Align Objects and/or Groups
	Rotate Objects and/or Groups
	Duplicate Objects and/or Groups
	Snap or Unsnap Objects and/or Groups
	Copy Values of Properties between Objects and/or Groups
	Adding image resources to your document

	Messages Area
	Adding External Resources

	PlanetPress Design Preferences
	Notification Messages Preferences
	Image Resources Preferences
	Color Preferences
	Object Duplication Preferences
	Miscellaneous Preferences
	Editor Preferences
	Display Preferences
	Color Preferences
	Ribbon Preferences
	Object Inspector Preferences
	Document Structure Area Preferences
	Rulers Preferences
	Form Pages Preferences
	Compiler Messages Preferences
	Document and Pages Preferences
	Image Resources Preferences
	PDF Text Extraction Tolerance Factors
	Data Selector Display Preferences
	Dock and Undock Areas of the Program Window
	Minimize and Customize the Ribbon
	Show or Hide Areas of the Program Window
	Resize the Program Window Area

	Data in PlanetPress Design
	Sample Data File
	Capturing Data
	Capture Sample Data Using the Data Capture Tool
	LPD Input
	Serial Input
	Telnet Input
	Windows Queue Input

	The Data Selector
	Metadata tab

	Data Page
	Emulation
	Text-Based Emulation Properties
	Line Printer Emulation
	ASCII Emulation
	Comma Separated Value (CSV) Emulation
	Channel Skip Emulation
	Database Emulation
	Export or Import a Database Emulation Configuration
	XML Emulation
	PDF Emulation
	User-Defined Emulation
	Associate a Sample Data File with a Document

	Metadata

	Setting Up a Document
	Set Up a Document
	Cacheable Execution Options
	FreeForm Caching
	FreeForm 2 Caching
	VPS Caching
	VDX Caching
	PPD Setup
	Add or Remove PPDs
	Refresh the PPD Lists
	Specify Job Infos
	Associate Attachments with a Document

	Setting Up Pages
	Page Properties
	Page Types
	Normal Page
	Overlay Page
	Virtual Page
	Execution Order of Pages

	Advanced Paper Handling
	Associate Attachments with a Page
	Add or Remove Overlays

	PlanetPress Design Objects
	View or Edit the Properties of an Object
	Basic Attributes
	Repeat
	Snapping Points
	Manipulation
	PlanetPress Talk Before and PlanetPress Talk After
	Preview options

	Line Repeat and Data Overflow
	Snapping Points
	Object Preview Window

	Text and Box Object
	Borders
	Color
	Text
	Apply a Style to Text in a Text Object
	Set Tabs
	Adjust Alignment and Lines Per Unit settings
	Spell Check Text in a Text Object
	Use the Thesaurus
	Change the Width of the Text Object in the Text Area
	Use Variables in a Text Object

	Data Selection Object
	Data
	Lines
	Archive/Email/Fax
	Text-Based Data Selections
	Database Data Selections
	XML Data Selections
	PDF Data Selections
	Edit Text-Based Data Selection Size

	Postal Address Object
	Metadata

	PlanetPress Talk Object
	Shape Object
	N-Up Object

	Picture Object
	Barcode Object

	Supported Barcodes
	Australia Post
	Aztec
	CEPNet (Brazilian Postal Code)
	Codabar
	CodablockF
	Code 11
	Code 16k
	Code 39
	Code 49
	Code 93
	Code 128
	Datamatrix
	Discrete 2 of 5
	FIM
	GS1 Databar (RSS)
	IMB/OneCode
	Interleaved 2 of 5
	Japan Post
	Maxicode
	Micro PDF417
	Micro QR
	MSI Plessey
	PDF417
	Plessey
	USPS Postnet
	QR Code
	Royal Mail
	UPC
	ISBN

	Business Graphic Object
	Excel Graphic

	Capture Field Object
	Considerations
	Pidgets

	Capture Field Masks
	Custom Masks
	Regular Expressions

	Document Resources
	Image Resources
	Location of image resources
	Static and Dynamic Images
	Supported Image Formats
	Image Glossary

	Scanline Orientation
	Image Quality Settings

	Caches
	Host-Based Cache
	Printer-Based Cache
	Adding Image Resources

	Guidelines for Optimizing Images
	Modifying and Updating Images
	Color Management and Matching

	PostScript Attachments
	Delete a Resource

	Conditions
	Conditions
	Global Conditions
	Local Conditions
	Line Conditions
	Create or Remove a Line Condition
	PlanetPress Supports Global Variables in the Global Function Library Manager
	Create a Global Condition
	View or Edit the Properties of a Global Condition
	Apply or Remove a Global Condition
	Use a Global Condition as a Variable
	Combine Global Conditions
	Override a Global Condition
	Delete a Global Condition
	Create, Edit, or Delete Local Conditions
	Verify a Condition
	Add a Global Function
	View or Edit a Global Function
	Delete a Global Function

	PlanetPress Talk
	Variable PlanetPressTalk Properties
	The PlanetPress Talk Editor
	PlanetPress Talk Editor Features
	Debugging Features
	Code Execution in the Editor
	Enter a New Program in the Editor
	Import or Export a Program
	Save a Program
	Print a Program
	Exit the PlanetPress Talk Editor
	Show or Hide the Commands Area or Spy List
	Adjust the Sizes of the Commands Area, Code Area and Spy List
	Expand or Collapse Command Groups
	Enter Commands in the Editor
	Use Command and Variable Name Completion

	Dynamic Images
	PlanetPress Talk Expressions for Dynamic Images that Reference Image Resources
	PlanetPress Talk Expressions for Dynamic Images that Reference External Images
	Physical Location of Dynamic Images
	Host-Based or Printer-Based Document Execution
	Image Format
	Summary of Execution Environments
	Examples of PlanetPress Talk Expressions that Resolve to Pathnames

	Image Name and Pathname Resolution in Dynamic Images
	Custom Data Selections
	PlanetPress Talk Before and After

	Creating and using Runpages
	Convert an Object to PlanetPress Talk

	PlanetPress Talk Basics
	Assumed Knowledge
	PlanetPress Talk
	PlanetPress Talk Terminology
	The Elements of PlanetPress Talk
	PlanetPress Talk Syntax
	Data Types
	Variables
	Create a Global Variable
	View or Edit a Global Variable
	Delete a Global Variable
	System Variables with Local Scope
	System Variables with Global Scope
	System Objects with Global Scope

	Current System Object
	Runpage
	Using Foreign Language Text with PPtalk
	Learning PlanetPress Talk
	Integrate PlanetPress Talk into Documents
	Define and Assign Values to Variables
	Select Data
	Use Functions as Arguments
	Debug Scripts
	Tips and Tricks

	Code Samples
	Print a variable number of copies of a page based on a value in the datastream
	Store two lines of input data on one line of the data page
	Print a line of text on odd-numbered pages
	Determine the proper page to print based on the width of the data in the data...

	Language Reference
	Language Reference (Alphabetical)
	% (procedure)
	Current (system object)
	¤titeration (variable)
	&Document (system object)
	&EOJob (system variable)
	&FirstSide (system variable)
	&Height (system variable)
	&iterationcount (variable)
	lastoverflowcount (variable)
	&Metamode (variable)
	Physical (system object)
	&PrinterMode (system variable)
	Script (system object)
	&Str (system variable)
	&system (system object)
	&watch (system object)
	&Width (system variable)
	@ (function)
	@name (function/procedure)
	@page (procedure)
	$element (procedure)
	+ (operator & function)
	– (operator)
	Asterisk (*) operator
	/ (operator)
	Greater than (>) operator
	Greater or equal to (>=) operator
	Less than (<) operator
	Less or equal to (<=) operator
	= (operator)
	<> (operator)
	Add (function)
	And (Boolean operator function)
	Arc and ArcN (procedures)
	BeginDocument/EndDocument (procedure)
	BeginGroup/EndGroup (procedure)
	BeginParagraph … EndParagraph (procedure)
	BeginUTF8Paragraph … EndUTF8Paragraph (procedure)
	BitmapWidth/BitmapHeight (function)
	Breakpoint (procedure)
	C128 (function)
	CallPPD (procedure)
	Ceil (function)
	Char (function)
	CharPath (procedure)
	ClearPage (procedure)
	ClipPath (procedure)
	ClosePath (procedure)
	Cos (function)
	CRLF (procedure)
	CurToStr (function)
	CurToFloat (function)
	CurveTo/RCurveTo (procedure)
	Date (function)
	Define (procedure)
	DefineData (procedure)
	DefineImageIndex (procedure)
	Definemeta (function)
	Div (function)
	DoForm (procedure)
	endpageset (procedure)
	EPSWidth/EPSHeight (function)
	Eq (function)
	ExecPage (procedure)
	ExecScriptFile (function)
	Exit (procedure)
	ExpandString (function)
	Field (function)
	FieldCount (function)
	FieldName (function)
	Fill (procedure)
	Find (function)
	FloatToCur (function)
	FloatToInt (function)
	FloatToStr (function)
	For… EndFor (procedure)
	Function @name (procedure)
	GE (function)
	Get (function)
	GetBlack (function)
	GetCyan (function)
	GetMagenta (function)
	Getmeta (function)
	Getmetacount (function)
	GetNextDataPage(procedure)
	GetYellow (function)
	GRestore (procedure)
	GSave (procedure)
	GT (function)
	If (function)
	If … ElseIf… EndIf (procedure)
	InStream... EndInStream (procedure)
	IntToCur (function)
	IntToFloat (function)
	IntToStr (function)
	IsNumber (function)
	IsPageEmpty (function)
	LE (function)
	Left (function)
	Length (function)
	LineTo/RLineTo (procedure)
	LowerCase (function)
	LT (function)
	MapUTF8 (function)
	Margin (procedure)
	Mid (function)
	Mod (function & procedure)
	MoveTo/RMoveTo (procedure)
	Mul (function)
	NE (function)
	Neg (function)
	Not (Boolean operator function)
	Object $name()... EndObject (procedure)
	Or (Boolean operator function)
	Ord (function)
	OutputDebugString (procedure)
	PassThrough (procedure)
	PDFPageCount (function)
	PDFWidth/PDFHeight (function)
	Pie (procedure)
	PixelHeight (function)
	PixelWidth (function)
	Pos (function)
	Put (procedure)
	Random (function)
	Rectangle (procedure)
	RectFill (procedure)
	RectFillStroke (procedure)
	RectStroke (procedure)
	Region (function)
	Regionline (function)
	Repeat... Until (procedure)
	ResourceType (function)
	Right (function)
	RunPS (procedure)
	Scale (procedure)
	Search … EndSearch (procedure)
	SelectMedia (procedure)
	SelectPrinter (procedure)
	Set (procedure)
	SetAngle (procedure)
	SetBodyText (procedure)
	SetDash(procedure)
	SetDataPage(procedure)
	SetEmailAddress (procedure)
	SetEmailSubject (procedure)
	SetEmulation(procedure)
	SetUserCRLF (procedure)
	SetFaxInformation (procedure)
	SetFaxNumber (procedure)
	SetFillColor (procedure)
	SetImageIndex (procedure)
	SetLineWidth (procedure)
	SetLPP(procedure)
	SetPDFBookmark (procedure)
	SetStrokeColor (procedure)
	SetStyle (procedure)
	SetStyleExt (procedure)
	Show / ShowCenter / ShowRight (procedure)
	ShowBarCode (procedure)
	ShowBarcode2of5(procedure)
	ShowBarcodeAustPost (procedure)
	ShowBarcodeAztec (procedure)
	ShowBarcodeCodabar (procedure)
	ShowBarcodeCodablockF (procedure)
	ShowBarcodeCode11 (procedure)
	ShowBarcodeCode128 (procedure)
	ShowBarcodeCode16k (procedure)
	ShowBarcodeCode39 (procedure)
	ShowBarcodeCode49 (procedure)
	ShowBarcodeCode93 (procedure)
	ShowBarcodeDatamatrix (procedure)
	ShowBarcodeEAN8 (procedure)
	ShowBarcodeEAN13 (procedure)
	ShowBarcodeFIM (procedure)
	ShowBarcodeI2of5 (procedure)
	ShowBarcodeISBN (procedure)
	ShowBarcodeJapanpost (procedure)
	ShowBarcodeMaxicode (procedure)
	ShowBarcodeMicroPDF (procedure)
	ShowBarcodeMicroQR (procedure)
	ShowBarcodeMSI (procedure)
	ShowBarcodeOnecode (procedure)
	ShowBarcodePDF417 (procedure)
	ShowBarcodePlessey (procedure)
	ShowBarcodePostnet (procedure)
	ShowBarcodeQRCode (procedure)
	ShowBarcodeRoyalMail (procedure)
	ShowBarcodeRSS (procedure)
	ShowBarcodeUPCA (procedure)
	ShowBarcodeUPCE (procedure)
	ShowBitmap (procedure)
	ShowCaptureUserArea (procedure)
	ShowEPS (procedure)
	ShowLeftRight (procedure)
	ShowPage (procedure)
	ShowPDF (procedure)
	ShowUTF8 (procedure)
	ShowUTF8Left / ShowUTF8Right / ShowUTF8Center (procedure)
	Sin (function)
	StopJob (procedure)
	Store (procedure)
	StringReplace (function)
	StringWidth (function)
	StringWidthUTF8 (function)
	Strip (function)
	Stroke (procedure)
	StrokeAndFill (procedure)
	StrToCur (function)
	StrToFloat (function)
	StrToInt (function)
	Sub (function)
	SubRecCount (function)
	Time (function)
	Translate (procedure)
	Trim (function)
	TrimLeft (function)
	TrimRight (function)
	UpperCase (function)
	xmlCount()
	xmlGet()
	XOr (Boolean operator function)

	Language Reference (by element type)
	System Variables
	&EOJob (system variable)
	&FirstSide (system variable)
	&Height (system variable)
	&PrinterMode (system variable)
	&Str (system variable)
	&Width (system variable)
	System Objects
	Current (system object)
	Physical (system object)
	&system (system object)
	Assignment Operator
	= (operator)
	Mathematical Operators and Operator Functions
	+ (operator & function)
	Add (function)
	– (operator)
	Sub (function)
	Asterisk (*) operator
	Mul (function)
	/ (operator)
	Div (function)
	Neg (function)
	Cos (function)
	Sin (function)
	Random (function)
	Ceil (function)
	String Operator
	+ (operator & function)
	Boolean Operator Functions
	And (Boolean operator function)
	Not (Boolean operator function)
	Or (Boolean operator function)
	XOr (Boolean operator function)
	Comparison Operators and Operator Functions
	GT (function)
	Greater than (>) operator
	GE (function)
	Greater or equal to (>=) operator
	LT (function)
	Less than (<) operator
	LE (function)
	Less or equal to (<=) operator
	Eq (function)
	= (operator)
	NE (function)
	<> (operator)
	Conversion Operator Functions
	FloatToCur (function)
	FloatToInt (function)
	FloatToStr (function)
	IntToCur (function)
	IntToFloat (function)
	IntToStr (function)
	StrToCur (function)
	StrToFloat (function)
	StrToInt (function)
	Loop Structures
	For… EndFor (procedure)
	Repeat... Until (procedure)
	Search … EndSearch (procedure)
	Exit (procedure)
	Condition Structures
	If … ElseIf… EndIf (procedure)
	If (function)
	Procedures
	% (procedure)
	@name (function/procedure)
	@page (procedure)
	$element (procedure)
	Arc and ArcN (procedures)
	BeginDocument/EndDocument (procedure)
	BeginGroup/EndGroup (procedure)
	BeginParagraph … EndParagraph (procedure)
	BeginUTF8Paragraph … EndUTF8Paragraph (procedure)
	Breakpoint (procedure)
	CallPPD (procedure)
	CharPath (procedure)
	ClearPage (procedure)
	ClipPath (procedure)
	ClosePath (procedure)
	CRLF (procedure)
	CurveTo/RCurveTo (procedure)
	Define (procedure)
	DefineData (procedure)
	DefineImageIndex (procedure)
	DoForm (procedure)
	endpageset (procedure)
	ExecPage (procedure)
	Exit (procedure)
	Fill (procedure)
	For… EndFor (procedure)
	Function @name (procedure)
	GetNextDataPage(procedure)
	GRestore (procedure)
	GSave (procedure)
	If … ElseIf… EndIf (procedure)
	InStream... EndInStream (procedure)
	LineTo/RLineTo (procedure)
	Margin (procedure)
	MoveTo/RMoveTo (procedure)
	Object $name()... EndObject (procedure)
	OutputDebugString (procedure)
	PassThrough (procedure)
	Pie (procedure)
	Put (procedure)
	Rectangle (procedure)
	RectFill (procedure)
	RectFillStroke (procedure)
	RectStroke (procedure)
	Repeat... Until (procedure)
	RunPS (procedure)
	Scale (procedure)
	Search … EndSearch (procedure)
	SelectMedia (procedure)
	SelectPrinter (procedure)
	Set (procedure)
	SetAngle (procedure)
	SetBodyText (procedure)
	SetDash(procedure)
	SetDataPage(procedure)
	SetEmailAddress (procedure)
	SetEmailSubject (procedure)
	SetEmulation(procedure)
	SetUserCRLF (procedure)
	SetFaxInformation (procedure)
	SetFaxNumber (procedure)
	SetFillColor (procedure)
	SetImageIndex (procedure)
	SetLineWidth (procedure)
	SetLPP(procedure)
	SetPDFBookmark (procedure)
	SetStrokeColor (procedure)
	SetStyle (procedure)
	SetStyleExt (procedure)
	Show / ShowCenter / ShowRight (procedure)
	ShowBarCode (procedure)
	ShowBarcode2of5(procedure)
	ShowBarcodeAustPost (procedure)
	ShowBarcodeAztec (procedure)
	ShowBarcodeCodabar (procedure)
	ShowBarcodeCodablockF (procedure)
	ShowBarcodeCode11 (procedure)
	ShowBarcodeCode128 (procedure)
	ShowBarcodeCode16k (procedure)
	ShowBarcodeCode39 (procedure)
	ShowBarcodeCode49 (procedure)
	ShowBarcodeCode93 (procedure)
	ShowBarcodeDatamatrix (procedure)
	ShowBarcodeEAN8 (procedure)
	ShowBarcodeEAN13 (procedure)
	ShowBarcodeFIM (procedure)
	ShowBarcodeI2of5 (procedure)
	ShowBarcodeISBN (procedure)
	ShowBarcodeJapanpost (procedure)
	ShowBarcodeMaxicode (procedure)
	ShowBarcodeMicroPDF (procedure)
	ShowBarcodeMicroQR (procedure)
	ShowBarcodeMSI (procedure)
	ShowBarcodeOnecode (procedure)
	ShowBarcodePDF417 (procedure)
	ShowBarcodePlessey (procedure)
	ShowBarcodePostnet (procedure)
	ShowBarcodeQRCode (procedure)
	ShowBarcodeRoyalMail (procedure)
	ShowBarcodeRSS (procedure)
	ShowBarcodeUPCA (procedure)
	ShowBarcodeUPCE (procedure)
	ShowBitmap (procedure)
	ShowCaptureUserArea (procedure)
	ShowEPS (procedure)
	ShowLeftRight (procedure)
	ShowPage (procedure)
	ShowPDF (procedure)
	ShowUTF8 (procedure)
	ShowUTF8Left / ShowUTF8Right / ShowUTF8Center (procedure)
	StopJob (procedure)
	Store (procedure)
	Stroke (procedure)
	StrokeAndFill (procedure)
	Translate (procedure)
	Functions
	@ (function)
	@name (function/procedure)
	BitmapWidth/BitmapHeight (function)
	C128 (function)
	Ceil (function)
	Char (function)
	Date (function)
	Definemeta (function)
	EPSWidth/EPSHeight (function)
	ExecScriptFile (function)
	ExpandString (function)
	Field (function)
	FieldCount (function)
	FieldName (function)
	Find (function)
	Get (function)
	GetBlack (function)
	GetCyan (function)
	GetMagenta (function)
	Getmeta (function)
	Getmetacount (function)
	GetYellow (function)
	IsNumber (function)
	IsPageEmpty (function)
	Left (function)
	Length (function)
	LowerCase (function)
	MapUTF8 (function)
	Mid (function)
	Mul (function)
	Ord (function)
	PDFPageCount (function)
	PDFWidth/PDFHeight (function)
	PixelHeight (function)
	PixelWidth (function)
	Pos (function)
	Random (function)
	Region (function)
	Regionline (function)
	ResourceType (function)
	Right (function)
	StringReplace (function)
	StringWidth (function)
	StringWidthUTF8 (function)
	Strip (function)
	Sub (function)
	SubRecCount (function)
	Time (function)
	Trim (function)
	TrimLeft (function)
	TrimRight (function)
	UpperCase (function)
	xmlCount()
	xmlGet()

	System Variables (by data type)
	Integer
	Measure
	String
	Boolean

	Functions (by return value data type)
	Currency
	Add (function)
	FloatToCur (function)
	IntToCur (function)
	StrToCur (function)
	Integer
	Add (function)
	Ceil (function)
	Div (function)
	FieldCount (function)
	FloatToInt (function)
	Get (function)
	GetBlack (function)
	GetCyan (function)
	GetMagenta (function)
	GetYellow (function)
	Getmetacount (function)
	If (function)
	Length (function)
	Mod (function & procedure)
	Mul (function)
	Neg (function)
	Ord (function)
	PDFPageCount (function)
	PixelHeight (function)
	PixelWidth (function)
	Pos (function)
	ResourceType (function)
	StrToInt (function)
	Sub (function)
	SubRecCount (function)
	xmlCount()
	Measure
	Add (function)
	BitmapWidth/BitmapHeight (function)
	Cos (function)
	CurToFloat (function)
	Div (function)
	EPSWidth/EPSHeight (function)
	Get (function)
	If (function)
	IntToFloat (function)
	Mul (function)
	Neg (function)
	PDFWidth/PDFHeight (function)
	Random (function)
	Sin (function)
	StringWidth (function)
	StringWidthUTF8 (function)
	StrToFloat (function)
	Sub (function)
	String
	@ (function)
	C128 (function)
	Char (function)
	CurToStr (function)
	ExpandString (function)
	Field (function)
	FieldName (function)
	FloatToStr (function)
	Get (function)
	If (function)
	IntToStr (function)
	Left (function)
	LowerCase (function)
	Mid (function)
	Right (function)
	StringReplace (function)
	Strip (function)
	Trim (function)
	TrimLeft (function)
	TrimRight (function)
	UpperCase (function)
	xmlGet()
	Boolean
	Add (function)
	Eq (function)
	Find (function)
	GE (function)
	GT (function)
	If (function)
	IsNumber (function)
	IsPageEmpty (function)
	LE (function)
	LT (function)
	NE (function)
	Not (Boolean operator function)
	Or (Boolean operator function)
	XOr (Boolean operator function)

	Procedures (by category)
	Debugging
	Breakpoint (procedure)
	OutputDebugString (procedure)
	Variables
	Define (procedure)
	Put (procedure)
	Set (procedure)
	Global Functions
	@name (function/procedure)
	Function @name (procedure)
	Comments
	% (procedure)
	Graphics State
	GRestore (procedure)
	GSave (procedure)
	Scale (procedure)
	SetAngle (procedure)
	SetDash(procedure)
	SetFillColor (procedure)
	SetLineWidth (procedure)
	SetStrokeColor (procedure)
	Translate (procedure)
	Path
	Arc and ArcN (procedures)
	ClosePath (procedure)
	CurveTo/RCurveTo (procedure)
	Fill (procedure)
	LineTo/RLineTo (procedure)
	MoveTo/RMoveTo (procedure)
	Pie (procedure)
	Rectangle (procedure)
	RectFill (procedure)
	RectFillStroke (procedure)
	RectStroke (procedure)
	Stroke (procedure)
	StrokeAndFill (procedure)
	Paragraphs and Text
	BeginParagraph … EndParagraph (procedure)
	BeginUTF8Paragraph … EndUTF8Paragraph (procedure)
	CRLF (procedure)
	Margin (procedure)
	ShowLeftRight (procedure)
	Show / ShowCenter / ShowRight (procedure)
	Styles
	SetStyle (procedure)
	SetStyleExt (procedure)
	Objects
	Object $name()... EndObject (procedure)
	Bar Codes
	ShowBarCode (procedure)
	ShowBarcode2of5(procedure)
	ShowBarcodeAustPost (procedure)
	ShowBarcodeAztec (procedure)
	ShowBarcodeCodabar (procedure)
	ShowBarcodeCodablockF (procedure)
	ShowBarcodeCode11 (procedure)
	ShowBarcodeCode128 (procedure)
	ShowBarcodeCode16k (procedure)
	ShowBarcodeCode39 (procedure)
	ShowBarcodeCode49 (procedure)
	ShowBarcodeCode93 (procedure)
	ShowBarcodeDatamatrix (procedure)
	ShowBarcodeEAN8 (procedure)
	ShowBarcodeEAN13 (procedure)
	ShowBarcodeFIM (procedure)
	ShowBarcodeI2of5 (procedure)
	ShowBarcodeISBN (procedure)
	ShowBarcodeJapanpost (procedure)
	ShowBarcodeMaxicode (procedure)
	ShowBarcodeMicroPDF (procedure)
	ShowBarcodeMicroQR (procedure)
	ShowBarcodeMSI (procedure)
	ShowBarcodeOnecode (procedure)
	ShowBarcodePDF417 (procedure)
	ShowBarcodePlessey (procedure)
	ShowBarcodePostnet (procedure)
	ShowBarcodeQRCode (procedure)
	ShowBarcodeRoyalMail (procedure)
	ShowBarcodeRSS (procedure)
	ShowBarcodeUPCA (procedure)
	ShowBarcodeUPCE (procedure)
	Resources
	InStream... EndInStream (procedure)
	ShowBitmap (procedure)
	ShowEPS (procedure)
	ShowPDF (procedure)
	Elements
	$element (procedure)
	Emulation, Data File, and Data Pages
	ClearPage (procedure)
	DefineData (procedure)
	DoForm (procedure)
	GetNextDataPage(procedure)
	SetDataPage(procedure)
	SetEmulation(procedure)
	SetLPP(procedure)
	Store (procedure)
	Data Destined for PlanetPress Image, PlanetPress Fax and PlanetPress Search
	DefineImageIndex (procedure)
	SetBodyText (procedure)
	SetEmailAddress (procedure)
	SetEmailSubject (procedure)
	SetFaxInformation (procedure)
	SetFaxNumber (procedure)
	SetImageIndex (procedure)
	SetPDFBookmark (procedure)
	Document Pages
	@page (procedure)
	ExecPage (procedure)
	ShowPage (procedure)
	PPDs and PostScript
	CallPPD (procedure)
	PassThrough (procedure)
	RunPS (procedure)
	SelectMedia (procedure)
	Program Control
	Exit (procedure)
	For… EndFor (procedure)
	If … ElseIf… EndIf (procedure)
	Repeat... Until (procedure)
	Search … EndSearch (procedure)
	StopJob (procedure)

	Conversion Tables
	ASCII Conversion Table
	Points to Inches or Centimeters
	Points to Inches
	Points to Centimeters

	Line Height as a Function of Lines Per Unit (LPU)
	Line Height as a Function of Lines Per Inch
	Line Height as a Function of Lines Per Centimeter

	Tools and Utilities
	The Image Downloader
	Adjust the Image Quality Options
	Virtual Drive Manager
	Access Manager
	To open the Access Manager
	To add a new entry in the list
	To modify permissions

	SOAP Access
	To add a new SOAP user
	To define or change the permissions for a SOAP User

	Managing Documents and Printers
	Obtain Information from a Printer
	Delete Documents or Files on the Printer
	Printer Firmware Version
	Control Versions of a Document
	Adjust Printer Settings
	Form Cache
	Remove Background Color
	Named Colors
	Create a Graybar Report
	The Hex Viewer
	Date and Time Format

	Document Output and Preview
	About Previewing and Printing
	Preview a Document On Screen
	Previews of Documents that Use ASCII Emulation
	Preview a Capture-Ready document
	Print a Document Preview
	Print Using a Windows Driver
	Printing Using a Windows Driver
	Generate a Soft Proof
	Convert a Document and Save It to a File

	Install a Document
	Install a document on one or more printers
	Send the document to one or more local PlanetPress Workflow servers
	Save a PTK or PTZ file to send to a remote PlanetPress Workflow installation
	Send a document to PlanetPress iWatch or a UNIX or Linux CodeHost BrightQ pri...

	Perform a Batch Conversion and/or Installation
	To use the Batch Send To wizard
	Move a Document between PlanetPress Design Installations
	Trigger

	How a Variable Content Document Runs on a Printer
	Phase 1: Data Reading
	Phase 2: Global Condition Resolution
	Phase 3: Document Page Printing

	Techniques for Inserting Triggers
	Trigger Syntax
	Trigger Syntax for Documents Installed on a Hard Disk
	Trigger Syntax for Documents Installed in RAM
	Trigger Syntax for Documents Installed in Flash Memory
	Run a Document Installed on a Printer
	Run a Document Installed in a PlanetPress Suite Workflow Tool
	Run a Document that Uses a Database Emulation
	Run Several Documents as a Single Job
	Troubleshoot Execution Problems

	Keyboard Shortcuts
	PlanetPress Design General
	Exit PlanetPress Design
	Use the Help System
	Show or Hide Areas of the Program Window
	Work with Hierarchies
	Work in the Document Structure Area
	Work with Documents
	Preview and Install Documents
	Work with Pages
	Adjust the Zoom
	Use Basic Editing Commands
	Work in the Data Pane
	Work with the Data File
	Work with Data Selections
	Use the Hex Viewer
	Work with Objects
	Work in the Text Properties of a Text Object

	PlanetPress Talk Editor
	General
	Show or Hide Areas of the Editor
	Expand or Collapse Groups in the Commands Area
	Work in the Code Area
	Use Command Name Completion/Argument Insertion
	Undo Commands
	Work with Selections
	Add/Remove Comments
	Indent Code
	Search
	Jump to a Specific Line
	Use Bookmarks
	Execute a Program
	Debug Code
	Print the Script
	Converted Document

	About Documents
	About Document Elements

	About Data Selections
	About Objects
	PPD File
	PP7 File
	PTZ File
	PTK File
	About Resources

	Bookmarks
	Names

