{3 OBJECTIFLUNE

PlanetPresse
Connect

Workflow

User Guide

Version 2021.2

PlanetPress.

Workflow

OL® Software

User Guide
Version 2021.2
Last Revision: 2022-07-05

Objectif Lune, Inc.
2030 Pie-IX, Suite 500
Montréal, QC, Canada, H1V 2C8

+1 (514) 875-5863
www.objectiflune.com

All trademarks displayed are the property of their respective owners.

© Objectif Lune, Inc. 1994-2022. All rights reserved. No part of this documentation may be
reproduced, transmitted or distributed outside of Objectif Lune Inc. by any means whatsoever
without the express written permission of Objectif Lune Inc. Inc. Objectif Lune Inc. Inc. disclaims
responsibility for any errors and omissions in this documentation and accepts no responsibility
for damages arising from such inconsistencies or their further consequences of any kind.
Objectif Lune Inc. Inc reserves the right to alter the information contained in this documentation
without notice.

OBJECTIF LUNE

http://www.objectiflune.com/

Table of Contents

Table of Contents . . 4
Welcome to PlanetPress Workflow 2021.2 . . . 13
Notes in this QUIde . 13
Installation and setUp ... 15
SyStem reqQUIreMEN S 15
Operating Sy S emM L 15
Virtual eNVIrONMENES 16
Minimum hardware reqUIremMeNntS 16
Recommended hardware requirements ... L 17
Requirements for individual Connect modules 17
Environment considerations 18
TerminNal SeIVICES 18
Virtual eNVIFONMEN S 18

3 2-bit O BA-Dit 7 L 19
ANtiVirus CONSIAeratioNS ... 19
Backup SOWaAIe 21
Microsoft Office compatibility 21
Silentinstallation ... 21
Command line parameters .. 21

E XA G L 22
Setting up the working environment . 22
Network CoNSIderations 22
Local and network rights L 23
AcCCoUNt reqQUITEMENES 23
Mapped AriVes . 23
Network ports used by each service 24
KNOWN ISSUCS . 26
Runtime parameter values getreset 26
Custom plugin importation issue in 2021.2 L 26
NodedS Server prompts for Connect Servercredentials 26
Microsoft patch causing handling of XLS tofail 27
Data Repository ermor 28
Other KNOWN ISSUCS . 28

Page 4

PlanetPress. Workflow

BSOS 32
Related tools and resource files 32
FeatUres 34
About Workflow Configurations 34
Creating a new configuration 35
Open a PlanetPress Workflow configuration file 36
Saving and sending a Workflow Configuration 37
Exit PlanetPress Workflow Configuration program 39
Workflow Configuration resource files 40
CONNECt TESOUICES 41
PlanetPress Design documentsl 45
PrintShop Mail documents ... 51
ADOU data 51
About documents and variable data 52
JOD Tl L 53
Job file names and output file names 53
Data seleCtions 55
Aboutdata emulation 61
Sample Data .. 72
Metadata . 76
Working With JS ON 92
Data RePOSIONY .. L 96
S TUCIUN 97
Accessing the Data ReposSitory 97
Where to find the Data Repository 99
Debugging and error handling 99
About error handling ... 99
Using the On Errortab .. L 100
Creating and using Error proCesSes 101
ACCESSING the LOGS . 103
Resubmit backed up inputfilesto a process 105
Debugging your PlanetPress Workflow process ... 107
ADOUt PrINtING 111
OL ConneCt Print JODS . . 111
PlanetPress Suite print JObS ... 112
PlanetPress Workflow printer queues 113
Page 5

PlanetPress. Workflow

Shared printer qUeUe PropPerties 114

Windows Output printer QUeUe ... 116
LPR Output Printer QUEUE ... o 117
FTP Output Printer QUEUE e 118
Send to Folder printer QUEUE 120
Load balanCing ... o 121
Associating PlanetPress Design documents and PlanetPress printer queues 121
TGOS 123
Objectif Lune Printer Driver (PS) ... 123
About processes and SUDPIOCESSES 126
PO S SO S 126
StAMUD PrOCESSES ... 128
SUDPIOCESSES ... 128
Crealing @ PrOCESSo 128
IMPOMING PrOCESSES 130
Activating or deactivating a proCess 132
ProCESS PrOPEIES L 133
About branches and conditions 138
Converting a branch to @ sSUbpProCess 140
USING SOOI S e 141
RUN St asK . L 141
AP IS 142
The Script Editor and XSLT Editor ... 143
SOAP Server APl ReferenCe ... oL 149
The Watch ObjeCt . L 156
Data Repository APl 175
Metadata AP 197
A DU S L 218
COUN 218
FielaS 218
VA EX 218
NOAE T Y P . 218
P arENt 219
S OO O 219
SelectedCOUNt L 219
SeleCted S ate 220
Add(Integer INAeX) ..o 220
Page 6

PlanetPress. Workflow

AttributeByIndex(Integer IndexX) 221
AttributeByName(const String Name) ... L 221
LA) <o 222
COPY) oo 222
U oo 222
DatapageC oUNt() .. L 222
Dl) oo 223
DocUMENtC OUNY() .. 223
FieldBylndex(Integer INdeX) ... o 223
FieldByName(const String Name) 224
FieldByNamelndex(const String Name, Integer Index) 224
INdeXIND OCUMENT() .. 225
INAEXINGIOUP() ..o 225
INAEXINJOD) <L 225
em(Integer INAeX) ..o 226
PageC OUN () oo 226
P aS () oo 227
PasteAt(Integer INdeX) ... L 227
Select(TSelectWhat SelectWhat) 228
SelectedDatapageCount() ... o 228
SelectedDocumentCoUNt() ... o 228
SelectedindexInDocument() 229
SelectedINdeXINGroUP() ... 229
SelectedIndexINdob() ... L 229
SelectedPageCoUNt() ... oo 229

Sort(const String Name, optional TSortFlags Flags, optional const String Name2,
optional TSortFlags Flags2, optional const String Name3, optional TSortFlags Flags3) .230

Parameters 235
EXCEP I ONS 235
Parameters 236
EXCEP I ONS . 236
P aramM e e S 237
REIUINS 237
P arame e S 237
EXCEP I ONS 237
Parameters 237
RO UM 238
Page 7

PlanetPress. Workflow

EXCEP I ONS 238

Parameters 238
REIUINS 238
P aramM e e S 238
REIUINS 239
EXCEP I ONS 239
Parame e S 239
RO UM 239
EXCEP I ONS 239
AlambicEdit APl reference 243
StOPPING EXECULION Ll 276
Special WorKi oW tYPES .. o 278
HT TP Server WorkfloW . 279
P OF WoOrK i OW 287
PlanetPress Capture Workflow ... 289
Workflow processes in a Connect Send solution 298
ADOUL TaSKS 300
AdAING taSKS .. 301
Editing atask ..l 302
TasSK PrOPEI ©S 302
MaSKS . 306
Selecting a resource file in task properties 307
INPUL ASKS 309
ACHON taSKS L 379
Data SPl IS L 452
Process 0QiC tasKS . . . 472
CONNEC 0T tASKS ... 491
PlanetPress Capture ... L 538
Metadata tasks ... 560
OL CoNNECt SN ... 577
OL CoNNECHIASKS .. 591
OUIPUL taSKS 655
Document Management tasks 682
ConNNeCtioN tab 684
Download tab . 686
CoNNeCtiON taD 689
Upload tab 691
Page 8

PlanetPress. Workflow

Advanced ProPerieS . L 699

Advanced ProPEer eS . L 702
EMail SerVICeS 709
UNKNOWN BaSKS 716
About Variables . 716
Job Info variables ... 717
SyStemM Variables 719
Local variables .. . L 724
Global variables 725
Variable task properties ... 727
WoOrKiOW add-0ONS ... L 729
PlanetPress Capture ... L 730
Capture ONTheGo (COT Q) ..o 758
About PlanetPress Fax 758
About PlanetPress Image 759
OL CoNNeCt SeNA 760
ZUGF R D 761
About related programs and ServiCes 762
Available InpUt SErVICeS . 763
Available OUIPUL SEIVICES 763
Start and stop PlanetPress Workflow Service 764
Users and configurations 765
WoOrKI OW SeIVICES L 767
Pref N CesS 769
Other preferences and settings L 770
General appearance preferenCeso 770
Object Inspector appearance preferences 771
Configuration Components pane appearance preferences 772
GO0 772
Ot ONS 772
Default configuration behavior preferences 773
Notification Messages behavior preferences ... L 774
P e O CES 774
Sample Data behavior preferences 777
Pre O ENCES . 777
Network behavior preferencCes 777
Pre e e CES 777
Page 9

PlanetPress. Workflow

PlanetPress Capture preferences 778

PlanetPress Capture Server/Client 779
PlanetPress Document Manager 780
PlanetPress Capture ODBC Settings 782
PlanetPress Capture Pen Management Tool 784
PlanetPress Capture License Management 786
OL ConnecCt pPreferenCeS o 787
PDF text extraction tolerance factors L 789
General and l0gging preferenCes 791
Messenger plugin preferenCes 792
P e O ENCES .. . 792
HTTP Server Input plugin preferences 1 793
P e O ENCES .. 793
HTTP Server Input plugin preferences 2 .. . 797
LPD Input plugin preferenCes 799
Pre O ENCES . 799
NodedS Server Input plugin preferences 1 . 800
NodedS Server Input plugin preferences 2 ... 802
NodedS Server Input plugin preferences 3 803
Testing the Server . L 804
Changing the LOg in Page ... 804
Setting the duration of the authentication 804
Serial Input plugin preferences L 805
Pre O ENCES . 805
Telnet Input plugin preferences ... 806
P e el CS 806
PlanetPress Fax plugin preferences 807
P e O ENCES ... 807
OpenText RightFax OplioNs ... 810
FTP Output Service preferences ... L 810
O ONS 810
PlanetPress Image preferenCes 811
LPR Output preferencCes ... o 814
O ONS 815
PrintShop Web Connect Service preferences ... 816
EditOr OptiONS ..o 816
The userinterface ... 821
Page 10

PlanetPress. Workflow

Customizing the Workspace 822
Dock and undock areas of the Program Window 822

Show or hide areas of the program window 824
Combine and attach areas 824
Resize the program WiNdOW areas 829
Change the Interface language ... 830
PlanetPress Workflow Button ... 831
O ONS 831
Configuration Components Pane 832
Components Area SeCliONS .. . 832
PlanetPress Design document properties 835
Moving and copying configuration components 838
Renaming objects in the Configuration Components Pane 841
Reordering objects in the Configuration Componentspane 841
Grouping Configuration Components 842
Expanding and collapsing categories and groups in the Configuration Components
PN 844
Deleting something from the Configuration Componentspane 844
DHal0GS .. 845
ACCESS MaNAQET 845
Activate a Printer o 851
Advanced SQL Statement Dialog 853
Data Repository Manager ... 854
The Data SeleCtOr ... o 857
The File VieWer 861
Data Selector display preferences ... 861
PO VI OWET 864
Printer UtIIteS 866
ProCESS PrOPEIES L 869
RUle INterface 874
Task Properties dialog ...l 877
Update doCUMENt . 878
Virtual Drive Manager . 879
The Debug Information pane 879
The Message Area Pane ... L 880
The Object INSPeCtOr PaNe ... L 881
Editing ProPerties .o 882
Page 11

PlanetPress. Workflow

The PlUG-iN Bar L 883
C At g0 I O L 883
Settings and customization ... 884

The PrOCESS ar@a 885
Cutting, copying and pasting tasks and branches 886
Highlight a task or branCh ... 888
Disabling tasks and branches 888
Moving a task or branch using drag-and-drop ... 889
Redo a CommMaNd . 890
Removing tasks or branChes 890
Replacing tasks, conditions orbranches 891
Resize the rows and columns ofthe Process area ... 892
Collapse and expand branches and conditions 892
UNdo a CoMMaAaNd ... 893
Zoom in orout within the Process Area 893

The QUICk ACCeSsS TOOIDAr e 893
AddiNg DU ONS 894
RemoVINg DU ONS 894
Moving the toolbar .. . 894

The PlanetPress Workflow Ribbon 894

The Task Comments Pane e 898

The PlanetPress Workflow Service Console 898
Controlling SeIVICES ... 898
ViIeWINg 100G fIleS L 899

Knowledge Base 901

Legal Notices and Acknowledgments 902

Copyright Information L 908
Page 12

PlanetPress. Workflow

Welcome to PlanetPress Workflow
2021.2

This PDF documentation covers version 2021.2. To view the documentation of previous
versions please refer to the PDF files available in the Downloads section of our website:
http://www.objectiflune.com/OL/Download/DownloadCenter.

Workflow is the heart of all of our solutions. Working in conjunction with PlanetPress Connect,
PlanetPress Capture, CaptureOnTheGO, PlanetPress Imaging, PlanetPress Fax, and a variety

of plugins, it helps improve your communications processes. Processes such as
communication creation, interaction, distribution and even maintenance.

Workflow is the "super dispatcher". It caters for inputs from a huge variety of sources, such as
email, web pages, databases, individual files (PDF, csv, XML, etc), print streams, FTP, Telnet
and ERP systems. This data can then be analyzed, modified, stored, verified, routed and used
as triggers for other processes from entirely within Workflow. Finally itis passed to one of our
other products (or not) to be outputted in multiple ways (printed, emailed, posted, archived, sent
to third party solutions, etc..).

Consider Workflow as a set of buildings blocks that enable you to build your own customized
automated processes which will fit your environment and not the other way around. Create
processes that will save you time and money!

Notes in this guide

Notes are used throughout this guide to draw your attention to certain information.

Note

Important information that deserves your attention.

Page 13

PlanetPress. Workflow

http://www.objectiflune.com/OL/Download/DownloadCenter.aspx?Product=PlanetPress&Cat=DocumentationItem#1

Tip

Information that may help you use PlanetPress Workflow better or that suggests an easier
method.

Warning

Information that is potentially critical to using PlanetPress Workflow.

Page 14

PlanetPress. Workflow

Installation and setup

The installation procedure for Workflow is described in the topic Installing Workflow.

The following topics describe the different considerations that are important in regards to the
installation and use of PlanetPress Workflow.

» "System requirements" below
« "Environment considerations" on page 18
» "Setting up the working environment" on page 22

« "Known Issues" on page 26

System requirements

These are the recommended system requirements for PlanetPress Workflow 2021.2.

Operating System

Microsoft Windows 2012/2012 R2 Server

Microsoft Windows 2016 Server

Microsoft Windows 2019 Server

Microsoft Windows 8.1

Microsoft Windows 10 (Pro and Enterprise versions only)

Note

PlanetPress Workflow2021.2 is expected to run on some older operating systems, but
just as Microsoft no longer supports these older operating systems, Objectif Lune Inc. will
not provide support for Objectif Lune Inc. products running on them.

The historic operating systems that it is expectedPlanetPress Workflow2021.2 will

continue to run on include: Microsoft Windows 7; Microsoft Windows 2003 Server; and
Microsoft Windows 2008 Server R2.

Page 15

PlanetPress. Workflow

Note

The NodedJS Server installed with Workflow is not supported in an x86 environment.

Virtual environments

PlanetPress Workflow supports the following virtual environments:

o VMWare Environments. This includes VMWare Player, VMWare Workstation as well as
VMWare ESX Server.

« VMWare VMotion. This means the virtual machine hosting PlanetPress Workflow can be
automatically moved from one ESX server to another in a clustered installation.

o Microsoft Hyper-V/Azure infrastructure environments.
« Amazon Web Services (AWS)

PlanetPress Workflow is not officially supported on any other virtual machines such as Virtual
PC, Parallels, Bochs, Xen, etc. While running PlanetPress Workflow on these virtual machines
may work fine we have not tested them and cannot offer support for them.

Warning

The PlanetPress Workflow End-User License Agreement (EULA) specifies that a
PlanetPress Workflow software license may only be used on a single virtual or physical
PC at a time. While copying a virtual machine for backup purposes is acceptable, running
two instances of the same machine, using the same serial number, is strictly prohibited.

Minimum hardware requirements

As with any software application, minimum hardware requirements represent the basic
hardware on which the software will run. Note however that settling for the minimum
specification is unlikely to produce the performance you expect from the system. It can be used
when configuring a trial or a development system, however.

o File system: NTFS (FAT32 is not supported)

« CPU: multi-core

Page 16

PlanetPress. Workflow

« RAM: 6GB
« Disk Space:At least 10GB*]

*1: Requirements will depend upon the amount of data you process through PlanetPress
Workflow. For instance, a PostScript file containing several thousands of documents could
easily take up several GBs.

Recommended hardware requirements

Due to its versatility, OL Connect is used for a wide variety of applications. Consequently, itis
difficult to determine which hardware configuration will produce the best results for any given
implementation. The following specs should therefore be viewed as a general guideline thatis
most likely to produce expected results for most implementations. You should, however, keep
in mind that it may not represent the optimal setup for your particular application.

« File system: NTFS (FAT32 is not supported)

o CPU: Intel Core i7-4770 Haswell or equivalent
- RAM: 16GB

« Disk Space: 20GB*

» Storage Type: Solid State Drive (SSD)

« Networking: 10Gb Ethernet

*: Requirements will depend upon the amount of data you process through PlanetPress
Workflow. For instance, a PostScript file containing several thousands of documents could
easily take up several GBs.

Requirements for individual Connect modules

OL Connect Products comprises multiple modules that can be operated separately on multiple
PCs. Each module has its own set of requirements that may differ from the other modules.
While the hardware requirements described above are relatively generic when installing all
Connect modules on a single server, they should not be interpreted literally for each individual
module.

When installing on multiple PCs, keep the following rules of thumb in mind:

Page 17

PlanetPress. Workflow

o The Connect Workflow module requires less RAM but fast hard drive access. It also
benefits from fast multi-core CPUs, in order to run processes in parallel.

o The Connect Server module requires more RAM and benefits from fast multi-core CPUs.
Disk access speed is less of a concern.

o The Connect Designer module requires more RAM and fast disk access to provide a
responsive user-experience.

« The back-end database (MySQL by default) benefits from more RAM, speedy disk access
and fast networking as it will be solicited by all modules simultaneously.

Environment considerations

This page provides technical information about the environment in which PlanetPress
Workflow is intended to run.

Terminal Services

PlanetPress Workflow does not support Remote Desktop (Terminal) Services because
Workflow runs on single server and only one user can log on at once.

Terminal Services may also be referred to as Terminal Server or Remote Administration Mode
(Windows Server 2003 and 2008).

Single-User Remote Desktop Protocol (RDP) (where only one person can use RDP at a time)
is supported for PlanetPress Workflow version 6.2 and higher, however it is only supported in
Windows XP or Windows 2003. While later versions of Windows may not cause issues when
accessing PlanetPress Workflow through RDP, these combinations are no longer tested and
may not be functional.

Virtual environments

PlanetPress Workflow supports the following virtual environments:

« VMWare Environments. This includes VMWare Player, VMWare Workstation as well as
VMWare ESX Server.

« VMWare VMotion. This means the virtual machine hosting PlanetPress Workflow can be
automatically moved from one ESX server to another in a clustered installation.

Page 18

PlanetPress. Workflow

o Microsoft Hyper-V/Azure infrastructure environments.
« Amazon Web Services (AWS)

PlanetPress Workflow is not officially supported on any other virtual machines such as Virtual
PC, Parallels, Bochs, Xen, etc. While running PlanetPress Workflow on these virtual machines
may work fine we have not tested them and cannot offer support for them.

Warning

The PlanetPress Workflow End-User License Agreement (EULA) specifies that a
PlanetPress Workflow software license may only be used on a single virtual or physical
PC at a time. While copying a virtual machine for backup purposes is acceptable, running
two instances of the same machine, using the same serial number, is strictly prohibited.

32-bit or 64-bit?

PlanetPress Suite version 7.1.3 and higher, as well as PlanetPress Connect, support a 64-bit

operating system. However, PlanetPress Workflow remains 32-bits in this environment, which
means that for all intents and purposes there is no difference between those two environments
as far as PlanetPress Workflow is concerned.

Antivirus considerations

PlanetPress Workflow generates a very large amount of temporary data on your hard disk,
especially when manipulating or creating PDF files. This can sometimes cause issues when
any other software is trying to access the temporary files at the same time as PlanetPress
Workflow and its components are trying to read, write, create or delete those files.

If you experience these issues you may want to temporarily disable your antivirus "live", "daily"
or "deep" scans for the following folders and processes:

Warning

Disabling any antivirus scanning permanently on any folder or program is not
recommended, and Objectif Lune cannot be held reliable for any consequence of

Page 19

PlanetPress. Workflow

disabling your antivirus or whitelisting the folders or executables listed here, or any other
change in your antivirus protection setup!

« On Windows 7/2008 and later:
« C:\ProgramData\Objectif Lune\PlanetPress Workflow 8\

o C:\Users\[userMAppData\Local\Temp\ (where [user] is the user under which
Workflow is configured)

o C:\Users\[user\Connect (where [user] is the user under which Workflow is
configured)

e On all systems:
o C:\Windows\Temp\

Note

C:\Windows\Temp\ is used by multiple software which may cause risks on
your computer. However, PlanetPress Workflow may use this folder as
temporary storage, especially in the case of creating PDF files. We do not
recommend disabling scan on this folder, unless you notice performance
issues when generating PDFs, and then only as a test.

o Processes:
o FTPPutService.exe
« HTTPService.exe
o LPDService.exe
o LPRService.exe
« PPWatchService.exe
« PSWService.exe
» SerialService.exe
o SMTPService.exe
o TelnetService.exe
o ppNode.exe

« PPFaxService.exe

Page 20

PlanetPress. Workflow

« PPImageService.exe

» MessengerService.exe

Backup software

For similar reasons, it is important to know that backup software can also access files while
copying them to a remote backup location, so you should make sure that no PlanetPress
Workflow process is working during your backups.

Microsoft Office compatibility

The Microsoft Office 2010 line of products, other than Pro and Enterprise, has not been certified
for use with PlanetPress Workflow. Some of its products may not be compatible with the
connectors included in OL Connect.

Silent installation

To perform a silent install of Workflow, the setup executable (Setup.exe) needs to be started
from the command line with the /s parameter, followed by one or more of the following
parameters, each separated by a space.

In all cases, a value of “1” means include the component, while a value of “0” means it will be
skipped. Note that setting a “0” value is usually not necessary as the parameter can simply be
omitted from the command.

Command line parameters
PPPRODUCTION = 0/1 (Workflow component)
ppFaX = 0/1 (Fax Component)

PPIMAGE = 0/1 (Image Component)
PPSEARCH = 0/1 (Search Component)

PPPRINTER

0/1 (PlanetPress Printer Driver)

UNINSTALL

1 (Uninstall mode)

Page 21

PlanetPress. Workflow

SHOWLAUNCHPROGRAM = 0 (Do notlaunch Update Manager after the installation is complete)
cJkFONTS= 0/1 (CJK Fonts Lib)

LASERFICHELIB = 0/1 (Laserfiche Lib)

1crLIB = 0/1 (ICR LIBRARY)

sp = 0/1 (Sharepoint plugin)

NET40 = 0/1 (Install Microsoft .Net 4.0 redistribuable)

Example

The following performs a silent install of Workflow and the Image and Search modules.

"c:\temp\Setup.exe" /s PPPRODUCTION=1 PPIMAGE=1 PPSEARCH=1

Setting up the working environment

After installation, the working environment needs to be set up before you start using Workflow.
This involves:

« Configuring PlanetPress Workflow Services (see "Workflow Services" on page 767).

« Setting up the Workflow Configuration tool. You can configure a variety of options, from
how the application itself looks or behaves, to plugin specific options. These are
accessible through the Preferences button under the PlanetPress Workflow (W) button,
or via the key combination Ctrl+Alt+P .

Network considerations

While PlanetPress Workflow is typically installed on a server machine that is only accessed by
one single user such as an IT person, multiple users logging on to that machine is a possibility
(except with terminal servers, see "Environment considerations" on page 18). Because each
user may have different local and network rights, it may be important to consider the

Page 22

PlanetPress. Workflow

implications in regards to PlanetPress Workflow. To change the service log on information, see
"Workflow Services" on page 767.

Local and network rights

Programs, such as PlanetPress Workflow and all its services, must identify themselves in order
to be granted permission to perform operations on the computer on which they run as well as

on other computers accessible via a network connection. On a given workstation, you can
configure your PlanetPress Workflow to use either the local system account or any specific user
account. When you do this, you grant PlanetPress Workflow and all its services the same rights
associated with the selected account.

When you are running PlanetPress Workflow Configuration program on a workstation, if itis
associated with an account that is different from your account, the following icon is displayed in
the lower right corner of PlanetPress Workflow Configuration program: &. The icon reminds you
that the logon information is different for the PlanetPress Workflow services, and that some
network resources may not be accessibly by PlanetPress Workflow when running a live
configuration.

Account requirements

PlanetPress Workflow and its services require administrator rights to run on any given
computer and must therefore be associated with an account that has such rights.

We recommend creating a network or domain account specifically for the PlanetPress
Workflow services, which has administrator credentials on the machine where itis installed,
and is given proper rights for any network resources your configuration may request.

Mapped drives

It is strongly recommended to use local folders instead of mapped drives whenever possible.
Mapped drives (for example, drive X: leading to \\server\public\) are always user-specific and
are created at logon. This means that mapped drives are typically not available to the

PlanetPress Workflow services when running a live configuration.

Furthermore, while the mapped drives are not shared, they are still limited to one map per
computer, meaning if one user maps the X: drive, a different user (or a service) will not be able

Page 23

PlanetPress. Workflow

to map it again. This creates a limitation in PlanetPress Workflow: if you create a mapped drive
as a user, you will not have access to this mapped drive while running as a service unless you
log off, and then have PlanetPress Workflow Tools map the drive using a Run Script action
inside a Startup Process.

In addition, the use of network shared drives can cause issues when attempting to capture files
from those locations since the notification process for folder changes on network shares may be
different than that of local folders.

Network ports used by each service

The port configuration for each PlanetPress Workflow Input task or Output task is described in
the following table. The port number assignments comply with Internet standards. If a
PlanetPress Workflow component is not active, the portis not used.

For information about ports used by other PlanetPress components, see Network
Considerations in Connect's Online Help.

Component Protocol Local Port Remote Port

Email Input TCP Default’ 110

(POP3 mode)

Email Input TCP see Remote | See Network Ports Used by Key
(Outlook mode) Port Microsoft Server Products

(https://msdn.microsoft.com/en-
us/library/cc875824.aspx)

Folder Capture | TCP/UDP Default’ Standard Windows file and printer
sharing ports?:

- UDP 137,138; TCP 139 (NetBIOS
over TCP/IP (NetBT))

. UDP 445; TCP 445 (SMB over
TCP/IP)

LPD Input TCP 515 N/A
(listening

Page 24

PlanetPress. Workflow

https://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#Installation/Network_Considerations.htm
https://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#Installation/Network_Considerations.htm
https://msdn.microsoft.com/en-us/library/cc875824.aspx
https://msdn.microsoft.com/en-us/library/cc875824.aspx

Component Protocol Local Port Remote Port

port)
FTP Input TCP Default’ 21
Telnet Input TCP Default’ 9100 (configurable)
FTP Output TCP Default’ 21
Email Output TCP Default’ 25
(SMTP mode)
Email Output TCP See Email See Email Input (Outlook mode)
(Outlook mode) Input

(Outlook

mode)
Send to Folder | TCP Default’ Standard Windows file and printer
Windows sharing ports?:
Queue Output

« 137,138 and/or 139 (NetBIOS
over TCP/IP (NetBT))
o 445 (SMB Over TCP/IP)

LPR Output TCP Default or 515

721 t0 7313
PlanetPress TCP orUDP | Unknown* Unknown?
Database
SNMP UDP Default! 161
Condition

TValue is greater than 1024 and is assigned by Windows XP. This is the default.

Page 25

PlanetPress. Workflow

2 Windows NT 4.0 uses NetBIOS over TCP/IP for file and printer sharing, while Windows 2000,
Windows XP, and Windows Server 2003 may be configured to use NetBIOS over TCP/IP or
SMB over TCP/IP. The operating system may use additional ports. Refer to the Windows
documentation for further information.

3 If the “No source port range restriction” option is checked (recommended), see footnote 1. If
the option is unchecked, the local port will be chosen from a range going from 721 to 731.

4 Contact your DBMS vendor to determine which ports are used by the ODBC driver for
accessing a network database.

Known Issues

Runtime parameter values get reset

Runtime parameter value settings are not preserved when selecting a different template, data
mapping configuration, or print preset. This affects the following plugins: Execute Data
Mapping, Create Email Content, Create Print Content, Create Web Content, All in One and
Create Job. The issue is fixed in PlanetPress Workflow 2022.1.

Custom plugin importation issue in 2021.2

Issues have been encountered importing custom plugins (such as the "Connection tab" on
page 689 and "Connection tab" on page 684 plugins) on new clean PlanetPress Workflow
2021.2 installations. The error encountered is "Error Loading DLL: error code 126: The
specified module cannot be found". This erroris due to a missing file in the Workflow 2021.2
installation. This issue will be fixed in a subsequent PlanetPress Workflow release.

The workaround is to place a copy of this Indy60.bpl file (the downloaded file will need to be
unzipped) in the C:\Windows\SysWOW64 directory of the target system and then re-import the

plugin.

NodedS Server prompts for Connect Server credentials

The NodedS Server prompts the user for credentials if it needs to access the Connect Server
when retrieving a web page that has been produced using the Create Web Content plugin.
The issue will be fixed in a later release.

The workaround is to check the Embed all resources option in the Create Web Content task.

Page 26

PlanetPress. Workflow

Microsoft patch causing handling of XLS to fail

Some Windows updates from Microsoft have impacted the handling of XLS sources in
PReS\PlanetPress Workflow 8.
The Microsoft updates concerned are as follows:

« KB4041693 for Windows 8.1 and Windows Server 2012 R2
« KB4041681 for Windows 7 and Windows Server 2008 R2
o KB4041690 for Windows Server 2012 (no service pack)

Installing these updates may cause the application to fail when attempting to open or load XLS
files via a plugin or in a script. The following error message may appear: “Unexpected error
from external database driver (1). (Microsoft JET Database Engine)".

Suggested resolution

Uninstall the Microsoft patches and wait for the issue to be fixed in a subsequent Microsoft
patch.

Workarounds

« Forthe Lookup in Microsoft Excel Documents plugin (found in the Connectors tab of the
plugin bar): Open the original .xIs file and save it with the .xIsx format. That will force the

Excel Lookup plugin to switch drivers.

« Forthe Database Query plugin (found in the Actions tab of the plugin bar) and when
using Excel/Access in PlanetPress Design: Change the ODBC driver used for Excel files
from JET to ACE (change the Data Source). As an example: in Windows 10: Change the
Excel File ODBC driver from ODBCJT32.dll to ACEODBC.dIl. (Naming may vary from
versions of the OS but the basics stay the same.) Important: Before switching from JET to
ACE, install the latest MS Access Database Engine 2016 Redistributable
(https://Iwww.microsoft.com/en-us/download/details.aspx?id=54920). Otherwise, using
ACE in one or more self-replicating processes in a Workflow configuration can cause
Workflow to crash.

In the meantime Objectif Lune would like to apologize to any customers affected by this
problem and for any inconvenience caused. For more information, please contact your local
support team.

Page 27

PlanetPress. Workflow

https://www.microsoft.com/en-us/download/details.aspx?id=54920

Data Repository error

The Push to Repository task, as well as the corresponding repository API calls SetValue() and
SetValueW() may on rare occasions fail with an unexpected error (517), caused by the Write
Ahead Logging (WAL) journal mode.

The workaround is to disable WAL journal mode:

1. Create the "Repository" key in \HKEY_LOCAL _
MACHINE\SOFTWARE\WOWG6432Node\Objectif Lune\PlanetSuite\PlanetWatch\8.0\ if it
does not exist.

2. Add a new DWORD32 value in Repository key named sQliteWALJournalMode and
setitto 0.
Switching the registry key from 1 (WAL) to O (DELETE) disables the Write Ahead Log.

3. Ifthe Write Ahead Log is disabled, -sham and -wal files should no longer appear in the
Repository folder.

4. Restartthe PPWatch service.

Other known issues

« Custom plugins cannot be permanently removed from the Plug-In Bar through the
Workflow tool's user interface.

« Anoto Pen Director 2.8 is not supported on Windows Server 2012 and Windows 10.

o Using the PT-PT setting to perform ICR on AlphaNumeric fields may not work properly. If
you encounter the issue, use the PT-BR setting instead, or use another PlanetPess Field
in your document design.

« Barcode scanner task may have issues reading 2-D barcodes printed/scanned with low
resolution. Make sure the scans and the original printed output are at least 300DP1 (600
or better recommended).

« When printing through a Windows printer driver on Windows Server 2008 or Windows
Server 2008 R2, the Job Owner setting is ignored. This is caused by a documented issue
in those two Operating Systems. Microsoft has provided no reason nor workaround for the
problem, therefore PlanetPress Workflow cannot circumvent the issue.

« Under Windows 2000, the SharePoint output task does not work with SharePoint 2010.
Under the same OS, the PlanetPress Capture ICR does not work due to the .NET 3.5
requirement.

« The SharePoint Output task does not validate the field contents. That's Sharepoint's
responsibility.

Page 28

PlanetPress. Workflow

The Metadata to PDI task encodes the XML using the default system encoding, not the
document's. In addition, it does not discriminate between index names written in different
cases (e.g. Name vs. name).

Printing PDF files in passthrough mode using a Windows Printer Driver task causes jobs
to be processed sequentially rather than in parallel. This is caused by a 3rd party library
used in the printing process. Possible workarounds are to use a PlanetPress document to
call the PDF files as dynamic images, or to use the PDF file as the Data File for a
PlanetPress Document.

Jobinfo #4 in the Windows Input Queue task (the original document name set by the
printing application) replaces any non-alphanumeric character with underscores in order
to filter out any invalid characters. Consequently, if the path contains slashes or colons,
those will be replaced with underscores.

When the PlanetPress Capture database is setto MS Access, itis considered good
practice to have a single process generate Patterns for documents because the Access
engine may lock the other process out of the database as the first process updates it.

After the initial installation, the PlanetPress Workflow Configuration tool may display an
error message the first time you launch it if you had already sent a PlanetPress Workflow
Document to it. You can safely ignore this message, you will simply have to manually
start the PlanetPress Messenger service from the Workflow console for this one time only.
To avoid getting the error altogether, make sure you launch the PlanetPress Workflow
tool once before sending any document to it.

In the LaserFiche connector, when selecting a different template after filling up the fields
and then going back to the first template, the values entered in the fields are lost. They
have to be entered again.

When loading a Workflow configuration that includes references to Windows printers, the
output task may fail to recognize the printer if the printer driver has changed between the
moment the configuration was set up and the moment it was loaded. This is unlikely to
occur, but it could, for instance, happen when importing a Version 7 configuration file into
Version 8. To circumvent the issue, open the output task's properties, make sure you
reselect the proper printer, close the task and send the configuration again.

The HTTP/SOAP service may fail when both it and the Workflow service are logged on
using 2 non-local users or 2 local users with different privileges. To resolve the issue,
make sure both services use the same logon credentials.

The WordToPDF task, when run under the LocalSystem account, may seem to hang if
the installation of MS-Word wasn't properly completed for the LocalSystem account. If the
task seems to take longer than it does when run in Debug mode, this may be the case.

Page 29

PlanetPress. Workflow

You can confirm this behavior by opening up the Windows Task Manager and checking
whether the MSIExec application is running. In order to complete the installation of MS-
Word for the LocalSystem account, follow these steps:

1. Open a command-line window (CMD.exe)

2. Type "AT 10:56 /INTERACTIVE CMD.EXE" (replace 10:56 with the next upcoming
minute on your system)

3. Atthe specified time, a new command-line window opens. In it, navigate to Word
Installation folder, then type Winword Follow the instructions to complete the
installation

4. Re-start PlanetPress Workflow and test your process.

e The WordToPDF task relies on MS-Word to perform its functions. However, MS-Word
sometimes displays confirmation dialogs when it encounters a situation requiring user
input. Such dialog windows cannot be displayed when PlanetPress Workflow runs as a
service. As a result, the process may seem to hang because it is awaiting user input on a
window that isn't displayed. The only way to resolve this situation is to kill the
PlanetPress Workflow service. To avoid these types of issues from occurring, it is
imperative that the configuration for the WordToPDF task be tested thoroughly in Debug
mode prior to sending it into production. In particular, the connection to the database must
be validated.

« The WordToPDF task requires the default system printer to be set to a queue that uses
the PlanetPress printer driver. If you change the default system printer or if you import a
PlanetPress Workflow configuration file from another PC that includes an instance of the
WordToPDF task, you must review the properties of each instance of the task and click
OK to validate its contents. A new printer queue will be created if required and the default
printer will be reset properly. If you do not perform these steps, running the configuration
will result in several error messages being logged and the task failing.

« The preferences for the PrintShop Mail Web connector may not be saved properly if you
set them and close the PlanetPress Workflow Configuration tool without first sending the
configuration to the service. Make sure you send the configuration before exiting from the
Configuration tool.

« With Outlook 2010, the Send Email functionality requires that the service be run with
administrative credentials in the domain. In addition, both Outlook and the PlanetPress
Workflow Configuration tool must *not* be running while the service is.

Page 30

PlanetPress. Workflow

« The Microsoft Office 2010/2013/2016 and 365 line of products has not been certified for
use with PlanetPress Workflow. Some of its products may not be compatible with the
connectors included.

« Barcodes produced in printer-centric mode may have a slightly different aspect from
those produced in Optimized PostScript mode. This is due to the different types of 3rd
party libraries being used to generate the barcodes. However, all barcodes scan correctly.

Page 31

PlanetPress. Workflow

Basics

PlanetPress Workflow is a tool to automate the processing, distribution and printing of your
business documents. Once installed on the server, it can be set up to automate all tasks related
to document processing (see "Setting up the working environment" on page 22).

When you're all set up, you can start using the Workflow Configuration tool, assuming that you
have already done research on the processes that need to be automated.
Working with Workflow implies the following basic steps:

1. Creating a Workflow configuration
A Workflow configuration consists of a number of processes, of which each has an input
task, output task and possibly a number of tasks in between. See: "About Workflow
Configurations" on page 34.

2. Debugging the configuration
Debugging is the act of running through your process, either step by step or as a whole,
directly from the PlanetPress Workflow Configuration Tool, in order to detect and resolve
issues with your process. Debugging a process requires providing a sample data file.
See: "Debugging and error handling" on page 99.

3. Sending it to the Server (and testing it again)
As you are working on your configuration, you can save that configuration file as a file on
your local hard drive. Saving a configuration file never replaces the current PlanetPress
Workflow service configuration. To do this, you must use the Send Configuration
command; see "Sending a configuration" on page 38.

Related tools and resource files

Workflow serves as automation tool in a number of distinct products. Some of the tasks that can
be used in a Workflow configuration only work with product-specific files. The tools that you
need in order to produce those files depend on the product that you are using:

« PlanetPress Connect users will use the other Connect modules - Designer and
DataMapper - to create the templates, data mapping configurations and print presets
used by OL Connect tasks. The user guides of these modules can be found here:
http://help.objectiflune.com/en/PlanetPress-connect-user-qguide/2021.2/.

« PlanetPress Suite users may use documents made with PlanetPRess Design. For the
user guide, see http://help.objectiflune.com/en/planetpress-design-user-guide/.

Page 32

PlanetPress. Workflow

http://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/
http://help.objectiflune.com/en/planetpress-design-user-guide/

The product-specific files need to be sent to, or imported into, Workflow before they can be
used in conjunction with a task (see "Workflow Configuration resource files" on page 40). They
become visible in the "Configuration Components pane" on page 832.

Page 33

PlanetPress. Workflow

Features

PlanetPress Workflow configurations are input driven applications designed to output data in a
variety of ways through diverse means to various applications and devices. PlanetPress
Workflow can be used as simple go between, passing along input data to output devices, but it
can also perform various types of data processing. You can combine the various PlanetPress
Workflow services to set up versatile automated processes to print jobs as well as generate
other types of output.

PlanetPress Workflow processes act as sorts of dispatchers. On the one hand, they retrieve
data and control plugins that retrieve data from watched locations, and on the other hand they
send data and control plugins that send data to various devices, for printing or to generate
documents that can then be emailed or viewed in a browser. PlanetPress Workflow can also
perform a variety of operations on the data using its action plugins.

In fact, the PlanetPress Workflow plugin based architecture enables almost limitless
customization. You can create or purchase compatible plugins, drop them in any of
PlanetPress Workflow plugin folder and use them to perform other operations. You can even
find free unsupported plugins on the Objectif Lune Web site.

PlanetPress Workflow tasks are service applications, or if you will, applications that
continuously run on a given computer and that perform actions automatically. Those actions are
defined in a PlanetPress Workflow configuration. A given computer can only run one
PlanetPress Workflow configuration at a time. The PlanetPress Workflow Service Console may
be used to monitor the services running on a given computer.

About Workflow Configurations

PlanetPress Workflow Configurations are service applications, or if you will, input driven
applications that continuously run on a given computer and perform actions automatically.
Those actions are defined in a PlanetPress Workflow configuration file. A configuration file
consists of a set of processes, subprocesses, variables, (optional) documents and printer
queues, that work together within the PlanetPress Workflow Service. A process can be used as
simple go between, passing along input data to an output device or folder, but it can also
perform various types of data processing.

You can combine the various PlanetPress Workflow input, action and output tasks to set up

Page 34

PlanetPress. Workflow

versatile automated processes to print jobs as well as generate other types of output (emails,
web pages, files...).

Note

A PlanetPress Workflow configuration must be composed of at least one process, but it
may include as many as 512.

PlanetPress Workflow cannot work without a valid configuration, and a PlanetPress Workflow
session running on a given computer can only use one configuration at a time.

For a configuration created in the PlanetPress Workflow Configuration tool to actually be
executed by PlanetPress Workflow, it must be sent to the PlanetPress Workflow Service. When
you do this, your PlanetPress Workflow forgets its previous configuration and starts executing
the tasks included in the new configuration.

When you start the PlanetPress Workflow Configuration tool, it either opens the configuration
file thatis active on the PlanetPress Workflow service, or starts with no configuration at all,
depending on your preferences (see "Configuration Components pane appearance
preferences" on page 772).

You can always create a new configuration or open an existing one (see "Creating a new
configuration" below and "Open a PlanetPress Workflow configuration file" on the facing page).

The following pages provide information on different parts of a PlanetPress Workflow
configuration:

« "About processes and subprocesses" on page 126
« "About Tasks" on page 300

« "About data" on page 51

« "About variables" on page 716

« "Workflow Configuration resource files" on page 40

Creating a new configuration

To create a new configuration, choose New from the PlanetPress Workflow Button.

Page 35

PlanetPress. Workflow

By default, when you create a new configuration, PlanetPress Workflow automatically creates a
process that includes a "Folder Capture" on page 320 initial input task and a "Send to Folder"
on page 681 output task by default. You can then edit and save your new configuration.

The default input task and output task depend on your preferences ("Default configuration
behavior preferences" on page 773).

If the active configuration file is currently opened, and if it includes unsaved modifications,
PlanetPress Workflow asks you whether to send the configuration to the PlanetPress Watch
service before creating the new configuration. Select the Always send without prompting for
confirmation option to automatically send the edited version of the configuration.

If a file that is different from the default configuration file is currently opened, and ifitincludes
unsaved modifications, PlanetPress Workflow asks you whether to save the configuration
before creating the new configuration. Select the Always save without prompting for
confirmation option to automatically save any unsaved work.

Open a PlanetPress Workflow configuration file

To open a configuration file:

1. From the PlanetPress Workflow button, choose Open. The Open dialog box appears.

2. Navigate to the Workflow configuration file you want to open, select it and click Open.

If the currently opened configuration file includes unsaved modifications, the PlanetPress
Workflow Configuration program asks you whether to send the configuration to the PlanetPress
Workflow service before opening the selected configuration.

Select the Always send without prompting for confirmation option to automatically send the
edited version of the configuration to the PlanetPress Workflow Service before opening any
other configuration file (See "Saving and sending a Workflow Configuration" on the next page).

Note

You can also open a configuration file from a previous version of PlanetPress Workflow
by changing the File Type selector to the desired version (for example, .pw7 for

Page 36

PlanetPress. Workflow

PlanetPress Watch /Server configurations from Version 7).

Saving and sending a Workflow Configuration

The core of the PlanetPress Suite workflow tools is the PlanetPress Watch service which, once
started, constantly runs in the background to perform the tasks included in its current
configuration file. The PlanetPress Workflow Configuration tool lets you create, edit, save and
send configuration files.

As you are working on your configuration, you can save that configuration file as a file on your
local hard drive.

Saving a configuration file never replaces the current PlanetPress Watch service configuration.
To do this, you must use the Send Configuration command.

When the PlanetPress Workflow Configuration program sends a configuration, the PlanetPress
Workflow service is stopped and restarted, if it is currently running, and the new configuration
starts being applied immediately.

Saving a configuration

Files created and edited using PlanetPress Workflow can be saved as PlanetPress Workflow
configuration files anywhere on your computer or even a network location.

To save the current configuration:

« From the PlanetPress button, choose Save.

« If you were editing the current PlanetPress Watch service configuration or if you were
editing a new configuration file, you are prompted with the Save As dialog instead.

To save the current configuration under a new name:

+ From the PlanetPress button, choose Save As.

» Browse to the location where you wanted to save the file, enter the new name of the
configuration in the File name box and click Save.

Page 37

PlanetPress. Workflow

Sending a configuration

PlanetPress Workflow Configuration saves entire configurations in the form of a single file. Like
any other file, configuration files may be saved and reopened, as well as renamed as desired.
Simply saving a configuration has no effect on the configuration actually used by the
PlanetPress Workflow when it is started. To change any currently active configuration, you
must use the Send Configuration command.

When you use the Send command, the PlanetPress Workflow Configuration program uses the
currently opened configuration (Any_name.OL-workflow) to overwrite the PlanetPress Workflow
Service's current configuration (ppwatch.cfg).

Note

.OL-workflow files are equivalent to .pp7 files made with older versions of PlanetPress
Workflow. They contain the processes and such used by Workflow.

If the PlanetPress Workflow Service is running when you send a new configuration, it stops and
restarts automatically with the new configuration. If the service is stopped before sending the
configuration, it will not restart automatically.

Note

When you send a configuration to your PlanetPress Workflow service, all its active
processes are applied; see also:"Activating or deactivating a process" on page 132.

Sending a Configuration to the local server

1. Open the configuration you want to use as PlanetPress Workflow’s new configuration.
2. Editthe configuration, if required.

3. When the configuration is ready to be used, from the PlanetPress Workflow button,
choose Send Configuration, then Send Local.

Page 38

PlanetPress. Workflow

Sending a Configuration to a remote server

1. Open the configuration you want to use as PlanetPress Workflow’s new configuration.
2. Editthe configuration, if required.

3. When the configuration is ready to be used, from the PlanetPress Workflow button,
choose Send Configuration, then Send Remote.
A list of available PlanetPress Workflow servers on the local network appears.

4. Puta checkmark next to each server where the configuration should be sent.
5. Click OK.

If a server is grayed out, this may mean you do not have access to send a configuration

remotely to it. For more information, please see "Access Manager" on page 845.

Note

If PlanetPress Workflow service is paused when you send a new configuration, it will not
stop and restart. Since PlanetPress Workflow service reads its configuration file when it
starts up, when you resume processing, PlanetPress Workflow service will continue
using the old configuration.

Exit PlanetPress Workflow Configuration program

Once you are done using the PlanetPress Workflow Configuration program, you can close it.

Note

Closing PlanetPress Workflow Configuration program does not stop any of PlanetPress
Workflow services or processes.

You may exit the PlanetPress Workflow Configuration program in any of the following ways:

+ From the PlanetPress Workflow Button, choose EXxit.

» Click the X at the top-right corner of PlanetPress Workflow Configuration program.

Page 39

PlanetPress. Workflow

o Press ALT+F4 on your keyboard.

« Right-click on the PlanetPress Workflow Configuration program button in your task bar,
and select Close.

If the default configuration file is currently opened, and if it includes unsaved modifications, the
PlanetPress Workflow Configuration program asks you whether to send the configuration to the
PlanetPress Workflow service before exiting. Select the Always send without prompting for
confirmation option to automatically send the edited version of the configuration before exiting.

If the default configuration does notinclude any active process, the PlanetPress Workflow
Configuration program asks you whether to continue.

If a file different from the default configuration file is currently opened, and if it includes unsaved
modifications, the PlanetPress Workflow Configuration program asks you whether to save the
configuration before exiting. Select the Always save without prompting for confirmation
option to automatically save any unsaved work before exiting.

Workflow Configuration resource files

Workflow serves as automation tool in a number of distinct products. Some of the tasks that can
be used in a Workflow configuration will work with product-specific resource files:

+ PlanetPress Connect Resources are files created with one of the other Connect modules
- the Designer and DataMapper (see "Connect resources" on the next page).

« PlanetPress Suite users may use PlanetPress Design documents (see "PlanetPress
Design documents" on page 45) in PlanetPress Workflow processes.

« PrintShop Mail Suite users may use PrintShop Mail documents to create output using
the "PrintShop Mail" on page 527 task (see "PrintShop Mail documents" on page 51).

These product-specific files need to be sent to (or imported into) Workflow before they can be
used in conjunction with a task. This chapter explains how to do that. Imported files become
visible in the "Configuration Components pane" on page 832.

Page 40

PlanetPress. Workflow

Connect resources

Connectresources are files created with Connect's Designer or DataMapper (see "Connect
resources" above). They are visible in the "Configuration Components pane" on page 832 and
are added by using the Send to Workflow option from the PlanetPress Connect Designer's
File menu.

The available resources are:

« Data Mapping Configurations: Data mapping configurations are used with the "Execute
Data Mapping" on page 629 task to extract data from the job file.
For each data mapping configuration in the list, the following two items appear within
them:

« Data Model: Displays the data model used in the data mapping configuration.
Double-click on the data model to view it in your default XML viewer (generally,
Internet Explorer).

« Sample Data File(s): Displays a list of sample files that are included in the data
mapping configuration. (See also: "Sample Data" on page 72.)

Tip
Double-click on a sample data file to use it as a sample data file for the active
process.

« Document Templates: Templates can be used in content creation tasks: "Create Email
Content" on page 600, "Create Web Content" on page 621 and "Create Print Content" on
page 617.

¢ Print Presets:

« Job Presets: Job Presets can be used in the "Create Job" on page 605 task to filter
and rearrange print content items.

« Output Presets: Output Presets contain settings for Print output. They can be used
in the "Create Output" on page 608 task.

Page 41

PlanetPress. Workflow

Tip

Drag-and-drop a resource on a process to add the appropriate task.

For more information about the different file types, see Connect's Online Help:

Data mapping configurations

« Data model

o Templates
« Job Creation Preset

Output Creation Preset

Importing Connect resource files

Connectresource files are added by using the Send to Workflow option from the PlanetPress
Connect Designer's File menu; see Sending files to Workflow in Connect's Online Help.

They can also be imported into PlanetPress Workflow as follows:

1. Click the PlanetPress Workflow button.

2. Choose Import, then Import Connect Content. The Import dialog box appears.
3. Inthe File type box, select the desired file type.
4.

Navigate to the document you want to import, select it and click Open.

When you select a package file, the individual resources contained within that package will be
imported.

Tip

You can import multiple files at once.

Resource Save location

Any resource sent to PlanetPress Workflow from PlanetPress Connect is saved locally at the
following location: %PROGRAMDATA%\Objectif Lune\PlanetPress Workflow 8\PlanetPress

Page 42

PlanetPress. Workflow

http://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#datamapper/Data Mapping Configuration/Data_mapping_configuration.htm
http://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#datamapper/Data Model/Data_Model.htm
http://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#designer/Templates/Templates.htm
https://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#designer/Output/Print/Print_Presets.htm#Job
https://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#designer/Output/Print/Print_Presets.htm#Output
http://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#designer/Templates/Templates.htm#Send_to_Workflow

Watch\OLConnect
Resources are saved in their appropriate folder:

DataMapper contains the data mapping configurations (.OL-datamapper)

JobCreation contains the Job Creation Presets (.OL-jobpreset)

OutputCreation contains the Output Creation Presets (.OL-outputpreset)

Template contains the templates (.OL-template)

Note

Package files are not saved anywhere. The individual resources contained within the
package are extracted and placed in the folders noted above.

Tip
To navigate quickly to the Workflow working folders, press the keyboard shortcut
CTRL+ALT+Shift+F4 from within the Workflow configuration tool.

Resource archives

From version 8.2, PlanetPress Workflow maintains an archive of previous versions of
resources, in the following location: %PROGRAMDATA%\Objectif Lune\PlanetPress Workflow
8\PlanetPress Watch\OLConnect\Archive , each in their own folder:

datamapper contains archives of the data mapping configurations (.OL-datamapper)

jobcreation contains archives of the Job Presets (.OL-jobpreset)

outputcreation contains archives of the Output Presets (.OL-outputpreset)

template contains archives of the templates (.OL-template)

workflow contains archives of Workflow configurations received by the server.

The archives are saved using the template named followed by a timestamp. A maximum of 30
of each instance of a resource is kept (meaning if you have 10 different templates, a maximum

Page 43

PlanetPress. Workflow

of 300 files will be present in the archive\template folder). Older archives are deleted
automatically as new archives are created.

Using Connect Resources in tasks

A number of OL Connect tasks (see "OL Connect tasks" on page 591) let you select a Connect
resource file to be used with the task. The selection list will appear on one or more of the tabs in
the Task Properties dialog that appears when you add a task to a process (see "Adding tasks"
on page 301).

For information about the options in the selection list, see "Selecting a resource file in task
properties" on page 307.

You can drag-and-drop a resource on a process to add the appropriate task.
When dropped on a process:

« A data mapping configuration adds an "Execute Data Mapping" on page 629 task. If
you agree to use the first sample file in the data mapping configuration as the process's
sample data file, the process's emulation will be changed accordingly.

« A Job Creation Preset creates a "Create Job" on page 605 task.

« An Output Creation Preset creates a "Create Output" on page 608 task.

When a template is dropped on a process, you can choose whether it adds a "Create Email
Content" on page 600 task, a "Create Preview PDF" on page 612 task, a "Create Print Content"
on page 617 task, or a "Create Web Content" on page 621 task (as an Action or Output task).

Using attached data files

When sending a Connect data mapping configuration from the Designer to PlanetPress
Workflow, all data files used in the document are automatically sent to PlanetPress Workflow
along with the data mapping configuration. These data files appear under the data mapping
configuration in the Connect section of the Configuration Components.

Setting an attached data file as a sample data file in a process

The attached data file can be used as a sample data file in a process. This sets the emulation
of the process ("About data emulation" on page 61) and makes it possible to debug it (see
"Debugging your PlanetPress Workflow process" on page 107).

Page 44

PlanetPress. Workflow

1. Make sure the Connect Resources section is visible by clicking the @ button if it
appears.

2. Expand the data mapping configuration (name.OL-datamapper) by clicking the = button.

3. Right-click on the data file, then click Set as sample data file.
Viewing an attached data file

1. Make sure the Connect Resources section is visible by clicking the = button if it
appears.

2. Expand the data mapping configuration (name.OL-datamapper) by clicking the = button.

3. Double-click on the data file to open the data selector (see "The Data Selector" on
page 857).

Note

Double-clicking on the data file does the same thing as right-clicking on it an then
selecting Set as sample data file. Clicking Cancel instead of OK after viewing will
prevent this action from being taken.

Saving an attached data file to disk

1. Make sure the Connect Resources section is visible by clicking the = button if it
appears.

2. Expand the document by clicking the = button.

3. Right=click on the data file, then click Save sample data file.

PlanetPress Design documents

A PlanetPress Design document is a file created with the Design module of PlanetPress
Suite.

Design documents are used to produce an output, merged with data (i.e. the job file). They
contain static data such as logos, addresses and graphic formatting, as well as placeholders for
data. Documents may also contain conditions and programming logic.

Page 45

PlanetPress. Workflow

For more information about PlanetPress Design documents, please see the PlanetPress
Design User Guide.

Generating output with PlanetPress Design documents

PlanetPress Design documents are typically selected in certain Output tasks designed to
merge data with a Design document, but they can also appear in other tasks that produce
formatted data such as the Digital Action task and the Add Document task.

If a task lets you select a PlanetPress Design document to be used with the task, the selection
list will appear on one or more of the tabs in the Task Properties dialog that appears when you
add the task to a process (see "Adding tasks" on page 301).

For information about the options in the selection list, see "Selecting a resource file in task
properties" on page 307.

Printer-centric printing

PlanetPress Design lets you send documents to printers as well as to PlanetPress Workflow
servers.

« If you send a document to printers only and not to any PlanetPress Workflow server, you
will not be able to see this document in the PlanetPress Workflow Configuration program.
To let PlanetPress Workflow know that the document is available, you will have to add a
printer resident document to your PlanetPress Workflow configuration (see "Adding
printer resident documents to the Configuration Components Pane" on the next page).

« If you send a document to PlanetPress Workflow servers only and not to any printer, you
will be able to see this document in the Configuration Components Pane of the
PlanetPress Workflow Configuration program, but it will not be directly available on any
printer.

« If you send a document to PlanetPress Workflow servers and to printers, you will be able
to see this document in the Configuration Components Pane of the PlanetPress Workflow
Configuration program and it will be available on the printers.

Fonts used in Design documents

The fonts used in PlanetPress Design documents installed on PlanetPress Workflow
workstations should be available locally. To install TrueType fonts, use the standard Windows
procedure. To install PostScript fonts, use the Install PostScript Font command in the
Workflow ribbon (see "The PlanetPress Workflow Ribbon" on page 894).

Page 46

PlanetPress. Workflow

http://www.objectiflune.com/Documentation/EN/planetpress-design-user-guide/
http://www.objectiflune.com/Documentation/EN/planetpress-design-user-guide/

Adding printer resident documents to the Configuration Components Pane

By default, the Documents group displayed in Configuration Components pane of the
PlanetPress Workflow Configuration program includes all those documents that are available
on your local PlanetPress Workflow server. Those documents that are not available on your
local PlanetPress Workflow server, but that are either available on printers or on other
PlanetPress Workflow servers must be added to the list, otherwise you will not be able to use
them in your PlanetPress Workflow configuration.

To add a resident document to the Configuration Components pane:

1. In the PlanetPress WorkflowConfiguration Components pane, right-click PPS/PSM
Documents and choose Insert > Insert Resident Document. The Add Resident
Document dialog box is displayed.

2. Enter the document’s name. Note that the name you enter must exactly match the actual
document name or PlanetPress Workflow will not be able to use it on the printer or remote
PlanetPress Workflow server.

3. Click OK.

Importing PlanetPress Design documents

This procedure describes how to import PlanetPress Design documents into PlanetPress
Workflow. Importing documents can be useful when transferring configurations between
PlanetPress Workflow installations.

To import documents into PlanetPress Workflow:

1. Click the PlanetPress Workflow button.

2. Choose Import, then Import PlanetPress Document. The Import PlanetPress Design
Document dialog box appears.

3. Inthe File type box, select the desired file type.

4. Navigate to the document you want to import, select it and click Open.

The document is imported and displayed in the Configuration Components pane under
PPS/PSM Documents. This physically installs the documents to the Documents folder relative
to the install folder of PlanetPress Workflow.

Page 47

PlanetPress. Workflow

Tip
To navigate quickly to the Workflow working folders, press the keyboard shortcut
CTRL+ALT+Shift+F4 from within the Workflow configuration tool.

Using files attached to PlanetPress Design documents

Data files

When sending a PlanetPress Design Document from PlanetPress Design to PlanetPress
Workflow, all data files used in the document are automatically sent to PlanetPress Workflow
along with the Design document. These data files appear under the document in the PPS/PSM
Documents section of the Configuration Components.

Setting an attached data file as a sample data file in a process

The attached data file can be used as a sample data file in a process. This sets the emulation
of the process ("About data emulation" on page 61) and makes it possible to debug it (see
"Debugging your PlanetPress Workflow process" on page 107).

1. Make sure the PPS/PSM Documents section is visible by clicking the = button if it
appears.

2. Expand the document (name.ptk) by clicking the = button.

3. Right-click on the data file, then click Set as sample data file.
Viewing an attached data file

1. Make sure the PPS/PSM Documents section is visible by clicking the = button if it
appears.

2. Expand the document (name.ptk) by clicking the = button.

3. Double-click on the data file to open the data selector (see "The Data Selector" on
page 857).

Page 48

PlanetPress. Workflow

Note

Double-clicking on the data file does the same thing as right-clicking on it an then
selecting Set as sample data file. Clicking Cancel instead of OK after viewing will
prevent this action from being taken.

Saving an attached data file to disk

1. Make sure the PPS/PSM Documents section is visible by clicking the = button if it
appears.

2. Expand the document (name.ptk) by clicking the = button.

3. Right=click on the data file, then click Save sample data file.

Metadata

When a Design document uses Metadata, it can also be attached with the document. One
Metadata file is generated for each data file attached to the Design document. Metadata does
not appear in the Configuration Components pane but it follows the data file and can be viewed
from the Metadata tab whenever the data file is viewed through the Data Selector.

Document Preview

When sending a PlanetPress Design document from PlanetPress Design to PlanetPress
Workflow, a PDF Preview of the job's output is automatically sent to PlanetPress Workflow
along with the Design document. This preview appears under the PPS/PSM Documents
section of the Configuration Components pane.

The PDF contains the result of a preview with the active data file (for all data pages) run as an
Optimized PostScript Stream.

Viewing the Document Preview

1. Make sure the PPS/PSM Documents section is visible by clicking the = button if it
appears.

2. Expand the document (name.ptk) by clicking the = button. The Document Preview has

Page 49

PlanetPress. Workflow

the same name as the document but with a PDF extension.

3. Right-click on the Document Preview, then click Open in PDF Viewer.
Saving the Document Preview to disk

1. Make sure the PPS/PSM Documents section is visible by clicking the = button if it
appears.

2. Expand the document (name.ptk) by clicking the = button. The Document Preview has
the same name as the document but with a PDF extension.

3. Right-click on the Document Preview, then click Save PDF File.

Viewing PlanetPress Design document properties

To view the properties of a PlanetPress Design document, do one of the following:

« In the Configuration Components pane, under PPS/PSM Documents, click any Design
document (under PPS/PSM Documents) to display its properties in the Object Inspector.

« In the Configuration Components pane, under PPS/PSM Documents, double-click any
Design document to display its properties in the PlanetPress Design Document
Options dialog box.

For a list of all properties, see "PlanetPress Design document properties" on page 835.

The PlanetPress Workflow Configuration tool lets you view a number of the properties
associated with the PlanetPress Design documents you use, but most of those properties are
setin PlanetPress Design and cannot be edited using the PlanetPress Workflow Configuration
program.

The Document name of printer-resident documents can be changed using PlanetPress
Workflow Configuration program simply because it is initially set using that program.

The properties available via the Printer Settings tab define how documents are printed. They
are also set using the PlanetPress Workflow Configuration program and are retained when
documents are assigned to printer queues. They can be edited by selecting documents within
the PPS/PSM Documents category of the Configuration Components pane, which changes
the document’s default printer settings, or within the Printer Queues category, which changes
the document properties on the selected queue.

Page 50

PlanetPress. Workflow

PrintShop Mail documents

PrintShop Mail documents are documents made with PrintShop Mail (Suite, not Connect).
These documents may be imported into Workflow to create output with the "PrintShop Mail" on
page 527 task.

Importing PrintShop Mail documents

This procedure describes how to import variable content documents created in PrintShop Mail
(Suite, not Connect) into PlanetPress Workflow.

1. Click the PlanetPress Workflow button.

2. Choose Import, then Import PrintShop Mail Document. The Import PrintShop Mail
Document dialog box appears.

3. Navigate to the document you want to import, select it and click Open. The document is
imported and displayed in the Configuration Components pane. This physically installs
the documents to the Documents folder relative to the install folder of PlanetPress
Workflow.

Tip
To navigate quickly to the Workflow working folders, press the keyboard shortcut
CTRL+ALT+Shift+F4 from within the Workflow configuration tool.

For help on importing PrintShopMail Connect templates, see "Connect resources" on
page 41.

About data

Data is what drives your business, and our software. We define data as anything that is
obtained through an Input task and used within the process itself. Once the data is obtained, it
becomes the job file that is passed from one task to another and generally used to generate
output (see "Job file" on page 53).

Page 51

PlanetPress. Workflow

Data can be manipulated using the tasks in the process, used as comparison for conditions and
loops, complemented with data from other sources, and used to generate your output. It
originates from many different sources (as many as the input tasks support), parts of it can be
stored in variables, and it is always accessible by the task that currently handles it.

Data is referred to in tasks using data selections; see "Data selections" on page 55. Data
selections let you use data in file names, for example, or store them in a variable or in the Data
Repository for use later on.

While creating a process, you will need a sample data file to make data selections from it and to
debug the process with it. For more information about sample data files see "Sample Data" on
page 72.

Note

Null characters present in the data may not be displayed properly when using the
PlanetPress Workflow Configuration tool, and they may also be printed differently by
different printers. To ensure consistency, you should consider filtering out such
characters.

About documents and variable data

"Variable data" is data that is meant to be merged with a document or template.

In PlanetPress Connect, variable data is usually retrieved from a data file (the job file) using
the OLConnect Execute Data Mapping task. This task uses a data mapping configuration file,
created with the DataMapper, to produce a record set. A data mapping configuration contains a
data model. Any Connect template constructed using the same data model can be merged with
the resulting record set by an OLConnect Create Content task.

In PlanetPress Suite, Design documents are typically associated with an Output task.
PlanetPress Workflow dispatches captured data (the job file) to PlanetPress Design documents
directly. Itis therefore critical that a process and a document use the same emulation (see
"About data emulation" on page 61). PlanetPress Suite users are advised to review the
PlanetPress Design User Guide, especially the Selecting an Emulation section.

Page 52

PlanetPress. Workflow

Job file

Whichever source it may come from, a serial port, an e-mail message, or an LPR request, for
instance, and whatever its format, data entering a PlanetPress Workflow process via an Input
task is always referred to as a data file. When a data file enters a process, it becomes the job
file.

'Job file' however is a more general term, that can refer to data files as well as other types of
files traveling through a process. Image files, for example, can be passed from task to task in
order to be downloaded to a printer. So files traveling within a process are referred to as job
files.

A single job file can be the source of multiple job files. This is the case, for example, when a
process includes multiple branches, as each branch is given a duplicate copy of the job file
(see "About branches and conditions" on page 138). This is also the case when a job file is
splitinto multiple smaller files by a Splitter Action task, for instance (see "Data splitters" on

page 452).

It is important to note that job files may be used as a helpful debugging resource (see
"Debugging and error handling" on page 99).

Job file names are generated automatically and stored in the %f system variable (see "Job file
names and output file names" below).

Actual data and sample data

The actual data is the dynamic data captured by PlanetPress Workflow at run-time. The sample
data file is a static sampling of the run-time data (see "Sample Data" on page 72).

In the PlanetPress Workflow Configuration program, you use sample data files to create, edit
and debug PlanetPress Workflow configurations (see "Debugging your PlanetPress Workflow
process" on page 107).

Job file names and output file names

When an Input task sends a new data file down a process, it gives it an internal file name
referred to as the job file name (associated with the %f variable). The new job file typically
keeps the same name until the end of the process.

Page 53

PlanetPress. Workflow

« Ifthe job file comes to a branch in the process, PlanetPress Workflow makes a copy of the
job file and gives the new file a new job file name.

« Ifthe job file is processed by a Splitter action task, the task typically creates a number of
new files which are all given new job file names.

Since these files are generated and managed by PlanetPress Workflow, you should not
actually pay too much attention to their names.

Many Output tasks, on the other hand, let you determine exactly how you want the files they
generate to be named. In the case of Send to Folder output tasks, for example, output files are

saved under their job file names by default (using the variable %f), but you may use a static
(MyOutput.txt, for example) or variable name (%Q_Invoices, for instance) of your choosing.

Variables such as %o (original file name) bring up the issue of file overwriting. If the process
receives two source files with the same name, the second output file may overwrite the first one.
This may be what you want, but otherwise you may consider using another variable, such as
%u (unique 13-character string).

When choosing naming schemes for output files, consider the following:

« For the benefit of users who must identify files, be it in a folder or on a printer queue,
consider using names that are as meaningful and as precise as possible.

« Some devices or applications may use file name extensions to know what to do with
incoming files.

Since variable properties can be entered in the boxes where you specify the folder and file
names, you can use variables (see "About variables" on page 716), data selections (see "Data
selections" on the next page) and static text. You could, for example, use the following:
ClientID @(1,1,1,1,14,KeepCase,Trim) StatMonth 3Im.

One last consideration regarding output file names has to do with standard JPEG and TIFF files
generated by PlanetPress Image. When an output job contains multiple pages, multiple JPEG
or TIFF files are generated (one image per file), each one identified by a sequence number
appended to its name (this is managed by your PlanetPress Workflow). A three page job to be
called Invoice, for example, will generate three JPEGs or TIFFs called InvoiceO, Invoice1 and
Invoice2. Note that this does not apply to multiple TIFFs, which can include multiple images in
a single file.

Page 54

PlanetPress. Workflow

Note

You can change the name of a previously named file using a Rename action task (see
"Rename" on page 433).

Data selections

A data selection could be compared to an address. It indicates a location within a data file or
database: the job file (see "Job file" on page 53), Metadata file (see "Metadata" on page 76), or
"Data Repository" on page 96.

Data selections can be used in many task property fields and are always evaluated at run-time
so they are always dynamic and depend on the job file that is currently being processed.

There are several types of data selections you can use, depending on which emulation you are
using, whether or not Metadata have been created by a previous task in the process, and
whether or not data have been entered in the Data Repository.

Adding a data selection

A data selection can be used in any task property that may contain a variable (see "Variable
task properties" on page 303). These properties are recognizable by their colored field label
(maroon, by default).

Right-click the property field and choose Get Data Location or Get Metadata Location to
open the Data Selector (see "The Data Selector" on page 857) or Get Repository Location to
open the Data Repository Manager (see "Data Repository Manager" on page 854).

Note

The Get (...) Value options will also open the Data Selector or the Data Repository
Manager, but once selected, the value becomes static and does not change between
each data page and job file.

After opening a sample of the data (see "Choosing a sample data file" on page 73) and/or
Metadata, you can easily make a selection.

Itis also possible to manually enter a data selection, or to change it after making a selection
with the mouse pointer.

Page 55

PlanetPress. Workflow

Data selections can also be used in a PlanetPress Design document that is being merged with
the data (for example in a printed output); for more information, see PlanetPress Design User
Guide.

Wild card parameter "?"

Data/Metadata selection functions accept a wildcard parameter "?", indicating the function
operates on all nodes (not just one) of a given level.

Examples

In a PDF emulation, the format of a selected region could be:
e region(?,0.59375,2.21875,1.85416,2.51041,KeepCase,NoTrim)

In this case “?” represents the current physical data page processed by the task.

In the following rule, the Metadata selection function loops through all datapages in a job,

comparing their index in the document to a value:
e (GetMeta (SelectedIndexInDocument[0], 11, Job.Group[?].Document

[?] .Datapage[?]) Equal O

In the following rule, the question mark in the text-based data selection represents the

current page number:
e (@(?,1,1,1,9,KeepCase,NoTrim) IS EQUAL TO Page 1 of)

Text-based data selections

Text-based selections are used for text data files such as Line Printer, ASCIl and Channel Skip
emulations. The selection refers to a rectangular selection that may contain multiple lines, rows,
columns on a given page.

Syntax
@(page number, from line, to line, from column, to column, case option, trim option)

Here is a breakdown of the syntax (all options are mandatory):

o @(): Always surrounds a data selection.

« Page Number: The data page number from which you want the data selection to grab the
data. If you want to get data from each page individually, this has to be done after a

Page 56

PlanetPress. Workflow

http://www.objectiflune.com/Documentation/EN/planetpress-design-user-guide/
http://www.objectiflune.com/Documentation/EN/planetpress-design-user-guide/

splitter.

o From Line: The starting line of the data selection.

» To Line: the last line of the data selection.

« From Column: the leftmost character position of the data selection.

« To Column: the rightmost character position of the data selection.

« Case Options: This can be one of three options:
« KeepCase: Keeps the current uppercase and lowercase letters as they are.
« UpperCase: Converts all letters to their uppercase equivalent.
« LowerCase: Converts all letters to their lowercase equivalent.

« Trim Option: Can either be "Trim" if you want to trim empty spaces before and after the
data selection or "NoTrim" if you want to retain the extra spaces.

Database data selections

These selections are used for database-driven data files such as Database and CSV
emulations. The selection refers to a specific field on any given data page.

Syntax

field(record set number, child number, field name, treatment of character case, treatment of
empty trailing cells)

Here is a breakdown of the syntax (all options are mandatory):

« field(): Always surrounds database field selections.
« Record Set Number: The data page (or "record") of the data selection.

e Child Number: Line Number in the record (if there are multiple lines returned for one
single record).

« Field Name: The name of the field you want to retrieve.

« Case Option: This can be one of three options:
« KeepCase: Keeps the current uppercase and lowercase letters as they are.
o UpperCase: Converts all letters to their uppercase equivalent.

« LowerCase: Converts all letters to their lowercase equivalent.

Page 57

PlanetPress. Workflow

« Trim Option: Can either be "Trim" if you want to trim empty spaces before and after the
data selection or "NoTrim" if you want to retain the extra spaces.

Data Repository lookups

The Data Repository selections are made through the lookup function. Selections are done
from the data located in the "Data Repository Manager" on page 854. The lookup function
returns the value of a single key, which is always a string. If the lookup operation fails to find
any data, for any reason, the return value is always "NODATA".

Syntax
lookup(group, return key, lookup key, lookup value)

Here is a breakdown of the syntax (all arguments are mandatory):

« group: The name of the group in which to retrieve the value. Does not need to be
surrounded by quotes.

 return key: The name of the key where the information you want to retrieve is located.
Does not need to be surrounded by quotes.

» lookup key: The name of the key in the group with which to look up the value. The return
key of the KeySet in which the lookup key's value matches the lookup value will be
returned.

« lookup value: A string surrounded by quotes which will be used in the lookup.
The lookup syntax is akin to a SQL SELECT statement and could be loosely translated to:

SELECT [return key] FROM [group] WHERE [lookup key] = [lookup value];

PDF data selections

These selections are used for PDF data files. The selection refers to a specific area of any
given page of the PDF by using precise region coordinates (in inches).

Note that when adding a metadata field, if you perform a multi-line data selection on a PDF
region, only the first line of that region will be set to the metadata field.

Syntax
region(page, left, top, right, bottom, case option, trim option)

Here is a breakdown of the syntax (all options are mandatory):

Page 58

PlanetPress. Workflow

 region(): Always surrounds PDF data selections.
« Page: The page of the PDF from which to retrieve the data.
« Left: Exact horizontal position (in inches) that defines the left of the selection region.
« Top: Exact vertical position (in inches) that defines the top of the selection region.
« Right: Exact horizontal position (in inches) that defines the right of the selection region.
« Bottom: Exact vertical position (in inches) that defines the bottom of the selection region.
« Case Option: This can be one of three options:
« KeepCase: Keeps the current uppercase and lowercase letters as they are.
o UpperCase: Converts all letters to their uppercase equivalent.
« LowerCase: Converts all letters to their lowercase equivalent.

« Trim Option: Can either be "Trim" if you want to trim empty spaces before and after the
data selection or "NoTrim" if you want to retain the extra spaces.

Metadata selections

Metadata selections are used with any type of emulation, as long as a metadata file was
created by a previous task in the process.

Tip
To get a sample of the metadata file, debug your process and step through it until the
option View Metadata gets enabled. This happens when metadata have been created by

a task in the process. Open the metadata viewer and save the metadata file to use itas a
metadata sample file in the Data Selector.

Syntax
GetMeta(Field Name [, Option Flags, Metadata Path])
Here is a breakdown of the syntax:

o GetMeta(): Always surrounds metadata selections.

« Field/Attribute Name: specifies the name of the field (or attribute, if the GetAttribute
option flag is set) to retrieve (see "Metadata" on page 76).

« Option Flag (optional): Sets the options for the selection (see table below).

Page 59

PlanetPress. Workflow

« Metadata Path (optional): Defines the precise path where the Metadata Field is located.

Note

Metadata Index/Count values are zero-based: the first element in any collection
has an index of 0 and the last element's index corresponds to the collection's length
minus 1.

Option flags

The flag value to enter should be the sum of all desired flags. So, a value of 11, which is 8+2+1,
means that behavior 8, 2 and 1 are applied.

A value of 0 means 'no flag'.

Name Value Behavior

GetAttribute 1 Search for the name argument in the attribute
collection instead of the default field collection. See:
"Metadata" on page 76.

NoCascade 2 Search only the level specified by the path argument
(defaults to Page level when path argument is
empty), instead of default behavior, which
recursively goes up from the Page level to the Job

level.

FaillfNotFound 4 Raise an error and crash the job is the specified
name is not found instead of returning an empty
string.

SelectedNodesOnly 8 Returns values from selected nodes only (i.e.

ignores unselected nodes).

XML data selections

XML data selections are used to retrieve an element's name, value or count from an XML file.

Page 60

PlanetPress. Workflow

Syntax
xmlget(XPath[, Value option, Case option, Trim option])

Here is a breakdown of the syntax:

xmlget(): Always surrounds a data selection.

Value Options:

« Count: The number of elements on the same level in the same node that have the
same name.

« Name: The element's name.

+ Value: The element's value.

Case Options: This can be one of three options:
« KeepCase: Keeps the current uppercase and lowercase characters as they are.
« LowerCase: Converts all characters to their lowercase equivalent.

« UpperCase: Converts all characters to their uppercase equivalent.

Trim Options: Enter "Trim" if you want to trim empty spaces before and after the data
selection or "NoTrim" to retain the extra spaces.

About data emulation

An emulation specifies how to interpret a data file. It is basically the method through which
PlanetPress Workflow parses and displays the data. If the emulation is setto CSV (comma
separated values), for instance, commas encountered in the data will typically be considered as
value separators. The way data selections are made depends on the emulation (see "Data
selections" on page 55).

Every Workflow process has its own data emulation setting, which depends on the sample data
file you choose.

A process's data emulation is only visible in the Workflow configuration tool when using the
Data Selector e.g. to select a sample data file, but it is always set to one (Line Printer, by
default).

A process's emulation can be changed either by choosing another sample data file (see
"Choosing a sample data file" on page 73) or by inserting a "Change Emulation" on page 392
task in the process.

Page 61

PlanetPress. Workflow

Changing the emulation is particularly important if you want to make a data selection in a file
after it has been changed to another format (see "Data selections" on page 55).

Note

Even during debugging, selecting a sample data file with a different format will cause the
emulation of a process to change. In order to avoid errors, change the emulation back to
the format of the original input file before using the process again.

Stabilizing data

All emulations, except the database, PDF and XML emulations, let you perform operations on
the data to stabilize it. The following options are available in both the "Change Emulation" on
page 392 task and "The Data Selector" on page 857.

Add/remove characters: Enter the number of characters to add to, or remove from, the head of
the data stream, or use the spin buttons to increment or decrement the value. Positive values
add characters; negative values remove characters. This is useful when one or more characters
of input data precede the start of the first data page. Note that certain control characters can be
problematic. For example, the NUL character (hexadecimal 00) cannot be removed from the
head of the data stream, and a backspace (hexadecimal 08) can cause unpredictable behavior.
The Hex Viewer can be useful in helping determine the control characters that appear at the
head of the data stream. (To open the Hex Viewer, select Debug > View as Hex, in the menu.)
Note that you cannot add characters in a CSV. Further note that if you remove characters in a
CSV emulation, you should ensure that you do not inadvertently remove field or text delimiters.

Add/remove lines: Enter the number of lines to add to, or remove from, the head of the data
stream, or use the spin buttons to increment or decrement the value. Positive values add lines;
negative values remove lines. This is useful when one or more lines of input data precede the
start of the first data page. Note that you cannot add lines in either a CSV or user defined
emulation.

Lines per page: Enter the number of lines each data page contains, or use the spin buttons to
increment or decrement the value.

Pages in buffer: Enter the number of data pages you want the data page buffer to contain, or
use the spin buttons to increment or decrement the value.

Page 62

PlanetPress. Workflow

Read in binary mode (ASCIlI emulation only): Select to read the data file in binary mode. You
select this if you intend to run a PlanetPress Design document on a printer queue thatis set to
binary mode. In binary mode, the printer reads the end of line characters (CR, LF, and CRLF)
as they appear in the data stream and does not perform any substitution. A printer that does not
support binary mode or is not running in binary mode replaces any CR, LF, or CRLF that
appears at the end of a line of data with a LF. Note, however, that it replaces a line feed
followed by a carriage return (LFCR) with two LFs. Binary mode is the recommended printer
mode when you use an ASCIl emulation.

Cut on FF character: Select to have a new data page when a form feed character is
encountered in the data stream. If you select Cut on FF character, you have two conditions that
signal the end of a data page: the form feed character and the number of lines set in the Lines
per page box.

Emulation specific options

Various emulation specific options can be set for most emulations, with the exception of the line
printer and database emulations. For more information about a specific emulation type, see:

« "ASCIl emulation" on the facing page
« "Channel skip emulation" on page 65
o "CSV emulation" on page 66

« "Database emulation" on page 67

« "Line printer emulation" on page 68

« "PDF emulation" on page 69

« "XML Emulation" on page 71

Emulations in PlanetPress Design

The Data Selector in Workflow is essentially the same as the one used in PlanetPress Design.
When you create a document in PlanetPress Design, you choose a sample data file and
specify the emulation to use for the chosen data. Within PlanetPress Workflow, the same
emulation tools as in PlanetPress Design are available throughout your process, using the
Data Selector. One notable exception however is that User-Defined Emulation is not available
because it uses PlanetPress Talk code, which is not available within the PlanetPress Workflow
Configuration program.

Page 63

PlanetPress. Workflow

The emulation that is used in your process can change during the process, and can be different
than the one used in any PlanetPress Design document used in your process. PlanetPress
Design Documents use their own emulations, as defined in the document itself from
PlanetPress Design.

For more information about emulations in PlanetPress Design see PlanetPress Design User
Guide.

ASCIl emulation

ASCIl emulation tells the process to treat the input data as a stream of ASCII characters. The
data stream is read one character at a time, a line is constructed, and that line is added to the
data page buffer.

In this emulation, you can define how to handle carriage returns that are not followed by line
feeds and how to handle tabs. You can also define whether you want any Hewlett Packard
Printer Control Language (HP PCL) escape sequences to be removed.

Note

ASCIl emulation is only used when merging ASCII data with a PlanetPress Design
document.

When choosing an ASCIlI sample data file to be merged with a Connect template, select
Text emulation (see "Text-based emulation" on page 70).

Using an ASCII file on a printer

If an ASCII file gets sent to a printer (which is possible in a PlanetPress Suite solution), you
need to know if your printer supports binary mode as this is the recommended mode for ASCII
emulation. On printers that support binary mode, you can switch the printer to binary mode
using the printer keypad or by sending the appropriate PostScript code to the printer.

In binary mode, the printer reads the end of line characters (carriage return [CR], line feed [LF],
and carriage return followed by a line feed [CRLF]) as they appear in the data stream and does
not perform any substitution. A printer that does not support binary mode or is not running in
binary mode replaces any CR, LF, or CRLF that appears at the end of a line of data with a LF.
A form feed signals the end of a data page in ASCIlI emulation. If no form feed occurs in the data
stream, the emulation adds data to the data page buffer until the buffer is full.

Page 64

PlanetPress. Workflow

http://www.objectiflune.com/Documentation/EN/planetpress-design-user-guide/
http://www.objectiflune.com/Documentation/EN/planetpress-design-user-guide/

ASCIl emulation options

« Tab on carriage return: Select this option to fix formatting problems caused by isolated
CR characters found within the data. When this option is selected, isolated CR characters
are spaces, as defined in the Number of spaces in the tab box below. Note that this option
is available only when the Read in binary mode option is selected.

« Number of spaces in the tab: Enter the number of spaces you want the application
to use when an isolated carriage return character is found within the data. This
number typically corresponds to the maximum column number. If your data is
formatted so as to occupy a maximum of 120 characters on each line, enter a value
of 120 in this box, so when an isolated CR character is found, the data following the
CR character will appear starting from column 121. Note that this option is available
only when the Tab on carriage return option is selected

« Number of spaces per tab: Enter the number of spaces you want to use when actual
TAB characters are found within the data.

« Remove HP PCL escapes: Select if you want all Hewlett Packard Printer Control
Language escape sequences to be removed from the data.

Channel skip emulation

Channel skip emulation is a variant of line printer emulation. It tells the process to read the data
stream one line at a time, and to treat the first character of each line as a code that indicates
how to position the line of data in the data page buffer.

By default, in channel skip emulation, the integer 1 signals the end of a data page. You can
change this default when you set up the emulation.

Note that if a given value is used for multiple channels, the result may be different at design
time, or when a PlanetPress Design document is previewed or printed.

Also note that Split on FormFeed (FF) is not supported with the Channel Skip emulation in
Optimized PostScript Stream mode or when printing using a Windows driver.

Note

Channel skip emulation is only used when merging line printer data with a PlanetPress
Design document.

Page 65

PlanetPress. Workflow

CSV emulation options

« Text delimiter: Enter the character that starts and ends the data in each field of the
record. If you do not set a text delimiter and the data in a field contains the character you
set as the delimiter, the data is splitinto two fields. If you want to use a backslash
character (\) as a delimiter, you must precede it with another backslash character (thus
you would enter \\). You can also specify an ASCII character using its octal value
preceded by a backslash (for example, \041 is the exclamation mark character [!]).

« Force one record per page: Select to force a single record per data page. If you clear
the selection, a record may be split across data pages if necessary. If you want to avoid
splitting a record across data pages, yet have several records in the buffer, select Force
one record per page, and set the Pages in buffer option to the number of records you want
the buffer to hold.

« Delimiter: Enter the character that separates the fields of each record in the input data. If
you want to use a tab as a delimiter, select Set tab as field delimiter. If you want to use a
backslash character (\) as a delimiter, you must precede it with another backslash
character (thus you would enter \\). You can also specify an ASCII character using its
octal value preceded by a backslash (for example, \041 is the exclamation mark character
).

« Set tab as field delimiter: Select to define a tab as the character that separates the fields
of each record in the input data. Clear to use the Delimiter box to define that character.

CSV emulation

CSV emulation tells the process to read the input data one line at a time and to treat each line
as a database record. It also specifies the field delimiter used to distinguish the different fields
of a record.

The process reads the data stream one line at a time and puts each field of the database record
on a separate line in the data page buffer, until the buffer is full. You can force a new data page
for each record when you set up the emulation.

Note that a double text delimiter within a field is not considered a normal character when not
using the Optimized PostScript Stream option or when printing using a Windows printer driver.

Page 66

PlanetPress. Workflow

CSV emulation options

« Text delimiter: Enter the character that starts and ends the data in each field of the
record. If you do not set a text delimiter and the data in a field contains the character you
set as the delimiter, the data is splitinto two fields. If you want to use a backslash
character (\) as a delimiter, you must precede it with another backslash character (thus
you would enter \\). You can also specify an ASCII character using its octal value
preceded by a backslash (for example, \041 is the exclamation mark character [!]).

« Force one record per page: Select to force a single record per data page. If you clear
the selection, a record may be split across data pages if necessary. If you want to avoid
splitting a record across data pages, yet have several records in the buffer, select Force
one record per page, and set the Pages in buffer option to the number of records you want
the buffer to hold.

« Delimiter: Enter the character that separates the fields of each record in the input data. If
you want to use a tab as a delimiter, select Set tab as field delimiter. If you want to use a
backslash character (\) as a delimiter, you must precede it with another backslash
character (thus you would enter \\). You can also specify an ASCII character using its
octal value preceded by a backslash (for example, \041 is the exclamation mark character

).
« Set tab as field delimiter: Select to define a tab as the character that separates the fields
of each record in the input data. Clear to use the Delimiter box to define that character.

Database emulation

The Database emulation differs from other emulation types. With other emulations, data is
pushed either to PlanetPress Workflow processes running on servers, or to PlanetPress
Design documents residing on a printer. But in the case of the Dababase emulation, data must
be pulled from the data source: a query must be performed on the database to extract the
relevant data.

When generating output from the design tool (which is the Designer in Connect, or Design in
PlanetPress suite) one can open the document and then use the Data Selector to select a
database. By making a connection to the database, its structure can be accessed and it
becomes possible to determine how data is to be pulled into the document.

In a Workflow process, the database query has to be performed automatically. This can be
performed by the "Database Query" on page 401 Action task. The task generates a data file
that it passes to the following task, be it another Action task, or any Output task. For help on
setting up the database emulation see: "Choosing a database sample file" on page 74.

Page 67

PlanetPress. Workflow

Note

You can also use the PlanetPress Workflow Database Action task to get data from a
database, and output in multiple different formats such as CSV. See "Database Query"
on page 401.

Bear the following in mind:

The person or plugin performing the query must have full access to the database.

The data is extracted at the time of the query. A new query must be performed whenever
the data needs to be updated.

Any changes to the structure of the database may have an impact on automated data
querying tasks.

You must have the proper ODBC driver installed to use this emulation.

Database emulation supports SQL ANSI 92 or higher, and supports the following data types:
string, integer, floating point, all date formats, and text-only MEMO. It does not support any
binary data types such as Binary Large Object (BLOB), images, sound files, and MEMO data
that includes binary data.

Database emulation requires version 2.5 or higher of Microsoft Data Access Components
(MDAC), including JET 4.0, and you can save database emulation configurations to a file.

Database emulation options
For help on setting up a database emulation see: "Choosing a database sample file" on
page 74.

Note for PlanetPress Suite users: For information about setting up a database emulation in a
Design document, please see the relevant page in the PlanetPress Design User Guide.

Line printer emulation

Line printer emulation tells the process to treat the input data as data destined for a line printer.

In this emulation, a form feed signals the end of a data page. If no form feed occurs in the data
stream, the emulation adds lines to the data page buffer until the buffer is full.

Line printer emulation offers the best overall performance of all the emulations.

Page 68

PlanetPress. Workflow

http://www.objectiflune.com/Documentation/en/planetpress-design-user-guide/index.html?topicid=3065

Note

Line printer emulation is only used when merging line printer data with a PlanetPress

Design document.
When choosing a line printer sample data file to be merged with a Connect template,
select Text emulation (see "Text-based emulation" on the facing page).

Line printer emulation options

The line printer emulation does not have any options other than the general text-based
emulation options (see "Text-based emulation" on the facing page).

PDF emulation

The PDF emulation allows you to capture data from fully composed documents in a PDF
format.

PDF emulation slightly differs from other emulations: with other emulations, data is read either
one line at a time or one character at a time, while PDF emulation processes the input data
from the PDF file in such a fashion that every PDF page becomes a full data page.

Note

Protected PDF and PDF of versions above 1.7 are not supported by PlanetPress
Workflow.

PDF emulation options

The PDF emulation does not have any options - that is, there is nothing to set up when opening
a PDF data file.

In the Preferences there is a number of options that affect how words, lines and paragraphs are
detected in the PDF when creating data selections. You will find these options when you select
Workflow > Preferences > PDF Text Extractor. For more information see "PDF text extraction

tolerance factors" on page 789.

Page 69

PlanetPress. Workflow

Text-based emulation

Text-based emulations display your data in plain text in the Data Selector and the Data Pane,
one line at a time, up to the limit you specify in the emulation properties (by default, 66 lines).
This is especially useful for legacy systems (such as AS/400 computers) that send data as text
meant for older line printers using pre-printed forms. The emulation options are used to make
sure your data is stable.

Stabilizing data is the process of defining the size of the data page and where the first data
page occurs in the data stream. A stable data page is critical to obtain accurate results. When
you stabilize your data, you also need to consider the internal structure of each data page. The
internal structure of each data page must also be stable to make the data selections you use
reliable (see "Data selections" on page 55). Ideally, a given piece of data occupies the same
position across all data pages, or provides some stable characteristic that makes it possible to
locate it on every data page.

Text-based emulation options

The following properties are available for the text-based emulations (Line Printer, ASCII,
Channel Skip and CSV) to help stabilize the data:

« Add/remove characters: Enter the number of characters to add to, or remove from, the
head of the data stream, or use the spin buttons to increment or decrement the value.
Positive values add characters while negative values remove characters. Further note
that if you remove characters in a CSV emulation, you should ensure that you do not
inadvertently remove field or text delimiters.

« Add/remove lines: Enter the number of lines to add to, or remove from, the head of the
data stream, or use the spin buttons to increment or decrement the value. Positive values
add lines while negative values remove lines.

« Lines per page: Enter the number of lines each data page contains, or use the spin
buttons to increment or decrement the value. A higher value means more lines will be
displayed on each data page. Note that increasing the value for this setting increases the
amount of RAM used by the application and may exceed the system’s capacity. Since the
Show used cells option also uses up some RAM, consider removing this option (see
"Data Selector display preferences" on page 861) to reduce system load.

« Pages in buffer: Enter the number of data pages you want the data page buffer to
contain, or use the spin buttons to increment or decrement the value. Putting more pages
in the buffer multiples the lines shown and is only useful in specific cases.

Page 70

PlanetPress. Workflow

Note for PlanetPress Suite users: You should also consider using the N-Up Object if you
want to display multiple data pages; see thePlanetPress Design user guide.

« Cuton FF character: Select to have a new data page when a form feed character is
encountered in the data stream. If you select the Cut on FF character option, there are two
conditions that signal the end of a data page: the form feed character and the number of
lines setin the Lines per page option. Note that the Cut on FF character takes
precedence over the Lines per page option.

« Read in binary mode: Select this option to force the printer to read the incoming data in
binary mode. Use this option with the ASCIl emulation to fix problems related to line
spacing caused by LFCR character pairs found within the data. Use it with the ASCII
emulation and with the Tab on carriage return option to fix problems related to data
formatting caused by isolated CR characters found within the data. This option can only
be used with the ASCII emulation.

Note for PlanetPress Suite users: You cannot select this option if the Design document is
to be installed on a printer that cannot run in binary mode.

« Data encoding: Select the appropriate encoding for the sample data file. You may look at
the data in the Data Pane (non-English characters especially, if any) to see how the your
selection affects the data.

XML Emulation

XML data emulations allow you to capture data emanating from web databases, e-mail
fulfillment, e-commerce, and general XML database engines. In XML emulation, the data
elements in markup language format are organized in a folder view with a root node and sub-
level nodes.

Note

Characters referenced using the ϧ syntax are limited to values ranging from 000
(�) to 256 (Ā).

Note

When XML data is merged with PlanetPress Design documents on a printer DOCTYPE
and ENTITY tags are ignored.

Page 71

PlanetPress. Workflow

http://help.objectiflune.com/en/planetpress-design-user-guide/7.6/1312.html

XML emulation options

o Cache XML data: When this option is selected, PlanetPress Workflow Server only
reloads the data if the size or modified date of the XML file changes. When this option is
not selected, the XML data will be reloaded into memory every time that a plugin works on
the data file. Caching the XML data will make subsequent tasks run faster (as loading an
XML file can take a long time) but will also use up more memory since that memory isn't
released in between tasks. For single runs the performance gain is less noticeable than in
loops (either through a splitter, a Loop task or a Metadata filter) where the XML file would
be loaded repeatedly.

For information about XML emulation options in PlanetPress Design documents, see the
PlanetPress Design user guide.

Sample Data

This topic covers issues relating to the sample data used in your PlanetPress Workflow
configuration.

A sample data file makes it possible to:

« Create a process that retrieves dynamic data from a data file. Once a sample data file is
available, you can use it to make data selections in a process (see "Data selections" on
page 55).

« Debug a process (see "Debugging your PlanetPress Workflow process" on page 107).

Choosing a sample file sets the process's emulation to the chosen format (see "About data
emulation" on page 61). The only other way to change a process's emulation is by inserting a
"Change Emulation" on page 392 task in it.

Changing the emulation is particularly important if you want to make a data selection in a file
after it has been converted to another format or when the job file has changed (see "Data
selections" on page 55). To interpret a sample data file correctly, a process must have the
corresponding emulation setting.

Page 72

PlanetPress. Workflow

http://help.objectiflune.com/en/planetpress-design-user-guide/7.6/shared/Emulation-XML.html
http://help.objectiflune.com/en/planetpress-design-user-guide/7.6/shared/Emulation-XML.html

Note

Even during debugging, selecting a sample data file with a different format will cause the
emulation of a process to change. In order to avoid errors, change the emulation back to
the format of the original input file before using the process again.

Choosing a sample data file

In order to create your PlanetPress Workflow process, the sample data you are going to use
has to correspond precisely to the job files that will be treated by that process, at least in terms
of structure.

The sample data file should have a relatively small number of records (generally less than a
hundred) in order to be processed quickly, while your actual data may be much larger and take
more time to process. The sample data file should also contain at least one of every exception
you may want to detect, or data used for a specific condition. For example, if you wanted to filter
out any data for clients in Canada, you would want to use a data file that has at least one client
from Canada, to test whether your process filters it out correctly.

To choose a sample data file:

1. Click the Debug tab in the PlanetPress Workflow Ribbon.
2. Click on Select in the Data group.

3. Use the Data Selector to choose your sample data file and emulation options (see "The
Data Selector" on page 857).

4. Click OK on the Data Selector.

Alternatively, if a resource file available in the configuration contains the necessary data file, it
can be attached to the process easily:

1. Expand the relevant resource files folder (Connect Resources or PPS/PSM Documents)
by clicking the ® button.

2. Expand the file by clicking the = button.

3. Right-click on the data file, then click Set as sample data file or simply double-click on
the data file.

Page 73

PlanetPress. Workflow

For example, to use a sample data file included in a Connect data mapping configuration:
select Connect Resources > Data Mapping Configurations > [your data mapping
configuration], right-click a data file and choose Set as sample data file.

Tip
Double-clicking on the data file does the same thing as right-clicking on it an then

selecting Set as sample data file. Clicking Cancel instead of OK after viewing will
prevent this action from being taken.

When you drag-and-drop a data mapping configuration on a process, you can choose
to use the first sample file in the data mapping configuration as the process's sample data
file. This also adds an "Execute Data Mapping" on page 629 task to the process.

Choosing a database sample file

To choose a database sample file:

1. Open the Data Selector (see "The Data Selector" on page 857).

2. From the Emulation drop-down list, select Database.

3. Nextto the Sample data file field, click the Configure Database button.
4. Associate a database.

« Microsoft Access Database or dBase file: In Database, enter the path of the
Microsoft Access database or dBase file, or click the Browse button to the right of
the box to navigate to, the database file. Recall that a Microsoft Access database file
bears the extension .mdb, and a dBase file bears the extension .dbf. If the file is a
dBase file, you must specify the folder that contains the .dbf file. The folder in this
case is considered to be the database, while each individual .dbf file is a table in the
database. Once you enter the path, the Table/query name box updates to reflect the
tables and queries available in the selected database.

« ODBC Data Source: In ODBC Data Source, click to connectto an ODBC Data
Source. Use the Select Data Source dialog box that appears to select an existing
Data Source or set up a new one. When you exit the Select Data Source dialog box,
the Database box updates to display the connection string it uses to connect to the
database, and the Table/query name box updates to reflect the tables and queries
available in the selected database.

Page 74

PlanetPress. Workflow

Note

Since the Workflow tool is a 32-bit application, it can only use 32-bit ODBC
data sources. Make sure you use the proper Windows application (ODBC
Data Sources (32-bit)) to create and manage data sources that can be used in
Workflow.

5. Click Edit SQL to create the SQL query by hand to define the SQL query that retrieves the
data your document requires.

6. Setthe properties that define a record set:

« Condition: Select the condition that signals the end of a record set. Three
possibilities exist: create a new record set for each record, create a new record set
after every x records, or create a new record set when the value of a specific field
changes.

« Sort on condition field: Select this if the condition you set is to create a new record
set when the value of a specific field changes, and you want to sort the records
before applying that condition.

« Maximum records per record set: Set either the number of records in each record
set, or the maximum number of records in a record set. An individual record set can
contain a maximum of 4000 records.

7. Setthe number of records you want to include in the sample data file. The number of
records you set should provide a reliable sample to ensure your document executes
properly with any of the data it may encounter at runtime.

« All: Select to include all records in the database in the sample data file.

« Records: Select to define the range of records you want to include in the sample
data file.

Entering an SQL query

1. In the Database Connection dialog box, click Edit SQL.

2. If necessary, click Show Tables to display, in the Tables area, a list of the tables
available in the database.

3. Inthe SQL Query Entry area, enter the SQL query. The following two sample queries both
retrieve all the fields in the Orders table. The second sorts the resulting records on the
Date field.

SELECT * FROM [Orders]

Page 75

PlanetPress. Workflow

SELECT * FROM [Orders] ORDER BY [Date]
4. Click Test SQL to verify the query you entered is a valid SQL query.

5. Define whether you want PlanetPress Design to automatically enclose table names and
field names in square brackets.
Alternate syntax(not recommended): Select to prevent PlanetPress Design from
automatically enclosing the names of any database tables and fields that appear in the
SQL query in square brackets when it exits the advanced SQL Statement dialog box.

6. Client side cursor: Select to download result sets to client computer running the SQL
query. Under some circumstances, client side cursors may be slightly less efficient than
server-side cursors, but they may also provide additional functionality, depending on the
type of query that is issued.

7. Click OK to return to the Database Connection dialog box.

Opening a previously used data file

PlanetPress Workflow also keeps the last 9 used data files in memory, which you can reopen to
use in the same process, or in a different one.
To reopen a sample data file:

Click the Debug tab in the PlanetPress Workflow Ribbon.

Click on Reopen Data File in the Data group.

Click on one of the data files in the list.

Use the Data Selector to change the emulation options if necessary.
Click OK on the Data Selector.

Metadata

Metadata is a hierarchical structure describing a job. Simply put, Metadata is data about data
or, in other words, information tagged to data. Depending on the type of job, the Metadata
includes information about the job, the data file, items in the Connect database, a PlanetPress
Design document, 'User defined information' (sometimes created by regular tasks) and in some
cases page properties and page counts.

o b =

Some of the Action and Output tasks produce, alter, or use the Metadata. In addition to that,
PlanetPress Workflow provides a whole series of plugins to create and edit Metadata during a
Workflow process (see "Metadata tasks" on page 560). The things that you have to know in

Page 76

PlanetPress. Workflow

order to use the Metadata tasks effectively are set out in another topic: "Working with Metadata"
on page 79.

You can also manipulate the Metadata in your process via scripts using the Metadata API. See
Metadata API Reference.

Note

Applications or plugins created in PlanetPress Suite 6 and using Metadata will need to
be updated for use in version 2021.2. No backward compatibility mode is available.

Warning

When a user-defined emulation (created in PlanetPress Design) is used with Metadata,
results and behavior are unknown and unsupported. For instance, refreshing the
Metadata file may cause the document to crash and/or corrupt. For this reason, itis
strongly advised to create backup copies of your documents beforehand.

Metadata structure

The hierarchical structure of the Metadata is composed of a number of basic levels for adding
information to a job. These levels are, from top to bottom:

« Job: A file that contains one or more groups.

« Group: A logical and ordered group of documents (ex: all invoices for a specific customer
number; all documents going to the same address, etc.).

« Document: A group of one or more ordered data pages intended to the same recipient
from the same source (ex: invoice).

« Data page: One atomic unit of content that produces zero, one or more pages.

« Page: One side of a physical paper sheet.
When Metadata is produced for a given job, a hierarchical (i.e. tree-like) structure is created,

composed of the above elements in the following order: Job > Group(s) > Document(s) >
Datapage(s) > Page(s). For example:

Page 77

PlanetPress. Workflow

http://help.objectiflune.com/files/EN/metadata-api/

JoB GROUP F’ DOCUMENT i | DATAPAGE i ‘ PAGE

X, .
Service Store INVOICE

Mr.done's INV3952344 L%_
. =

invoices

Inwaices for
hWontreal INWETEISZ3 L]

clients M_rs.Smith'S T
invoices INWT7054205
S

'l AL
T

Note

Any operation that modifies the data with regards to the structure (ex: remove pages, alter
the data, etc.) makes the Metadata obsolete and so it must be recreated or refreshed; see
"Working with Metadata" on the next page.

Note: Metadata in OL Connect jobs

In PlanetPress Suite, all levels in the Metadata hold information about an actual job. In
Connect, thatisn't the case. The Metadata file created and maintained by OL Connect tasks
looks the same, but contains less information. Only the first three levels in the Metadata hold
information about the job: Job, Group and Document. A Group has information about a
record set in the Connect database and a Document has information about one record in that
set. This information appears under User defined information instead of under Production
information. The Data Model fields are added into the Document level.

Although Data page and Page nodes are visible in the Metadata file, they don't contain any
actual job related information in this case.

The Metadata related plugins (see "Metadata tasks" on page 560) can be used in conjunction
with OL Connect tasks nonetheless; see "How Metadata affects the output" on page 81.

Page 78

PlanetPress. Workflow

Metadata Attributes and Fields

Each Metadata node (i.e. Job, Group, Document, etc.) is described with a series of elements,
that is, system-defined attributes or user-defined fields holding static or dynamic information
about the node they are attached to. Each element has a name and a value. Here is a definition
of these 2 types of elements:

« Attribute: A read-only, system-defined element which holds certain information about a
certain node in the Metadata structure. This information can be static (e.g. the size of a
physical page) or evaluated on-the-fly (e.g. the number of documents in a group).
Attributes are non-repetitive (i.e. name is unique) and do not persist through Metadata
recreation. (See also: "Metadata Attributes reference" on page 84.)

« Field: A read-write, user-defined element which holds custom information about a certain
node in the Metadata structure. Fields are repetitive (i.e. the same field may appear
multiple times) and persist through Metadata recreation.

When the Metadata file is viewed through the Data Selector in Workflow, attributes are listed
under Production information; fields are listed under User defined information (see
"Metadata tab" on page 859).

In addition to attributes and fields, each Metadata node has a number of properties and
methods. The Boolean property selected indicates whether or not to produce the pages under
that node. By default, this property is set to true for all nodes. This property is not visible in the
Metadata file, but it can be used in a Run Script task via the Metadata API.

Metadata Tools in PlanetPress Design

PlanetPress Suite includes a complete set of Metadata-related functionality, which can be
referred to as Metadata Tools. These tools can be used to generate Metadata, retrieve or define
Metadata elements, and build the Metadata structure of a PlanetPress Design document. For
information about these tools see the Design user guide: PlanetPress Design 7.6 User Guide.

Working with Metadata

A set of special Workflow plugins allows to edit the Metadata during a Workflow process (see
"Metadata" on page 76 and "Metadata tasks" on page 560). This topic describes what you have
to know about Metadata in order to be able to use these plugins effectively.

Page 79

PlanetPress. Workflow

http://help.objectiflune.com/files/EN/metadata-api/
http://help.objectiflune.com/en/planetpress-design-user-guide/7.6/

How data and Metadata influence each other

When Metadata are created, they are based upon a data file. However, modifying one file
doesn't automatically change the other, and Metadata aren't reset by defaultin a Branch,
Condition or Loop.

« Modifying Metadata does not immediately modify the data. This is one of the benefits
of Metadata because you can sort it, filter it, sequence it, add data to it, without ever
modifying the data file itself. This is important because if you, for instance, filter out certain
data pages from the Metadata and then save your data file with the Send to Folder task,
the full data file is saved, not the filtered one. However in some cases Metadata does
affect your output directly (see "How Metadata affects the output" on the next page).

« Modifying data does not immediately modify the Metadata. So, if you have a PDF file
with Metadata and you use a PDF splitter, the Metadata information would still reflect the
original data, not the split. This can generally be resolved by using the Create Metadata
plugin (again).

« Branches, Conditions and Loops (such as the "PDF Splitter" on page 466) do not
reset the Metadata. This is important to know in cases where Metadata does affect your
output (see "How Metadata affects the output" on the next page). Not handling the
Metadata properly in such cases can cause confusing issues because the Metadata and
the Data may become out of sync.

How tasks influence Metadata

As a general rule, only Input tasks and Metadata related tasks modify Metadata. There are,
however, a few notable exceptions:

« "Run Script" on page 482 tasks can modify Metadata using the "Metadata API" on
page 197 (see "Using Scripts" on page 141).

« "Create PDF" on page 397 has the option to reset your Metadata according to the new
PDF file.

« "OL Connecttasks" on page 591 can add information, such as record IDs, a record set ID
or a print job ID, to the Metadata. They put it under 'User defined information' on the Job,
Group or Document level.

« The "Barcode Scan" on page 386 task can add information to the existing Metadata, and
creates itif there is none.

Page 80

PlanetPress. Workflow

« The "Capture Fields Generator" on page 543, "Capture Fields Processor" on page 546,
"Get Capture Document" on page 556 and "Find Capture Documents" on page 552 tasks
generate their own Metadata.

o The "Lookup in Microsoft® Excel® Documents" on page 499 enhances Metadata fields
with information from an Excel spreadsheet, but does not otherwise change its structure.

How Metadata affects the output

By default the data file is not affected when the Metadata are modified. There are however a
few situations in which Metadata will or may affect the output.

In OL Connect, output is normally created from records in the Connect database, but options in
some "OL Connect tasks" on page 591 make it possible to influence the output via the
Metadata.

« The "Execute Data Mapping" on page 629 task and "Retrieve Items" on page 647 task
can output records in the Metadata.

« The "Create Print Content" on page 617 and "Create Email Content" on page 600 tasks
have the option to update the records in the Connect database from the Metadata and use
the updated records as input.

In PlanetPress Suite, the Metadata defines the order in which the data is consumed by a
Design template. Changing the order and location of the various items means that the final
output will be different than the original and will follow the order dictated by the Metadata
instead of the order of the physical data.

« When you print a PDF with a Windows Print Queue, the Metadata is inspected to
determine whether pages should print or not (see "Print using a Windows driver" on
page 669).

« The "Create PDF" on page 397 task also takes the Metadata into account.

Output issues caused by Metadata, and how to avoid them

A Branch, Loop (the "PDF Splitter" on page 466, for instance, or the Loop task) and Condition
don't reset the Metadata. This can cause confusing issues if they are used in combination with
a task that takes the Metadata into account.

To avoid such issues, either regenerate your Metadata inside the (condition) branch or loop as
early as possible (see "Create Metadata" on page 560), or use the "Metadata File
Management" on page 566 to delete the active Metadata file and let the data file be taken into
account instead of the Metadata.

Page 81

PlanetPress. Workflow

Example

Here is an example of an issue that occurs when Metadata is not re-created in a Loop.

In the following process, the Job file is a PDF that contains several invoices. Some (but not all)
of those invoices start with a separator page that you don't want to print. Invoices that don't have
a separator page should be printed as-is.

The process would look something like this (by default):

Process - Proceszzd

1 e

1 Create File
ID bk IMPUT

|]
2 PDF Splitter
FEE | Split on region content change

“]

Text Condition

|

1
P /TIF SEPARATOR PAGE 15 FOUND ‘

-

al

Create Metadata
Paszsthrough

Metadata Filter
Select in level: Data page

B Print using a Windows Driver
Microzoft Print ta PDF
Alto-detect

7 |

= JPrnt using a Windows Driver
E& ticrozaft Print to FDF
=il | Auto-detect

» Step 2 splits the PDF whenever it encounters a new Invoice Number on the Top Right
corner of a page. From this point on, the rest of the process applies to each split (i.e. each
invoice).

« Step 3 checks if the first page is a separator (presumably by looking for some kind of
keyword on the page).

« If a separator page was found, step 4 creates Metadata for the split PDF...

Page 82

PlanetPress. Workflow

« ...and step 5 filters out the first page (which means the Metadata unselects the first Data
Page, in effect "hiding" it from the Print Output task).

« Step 6 prints the PDF to a printer. When printing a PDF file in passthrough mode, the
Metadata is inspected to determine which pages should print or not. In this case, Page 1
is unselected in the Metadata, therefore the printer receives the job starting from Page 2,
which is exactly what you want.

« Step 7 prints the entire PDF since no separator page was found.

Now here comes the issue:

« The process moves back up to Task 2 in order to process the second split of the original
PDF. The Metadata file still exists in the process! So far, it doesn'timpact the rest of the
process... but wait...

« Let's say in step 3 no separator page is found on page 1 of the second split PDF.

« Step 7 prints that second split PDF... but page 1 is unselected in the Metadata (because
the Metadata was carried over from the last split!) so at the very least, you will be missing
one page. If the second split has more pages than the first one, other pages at the end will
get missing as well, as the Metadata doesn't know aboutit. Or if it has less pages than the
first one, the last pages will be blank.

To avoid running into the issue, you should use the "Create Metadata" on page 560 task to re-
create the Metadata immediately after every split, thus ensuring that the process cannot, in
either branch of the condition, be using the Metadata from the previous split.

Page 83

PlanetPress. Workflow

Process - Procesz3

1 2

1 Create File
- IDUMMY INPUT

—== | PDF Splitter
Split on region content change

Create Metadata
Pazzthrough

Text Condition

1
/TIF SEP&RATOR PAGE 5 FOUND ‘

&

Metadata Filter
Select in level Data page

Gl

Print using a Windows Driver
Micrazaft Print ta PDF
Ato-detect

-1

= " jPnnt using a Windows Dnver
_!‘ Microzoft Print to PDF
= | Auto-detect

Metadata Attributes reference

An Attribute is a read-only, system-defined element which holds certain information about a
certain node in the "Metadata" on page 76 structure. This information can be static (e.g. the size
of a physical page) or evaluated on-the-fly (e.g. the number of documents in a group). Attributes
are non-repetitive (i.e. name is unique) and do not persist through Metadata recreation.

When the Metadata file is viewed through "The Data Selector" on page 857, the Attributes are
listed under Production information (see "Metadata tab" on page 859).

The Metadata Attributes can be categorized as either Production, Finishing or Index/Count.

« Production attributes describe the production of the job and/or Metadata (e.g. path and
name of the data file, date at which Metadata was created, etc.)

Page 84

PlanetPress. Workflow

» Finishing attributes describe the finishing intent (e.g. page dimensions, page orientation,
duplex mode, etc.).

Note

The presence of some finishing attributes depends on the PlanetPress Design
document and target device used when producing the job.

« Index/Count attributes are not part of the original Metadata file. They are evaluated
dynamically, based on the content of the Metadata.

Note

Metadata Index/Count values are one-based when viewed in the user interface: the
first elementin any collection has an index of 1 and the last element's index
corresponds to the collection's length. However, in the APl and in Metadata
selections, they are zero-based: the first element in any collection has an index of 0
and the last element's index corresponds to the collection's length minus 1. This
means the zero-based value has to be used when retrieving Metadata (see also:
"Metadata selections" on page 59 and "Rule Interface" on page 874).

In the following table, the last 5 columns indicate at which level the corresponding attribute is
available. This also depends on the type of job, however.

Note

In the Metadata file created for an OL Connect job:

« Only three levels are filled with actual data about the job: Job, Group and
Document.

o Only Index and Count attributes are used.

Page 85

PlanetPress. Workflow

Attribute Description Categor Docum Datapa Pag
y ent ge e
DataEncoding (optional) Producti X
Name of the on
character
encoding.
DataFile (optional) Producti X
Path and on
name of the
data file used
by the
PlanetPress
Design
Document.
Date Date the Producti X
Metadata was | on
created in
ISO format.
Time Time the Producti X
Metadata was | on
created in
ISO format.
Title Title of the Producti X
source on
document.
Producer Name of the Producti X
software that on
created the
Metadata.
Creator Name of the Producti X
software that on

created the

Page 86

PlanetPress. Workflow

Attribute

Description

source of the
Metadata.

Categor
y

Grou
P

Docum
ent

Datapa
ge

Pag
e

TargetDevice

Name of the
device for
which the
Metadata and
associated
datais
intended.

Producti
on

Author

Name of the
user who
printed the
job initially,
as available
in the spool
file, and as
the firstjob
info of the
Windows
capture input.

Producti
on

Dimension

Two floating-
point values
separated by
a colon
indicating the
media size in
typographical
points (ex:
612:792).

Finishin
g

Orientation

"Rotate0",
"Rotate90",
"Rotate180"

Finishin
g

Page 87

PlanetPress. Workflow

Attribute Description Categor Jo Grou Docum Datapa Pag

y o] p ent ge e

or
"Rotate270",
indicating
respectively
portrait,
landscape,
rotated
portrait and
rotated
landscape.

Side "Front" or Finishin X
"Back"; g
indicates
whether the
page is on

the front or
the back of
the paper
sheet. This
attribute is a
"best effort"
and is device-
dependent.

Duplex "None", Finishin X X X X X
"DuplexTumb | g
le" or
"DuplexNoTu
mble";
indicates a
change of the
duplex status.

InputSlot Device- Finishin X X X X X
dependent g

Page 88

PlanetPress. Workflow

Attribute Description Categor

y
identifier of
the media
source.
OutputBin Device- Finishin X X X X X
dependent g
identifier of
the media
destination.
Weight Device- Finishin X X X X X
dependent g
weight of the
media.
MediaColor Device- Finishin | X X X X X
dependent g
color of the
media.
MediaType Device- Finishin | X X X X X
dependent g
type of the
media.
Index Index/C X X X X
ount
IndexinDocument | Returns the Index/C X X
Absolute ount
index of the
node within
all the nodes
under the
parent
Document.

Page 89

PlanetPress. Workflow

Attribute Description Categor Jo Grou Docum Datapa Pag
y o] p ent ge e
IndexInGroup Returns the Index/C X X X
Absolute ount
index of the
node within
all the nodes
under the
parent Group.
IndexinJob Returns the Index/C X X X X
Absolute ount
index of the
node within
all the nodes
under the
parent Job.
Count Index/C X X X X
ount
DocumentCount Index/C X
ount
DatapageCount Index/C X X
ount
PageCount Index/C X X X
ount
SelectedCount Index/C X X X X
ount
SelectedDocume Index/C X
ntCount ount
SelectedDatapag Index/C X X
eCount ount

Page 90

PlanetPress. Workflow

Attribute Description Categor Jo Grou Docum Datapa Pag

y b p ge e

SelectedPageCo Index/C X X X
unt ount

SelectedIndexIinD | Returns the Index/C X X
ocument Absolute ount
index of the
node within
all the
selected
nodes under
the parent
Document.

SelectedindexInG | Returns the Index/C X X X
roup Absolute ount
index of the
node within
all the
selected
nodes under
the parent
Group.

SelectedIndexinJ Returns the Index/C X X X X
ob Absolute ount
index of the
node within
all the
selected
nodes under
the parent
Job.

NumCopies Indicates how | Index/C X
many times ount
the job is set

Page 91

PlanetPress. Workflow

Attribute Description Categor Jo Grou Docum Datapa Pag

y b p ent ge e

to execute, as
set when
printing using
a Windows
driver.

Working with JSON

In online processes, itis common to send data to and retrieve data from a server. That data is
often exchanged in JSON format. JSON is short for JavaScript Object Notation. Itis a way to
store information in a structured and easy-to-read format. It is often referred to as "XML without
nodes" and it is designed for exchanging data.

Refer to the following online resources for more information on JSON and its syntax:

¢ WWW.jSON.Org

« www.w3schools.com

JSON support in Workflow tasks and scripts

PlanetPress Workflow offers JSON support in and via the following tasks:

o The "XML/JSON Conversion" on page 450 task converts an XML job file to JSON or a
JSON job file to XML.

« The following OL Connect tasks accept JSON data as input: "Create Email Content" on
page 600, "Create Print Content" on page 617, "Create Web Content" on page 621,
"Render Email Content" on page 643, and the "Create Preview PDF" on page 612 task.

o When the OL Connect "Execute Data Mapping" on page 629 task or the OL Connect
"Retrieve Items" on page 647 task is set to output Records in JSON, it outputs a JSON
Record Data List (see "Types of JSON in Workflow" on the next page).

« The OL Connect Send "Get Data" on page 577 task can output its results to a JSON file.

In scripts written in any JSON-aware language (including JavaScript), JSON is obviously
supported.

Certain methods in the "Data Repository API" on page 175 accept or return JSON data.

Page 92

PlanetPress. Workflow

http://www.json.org/
http://www.w3schools.com/

Types of JSON in Workflow

Workflow tasks that support JSON accept or output one or two of the following types of JSON:

« aregular JSON string, containing a JSON object or an array of JSON objects
representing records. If a value in a record object is a string, it is considered to be a field
value. If a value in a record objectis a JSON object, it is considered to be a nested table
with detail records. For examples, see "JSON string examples" below.

« a JSON Record Data List (see the REST API| Cookbook). A JSON Record Data Listis a
proprietary JSON object type. It includes a schema entry with information about the types
of all fields at the beginning of the record, and the data set with values after the schema.
This structure allows for easy handling of REST API return values through scripting in
Workflow or in the Designer; see "JSON Record Data List example" on the facing page.

JSON string examples

The following JSON string samples show various techniques to incorporate data in a JSON
string.

A simple JSON structure holding the first and last name of a person:

{
"first": "Peter",
"last": "Parker"

}

A JSON string with references to local variables and a Job Info variable (see "About
variables" on page 716):

{
"first":"%${first}",
"last":"%{last}",
"emailﬂ : "%2"

}

A JSON string containing a local variable and various Data Repository selections (see "Data
Repository lookups" on page 58):

{

"Jobid":"%${jobid}",

"account":"lookup (OLCS jobs, account, jobid, '${jobid}"')"
"datafile name":"lookup (OLCS jobs, datafile name, jobid,

’
l

%

Page 93

PlanetPress. Workflow

http://help.objectiflune.com/en/PlanetPress-connect-rest-api-cookbook/2021.2/#Cookbook/Technical_Overview/JSON_Structures/Specific_Structures/JSON_Record_Data_List.htm

{jobid} ") ",

"pages":"lookup (OLCS jobs, pages, jobid, '%{jobid}')",
"documents" :"lookup (OLCS jobs, documents, jobid, '%{jobid}'")",
"recordsetid":"lookup (OLCS jobs, recordsetid, jobid, '${jobid}"')"
}

An example where the entire JSON string is provided in a Job Info variable:

o\©

1

A JSON string constructed with information retrieved from an XML job data file (see "XML data
selections" on page 60):

{

"first":"xmlget ('/request[l]/values[1l]/first
[1]',Value,KeepCase,NoTrim) ",

"last":"xmlget ('/request([1l]/values[l]/last
[1]',Value,KeepCase,NoTrim) ",
"email":"xmlget ('/request[l]/values[l]/email
[1]',Value,KeepCase,NoTrim)"

}
A JSON string that contains nested data:

{

"name" :"Peter Parker",
"email":"parkerp@localhostcom",
"ExtraData":"foobar",

"detail": [{"id":"inv123","ExtraData":"hello"},
{"id":"456", "ExtraData" :"world"}]
}

JSON Record Data List example

A JSON Record Data List describes a list of data fields (as name/value pairs), a data table
schema and nested data records (if any) for one or more data records. Below is an example of
such a JSON Record Data List.

"schema": {
"columns": {
"ID": "STRING",
"Date": "DATETIME"

Page 94

PlanetPress. Workflow

ty
"tables" : {

"detail": {
"columns": {

"ItemTotal": "CURRENCY",
"ItemShipped": "FLOAT",
"ITtemOrdered": "BOOLEAN"
}
}l
"detail2": {
"columns": {
"ItemUnitPrice": "CURRENCY",
"ITtemOrdered": "INTEGER"
}
}
}
}l
"id": 3678077,
"datasetid": 2392921,
"fields": {
"ID": "CU19762514",
"Date": 1331096400000
}l
"tables": {
"detail": [{
"id": 3678078,
"fields": {
"ItemTotal": "2300.00",
"ITtemShipped": 2.0,
"ITtemOrdered": false
}
Yo
{
"id": 3678079,
"fields": {
"ItemTotal": "29.99",
"ITtemShipped": 1.0,
"ITtemOrdered": "false"
}
Yl
"detail2": [{
"id": 3678080,
"fields": {
"ItemUnitPrice": "1150.00",

Page 95

PlanetPress. Workflow

"ItemOrdered": 2

}

}I

{

"id": 3678081,

"fields": {
"ITtemUnitPrice": "29.99",
"ITtemOrdered": 1

}
]

Values could be retrieved in JavaScript as follows:

var foo = record.fields.ID;
var bar = record.tables.detail[0].fields.ltemTotal;

Data Repository

The Data Repository is a permanent structure to store data that can then be reused, modified or
augmented at a later time, by different processes.
This feature was introduced in version 8.5.

The Data Repository is especially useful in situations where data needs to be keptin between
processes. A few examples:

« An HTTP-based authentication process, once it has validated user credentials, could
store session information (unique ID, user name, session starting time) into the repository.
All other related processes could then look into the repository to determine if a new
request is received from an already authenticated user, if the session has expired, what
the user name is, etc.

« Data comes in and is merged into a Capture OnTheGo template and stored in the Data
Repository. The end-user augments the data (using the COTG as a data-entry system).
The process that receives the augmented data could look into the Data Repository to
retrieve the original data (or the ID of the original data records) in order to augment,
modify or delete it.

Page 96

PlanetPress. Workflow

Structure

As can be seen in the "Data Repository Manager" on page 854, the Data Repository consists of
Groups, Keys and KeySets.

Feature Name Description Equivalent Database Terminology

Group A Group is defined by its Keys Table
(columns), and may contain O or
more KeySets (rows) within it.

Key A Key is defined only by its name. Column/Field
The Data Repository only supports
STRING values and any data
inserted into it is converted to
string automatically. The maximum
size of a single key is 1 billion
bytes.

KeySet A group may contain as many Row/Record
KeySets (rows), which contain
variable data, as necessary. A
KeySet is inserted using the "Push
to Repository" on page 431 task.

Lookup A method of retrieving one or more | Query
KeySets from a group in the data
repository.

Accessing the Data Repository
Via plugins

Storing data in the Data Repository

Data can be stored in the Data Repository using the Push to Repository task (see "Push to
Repository" on page 431).

Page 97

PlanetPress. Workflow

Retrieving data from the Data Repository

In any Workflow task where variable data is allowed (recognisable by the maroon field labels),
information can be retrieved from the Data Repository using a Lookup function. Right-click a
field with a maroon label and select Get Repository Location. This will bring up the "Data
Repository Manager" on page 854. Select a Group, Key and KeySet entry to determine which
value or values should be retrieved at runtime; then click OK. The Lookup Function Syntax,
displayed at the bottom left of the Data Repository Manager, will be copied into the field.

The syntax is of the Lookup function is:
Lookup (Group Name, Key To Retrieve, Key To Match, 'Value To Match')

Note

Value_To_Matchcan be a static string, a jobinfo or a variable, but not a data selection.

For the Value_To_Match parameter, the single-quotes surrounding the value are
mandatory even if the value is dynamic.

This function may also be used anywhere else where the contextual menu gives access to it.
You could, for example, use it on the General tab of the Create File task, to fill in the value of a
key/value pairin a JSON string.

Tip
The Data Repository Manager displays, at the bottom left, the syntax used for accessing
a specific value.

Note
Lookup()returns NODATA when the group and/or key does not exist.
In previous versions of the software, trying to do a look-up in a non-existent group and/or

key would cause an error. This change in behavior may affect any Workflow configuration
that uses an on error process related to invalid groups/keys.

Page 98

PlanetPress. Workflow

Scripts

In a script you can access the Data Repository using the "Data Repository API" on page 175.

For a quick start, turn to this How-to: Interacting with the Data Repository API.

Data Repository Manager

At design-time, the Data Repository Manager may be used to insert or remove Groups, Keys
and KeySets; see "Data Repository Manager" on page 854.

Where to find the Data Repository

In case the Repository contains valuable information that must not be lost in case of a hardware
failure, create a backup of the repository.

By default, the Data Repository is located in the following folder:

%ProgramData%\Objectif Lune\PlanetPress Workflow 8\PlanetPress Watch\Repository.

Itis also possible to create a Repository at a custom location; see ConnectionString.

Debugging and error handling

This chapter touches on two subjects that are intrinsically linked, though their use is different.

Debugging is the act of running through your process, either step by step or as a whole,
directly from the PlanetPress Workflow Configuration tool, in order to detect and resolve issues
with your process.

Error handling, on the other hand, occurs when your configuration has been sent to
PlanetPress Workflow services, and are running in "production" mode. The automated

handling of errors within your processes will have a large impact on recovering from errors as
they happen during production.

About error handling

When your process is running, or during debugging, it may happen that the task that is currently
running causes an error, and the task fails. For example, when trying to save to a folder that
does not exist, or printing to a printer that cannot be found.

Page 99

PlanetPress. Workflow

https://learn.objectiflune.com/howto/interacting-data-repository-api

When such an error occurs, in most cases you would want to be aware of it and to take certain
actions in order to correct or report the error. This is where our error handling features come in
handy.

Most of the tasks, branches and conditions included in your process can have their own error
handling behavior, with the exception of Comments, the Input Error bin task, and older legacy
tasks from previous versions of Workflow that did not have error handling.

By default, when an error occurs, the task is skipped and the unmodified job file is passed on to
the next task. You can overwrite this behavior by changing the options of the On Error tab of
the process - which sets the default error handling behavior for all the tasks in that process - or
of an individual task.

Using the On Error tab

Whenever an error is triggered either during debugging or when a process runs in production,
the settings specified in the On Error tab of the task that generated the error will be used to
determine a course of action.

On Error Tab

The On Error tab is common to all tasks and processes. It can be found in the"Task Properties
dialog" on page 877.

By default, any Action task, Branch, Splitter or Condition that generates an error will simply be
ignored, and the task just under it (not within a branch) will be given control of the job file
without any modification. Any initial input task that generates an error will stop the process from
running as a whole, and Output tasks will not generate output. The On Error tab can be used to
overwrite the default behaviors.

« Send to Process: Check this option to send the job file to an error management process.

e Error Process drop-down: Enabled only when the Send to Process option is checked.
Lists any process of which the initial input task is the Input Error Bin task.

« Action: In the initial input tasks, this group is disabled and defaults to Stop Process. In
all other tasks where the On Error tab is present, the following options are available:

» Default: By default, the task is ignored as if it did not exist and the error is logged
before continuing the branch or process; the job file is passed on to the next task in

Page 100

PlanetPress. Workflow

the process. When an error occurs in a loop (or in a plugin that acts like a loop), the
loop may log the error, terminate the current iteration and proceed with the next
iteration.

« Stop Branch: If the task is in a branch of the process, the branch is stopped and the
job file is returned to the process after the branch. The branch will not produce any
output. If the task is not on a branch, the entire process will be stopped.

« Stop Process: The process is stopped and no more processing is done. No further
output is produced.

« Log Message: Check this option to enable logging a custom error message in the
PlanetPress Workflow log file and in the Windows Application Events.

« Message: Enabled only when the Log Message option is checked. Enter a message that
will be logged in the PlanetPress Workflow log file. You can use any variables available
in PlanetPress Workflow to customize the message.

« Store the message in variable: Selectin which jobinfo, local or global variable you
want to store the message content.

o ID: Enter an error ID. This ID will be visible in the Windows Event Viewer. However, the
ID is not visible in the PlanetPress Workflow log file.

« Store the ID in variable: Select in which jobinfo, local or global variable you want to
store the error ID.

« Reset to defaults: Resets all options in this tab to their default values.

When storing the message or ID, if they are stored in a jobinfo they will be available in any
error handling process where errors are being forwarded. If your process continues after the
error, the contents of the variables selected in this window will be available to the rest of your
process, or as long as they are not overwritten.

All error codes are listed in the knowledge base of PlanetPress Workflow. Though some error
messages are specific to a task in particular, others may apply to any and all tasks because
they are related more to the system than to PlanetPress Workflow itself. Some examples would
be W3813, W3830, W3991, W4005. These correspond to issues such as not having any space
to write files, permission errors on folders or files, etc.

Creating and using Error processes

An Error process is a special type of process that never runs on its own, and cannot be called
using the GoSub or Send to Process tasks. It can only be used in the On Error tab of a task in

Page 101

PlanetPress. Workflow

http://help.objectiflune.com/en/knowledgebase/
http://help.objectiflune.com/en/kb-connect/#KB/ERR/CW/ERRW3813.htm
http://help.objectiflune.com/en/kb-connect/#KB/ERR/CW/ERRW3830.htm
http://help.objectiflune.com/en/kb-connect/#KB/ERR/CW/ERRW3991.htm
http://help.objectiflune.com/en/kb-connect/#KB/ERR/CW/ERRW4005.htm

your process, and will be triggered if the Send to Process option is checked in that tab and an
Error process is selected in the drop-down list.

To create an Error process, simply replace the initial input task by the InputErrorBin Input task,
and that process automatically becomes able to handle error jobs sent to it. It is up to you,
however, to decide how that error job will be handled.

For example, you could place the job file in a specific folder, then send an email to a supervisor
indicating that a job has failed. Or you could update a database with an error status so that it
appears on a customer's online order. You could also zip the order up and send itto an
administrator, while simultaneously advising the person that sent the job that it failed.

You can have as many error processes as you can normal processes - that is, you are limited to
512 processes, subprocesses, startup processes and error processes combined.

Information available in an Error process

The following information is available from within your Error process when itis triggered.

« A series of variables containing information about the error, the task that triggered it and
the process that contained it (see below). These are "System variables" on page 719.

« "Job Info variables" on page 717 (%1 to %9).
« The data file as it was before starting the task.

« Global variables (which are, of course, available anywhere).

Note

Local variables in the process are not sent to error processes, even if the error process
has a variable of the same name.

Error handling variables

The error handling variables are read only and are filled by the On Error mechanism.

They can be accessed anywhere, but they only appear in the contextual menu of a task
property field when the current process is an error-handling process (that starts with the Error
Bin Input task). See also: "Variable task properties" on page 727.

Page 102

PlanetPress. Workflow

Variable Name

Y%{error.process} Name of the process where the error was triggered.

Y%({error.tasktype} The type of task that triggered the error

Y%({error.taskname} The name of the task that triggered the error

Y%{error.taskindex} The position of the task in the process

Y%({error.errormsg} The error message, as entered in the OnError tab of the task.
This is the same message as appears in PlanetPress Workflow Log
file.

Y%{error.errorid} The error ID, as entered in the OnError tab of the task.

This is the same ID that appears in the Windows Event Viewer.

Y%{error.errorlog} A string containing the logged error message(s) from a task. Multiple
error messages are delimited by a "|" (vertical bar) character.

Accessing the Logs

If your process is running live in the PlanetPress Workflow Service, you have two ways of
seeing what is happening now or what has happened in the past.

Viewing running processes

To view what processes are running and processing data as it happens:

1. In the PlanetPress Workflow Ribbon, click on the Tools tab, then select Service Console
in the Services group. The PlanetPress Workflow Service Console opens.

2. Click on the service you want to check, including:
« PlanetPress Workflow
o LPD Server
o Telnet Capture

« Serial Capture

Page 103

PlanetPress. Workflow

« HTTP/SOAP Server
o LPR Client

o FTP Client

« PlanetPress Image
o PlanetPress Fax

« PlanetPress Messenger

3. When any job orfile is processed by the selected service, the processing logs will be
displayed in the window on the right.

Note

The information that is displayed here is the same as in PlanetPress Workflow logs and
depends on the logging level that you set in the "General and logging preferences" on
page 791 and on the 'Minimal logs' option in the "Process properties" on page 869.

Viewing logs for jobs that have already processed

The logs for jobs that have already processed are available in the following folder:
C:\ProgramData\Objectif Lune\PlanetPress Workflow 8\PlanetPress Watch\Log
You can access this folder more quickly by using this procedure:

1. Open the Workflow Configuration tool and then press CTRL+SHIFT+ALT+F4
simultaneously. This macro keyboard shortcut opens the PlanetPress Workflow working
folders.

2. Double-click on the folder called Log.
3. There are multiple logs displayed here, including:

e ppwYYYYMMDD. .log - PlanetPress Workflow logs, including the year, month and
day of the log (from midnight to midnight).

Page 104

PlanetPress. Workflow

Note

The PlanetPress Image and PlanetPress Fax logs are available in different folders. From
the Watch folder, go up one level then go in either folders, under which you will find the
Log folder for that specific software within the suite.

Resubmit backed up input files to a process

Each Input task includes an option that lets you back up input files. This option is not selected
by default, since it has the potential to generate a very large number of backup files. To turn on
the backup option of an Input task, simply open its properties, go to the Other tab and check the
Backup input files option, then type in a unique file name for the backup file (this should be
variable; see "Variable task properties" on page 303).

But if, for a given input task, you did select this option and something goes wrong and an
original input file is lost or corrupted, you will have the option to use the Resubmit Job
command to pull the backed up input file into the process.

Granted that you have backup copies of the files polled by an Input task, you may resubmit
them as required. The PlanetPress Workflow Configuration tool gives you the option to
resubmit them as they were submitted originally (polled by the initial input task) or to submit
them to those tasks located on the index you select.

The numbers on the left in the Process area indicate the task index.

|PIar|etPress Watch Process

Admin Printing
Sends the data to different
forms depending on the
Standard Filter
ASCH emulation

HF ezcape characters

Comment
if PURCHASE is found

In the above image, the Folder Capture task is on level 1 and the Text condition is on level 4.

Page 105

PlanetPress. Workflow

Here's how to resubmit backed up input data files.

Note

The resubmit option is triggered through the Workflow configuration tool, but the job being
resubmitted is actually handled by the Workflow Service, using that service's credentials.
The service must therefore be running in order to resubmit jobs.

1. In the PlanetPress Workflow Ribbon, go to the Tools tab then click Resubmit Job in the
Services group. The File Resubmission dialog box is displayed.

2. From the Process box, select the process for which you want to resubmit the backed up
input files.

3. From the Task index box, select the index level to which you want the data to be sent.
The index is the position in the process where you want to submit the job file. The
numbers on the left in the Process area indicate the task index.

4. In the list of backed up input files, select the file you want to resubmit (see "Knowing what
to resubmit" on the next page).

5. Using the From page and To page boxes, select the data pages that you want to
resubmit. (Data pages refers to blocks of data between natural delimiters in a data file,
such as lines in a CSV file.) If you want to resubmit all the data pages from the selected
input file, enter 0 in both boxes.

Warning

The From page and To page boxes are only useful for Printer Queue (or printer
capture) Input tasks. They will not function for other types of inputs. In these cases,
the complete backup job is submitted.

6. Click Send to resubmit the data.

7. To resubmit backed up input files for the same process or for a different one, repeat step 2
to step 6.

8. To close the File Resubmission dialog box, click Close.

Page 106

PlanetPress. Workflow

Knowing what to resubmit

When something goes wrong with an output job, a print job for instance, and printouts are lost,
you need to know the name of the job in order to resubmit the input. This refers to the name
used internally by PlanetPress Workflow and generated by the Input task using parameters
defined within the task. The name of the job file can be found in the logs (see The PlanetPress
Workflow Service Console). To simplify file identification, you should consider using names
that include both the name of the original input file (if any) plus some details such as the current
date and time.

In addition it may be useful to know the number of each failed page. If a job contains 1000
documents and if documents 1 to 950 were printed correctly, you might not need to resubmit the
entire job, but only the input data for the 50 last documents. However this is only useful if the
relationship between the input data and actual output documents is easy to determine.

For help on how to include (data) page numbers in a PlanetPress Suite Design document, or
page numbers in a Connect template, please see PlanetPress Design User Guide or Connect
Online Help, respectively.

Debugging your PlanetPress Workflow process

After designing a process, which is to add the different tasks, branches and conditions to the
process and configuring them (see "About processes and subprocesses" on page 126), you
can test whether or not the process and configuration actually work.

Once you have created and fully debugged all your processes, you will be ready to send it to
PlanetPress Workflow service. See "Saving and sending a Workflow Configuration" on

page 37.

Prerequisites

Before you can start debugging, these are the prerequisites.

« There must not be any "Unknown tasks" on page 716 in the process.

« A sample data file must be selected; see "Choosing a sample data file" on page 73.

Page 107

PlanetPress. Workflow

http://www.objectiflune.com/Documentation/EN/planetpress-design-user-guide/
http://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#designer/Print/Pages.htm#toc-2
http://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#designer/Print/Pages.htm#toc-2

Note

The sample job file should generally be the exact same format as the data that the
process will receive when PlanetPress Workflow is processing the job at run-time.

About the Debug mode

When debugging your process, it is important to keep in mind that:

« The initial Input task is never executed. The sample data file is used instead of the initial
run. This is to prevent "live" data from being retrieved by the initial input task while
debugging is being done. If, however, the initial task is critical to the process, it can be
executed by copying the initial input task and pasting it as a secondary input task (the first
Action task to actually run in the process). Do not forget, however, to remove this
duplicate task before saving the configuration!

« If any task makes an operation on the system (for example, capturing files, sending data,
printing, etc), itis actually executed, not simulated.

« Any task is executed with the permissions of the user that is currently running the
PlanetPress Workflow Configuration tool. When running in Service mode, the user
configured in the Configure Services dialog is used instead. If the credentials are

different, a job that runs in debug mode may fail at run-time if the permissions are not
available to the Service. Please see "Workflow Services" on page 767 for more details.

Running in Debug mode

Debugging can be run in different ways:

« From the Debug tab, click on Run. This executes the complete process, step by step,
until itis completed.

« From the Debug tab, click on Step. This executes only the first task in the process and
waits for further action. While stepping through a process (using Step, not Run),
breakpoints may be used and given steps may be passed, using the buttons on the
Debug ribbon (see below).

» Right-click on any task in the process and click Run from Here or Step from Here.
These actions are the same as using the debug Step and Run buttons, but will execute
the process only starting from that task forward.

Page 108

PlanetPress. Workflow

Double-click on any task to change its properties. If you change the properties of a task before
you step through it, those new properties will be used when the task is executed. Note that you
cannot modify the process itself while in debug mode (you cannot add, delete or move tasks,
change branches and conditions, etc).

Look at the Messages Area pane to see any message generated by the tasks that run (See "
The Message Area Pane" on page 880).

Use the Debug Information pane to see the current value of any variable in your process or
globally, or to evaluate custom expression. See "The Debug Information pane" on page 879.

Use the Object Inspector - one of the panes alongside the Debug Information pane - on the
process to enter sample job information as required.

The Debug ribbon provides the following buttons:

« Click on Skip to ignore the next task or branch and go to the subsequent one. The job file
is not modified in any way.

« Click on View as Text in the Data group of the Debug tab to view the current job file
using a text editor (Notepad by default).

« Click on View as PDF to view the current job file in Adobe Acrobat ifitis present (this will
work only for PDF job files).

« Click on View Metadata to open the data selector and see the current state of the
process' Metadata.

« Click on View as Hex to view the current job file in the internal Hex editor.

« Click on the Stop button to stop the debugging process. If you use Run, Step or Skip
after stopping the process, debugging starts over from the top.

« Use the Set Breakpoint button to tag the currently selected task, branch or condition as a
breakpoint. When you click Run in your process, the process will execute every task until
it reaches a breakpoint and will stop just before the task that is set as a breakpoint.

« Use the Ignore button to disable the task, branch or condition that is currently selected. If
you disable a branch or condition, all tasks inside that branch or condition are ignored
including the output. Note that if you set a task, branch or condition to be ignored, it will
also be ignored at run-time, providing you sent the configuration to the service.

Page 109

PlanetPress. Workflow

Debugging and Emulation changes

One of the cases where debugging is most useful is whenever the job file is converted to
another type of emulation, or if a new data file of a different emulation is used somewhere in the
process. For example, if a process starts with a Line Printer data file and then converts itinto a
PDF, itis not possible to select anything from the PDF to be used as (variable) task property,
because the Line Printer emulation is active by default. The debugging features can easily
resolve this limitation.

The first method is used if your process has all the required tasks, but data selections after an
emulation change are necessary.

« Step through the process until you have reached the point after the emulation or data
change.

« Make the necessary data selections (see "Data selections" on page 55). Any data
selection used in task properties after this point will use the new emulation.

« Continue stepping through each task until the end of the process to debug it.

This method does not allow you to add, remove or move tasks, however.
The second method can be used when that is required.

« Step through the process in Debug mode until you reach the emulation or data change.

« Click on View as Text (or View as PDF if your data is PDF at this point) in the Data group
of the Debug tab.

« Inthe viewer that appears, save the file to a location on your hard drive.

« Stop the process, and select the file you saved as your process's sample data file (see
"Choosing a sample data file" on page 73).

« If you need to continue debugging your process after the emulation change, you can still
do it by using Skip on all the tasks until the emulation change, inclusively. Then use Step
or Run to continue debugging.

Lastly, PlanetPress Workflow has an option that can be used in conjunction with the previous to
avoid skipping through large processes:

« Step through the process until the emulation or data change, as in the first method.

« Save the data file locally and then select it as your sample data file, as with the second
method.

Page 110

PlanetPress. Workflow

« Instead of skipping through each task, use the Run from here or Step from here options,
either from the Debug tab or by right-clicking on the task where you want to start the
process.

About printing

To print a document you can either use an Output task, or a combination of "PlanetPress
Workflow printer queues" on page 113 and the Printer Queue Output task. Decisive factors, in
addition to the printer that you're using, are:

« The type of job (Connect, or PlanetPress Suite).

« The features that you want to use. When you associate a single Printer Queue Output
task with multiple printer queues, you have the option of using load balancing or not (see
"Load balancing" on page 121).

« The file type. Printer Queues can only handle PostScript and PDF files.

Printing can be done locally or remotely. The spool file is sent to the printer by the Output task
itself, or by Workflow if the file is placed in a Workflow Printer Queue.

Printer-centric printing - which means that a document and data are merged on a printer - is
only supported with PlanetPress Design documents, and requires that this feature be available
on the printer.

OL Connect print jobs

There are two OL Connect tasks designed to create print output based on a Connect Designer
template: the "Create Output" on page 608 task, and the "All In One" on page 591 task, which
combines 4 different OL Connect tasks, including the Create Output task, within a single one.
Both tasks can produce many different types of files and distribute them to many different
printers, or to a folder.

Print options

The file type, printer model, output type (a folder, LPR queue or Windows printer), and print
options and settings are normally contained in an Output Creation Preset. Output Creation
Presets are created in the Connect Designer and can be used with any Connect template (see
Output Creation Preset and Print Options in Connect's Online Help). For some options, such as
grouping documents and splitting jobs, a Job Creation Preset is required as well (see Job_
Creation Preset in the Connect Online Help).

Page 111

PlanetPress. Workflow

https://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#designer/Output/Print/Print_Presets.htm#Output
http://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#designer/Output/Print/Interface/print_print_options_page.htm
https://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#designer/Output/Print/Print_Presets.htm#Job
https://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#designer/Output/Print/Print_Presets.htm#Job

Presets have to be sent to or imported into Workflow before they can be used in a Workflow
process.

Alternatively, the All in One and Create Output tasks can send the spool file back to the
Workflow process, instead of to the destination defined in the Output Creation Preset. (To
achieve this, select the Handle through Workflow option in the task properties.)

Back in the process the output file may be sent to a folder using the Send to Folder task, or to a
Workflow Printer Queue via the Output to Printer Queue task.

Here are a few reasons why you might want to use the Handle through Workflow option:

« Additional flexibility. Printer Queues have load balancing options that allow to distribute
the printing load and make the process faster and more efficient. Print jobs may, for
example, be split equally among several printers, or they may be split according to each
printer's capacity and speed. (See "PlanetPress Workflow printer queues" on the next
page.)

« Archiving. If the output file is a PDF, the file can be sent to an Archiving solution before it
is sent to the printer.

» Easier debugging. If the output file is a PDF, for example, you can open it inside Workflow
once it has been sent back to the process (see "Debugging your PlanetPress Workflow
process" on page 107).

Using a Printer Queue requires creating the appropriate Printer Queue in the Workflow
Configuration tool first.
In the Output to Printer Queue task, select No document to let the spool file pass through it.

PlanetPress Suite print jobs

In PlanetPress Suite, the printer model and settings are defined in the Design document itself
(see "PlanetPress Design documents" on page 45).

Print output is normally generated by an Output task that merges a PlanetPress Design
document with a data file (i.e. the job file). This can be either the "Print using a Windows driver"
on page 669 Output task, or the "Printer Queue Output" on page 671 Output task.

The latter has to be combined with at least one Printer Queue, and to ensure that the print
output is actually sent to the intended printer, you also have to:

« Create a matching Printer Queue in Workflow (see "PlanetPress Workflow printer
queues" on the next page).

» Associate the document with that Printer Queue (see "Associating PlanetPress Design
documents and PlanetPress printer queues" on page 121).

Page 112

PlanetPress. Workflow

Note that the Printer Queue Output task requires printer licenses, unless you have the
“Optimized Output” add-on in your Connect license, which grants you the equivalent of
PlanetPress Production in Connect Workflow. Even then, doing “printer-centric” output requires
a printer license (see "Activate a printer" on page 851).

Printer-centric printing

Alternatively the merging of the document and data can take place inside a printer (if the printer
is suitable for it). In that case, PlanetPress Workflow sends one of two things to a printer: a file
that contains only the data to the selected Printer Queue, along with a trigger that specifies
which document the printer should use to merge the data. The document must already be
present on the printer's hard disk or memory, otherwise printing will fail; or a file that contains
the data and the document to the selected Printer Queue. Since the data and the document with
which it must be merged are both sent to the printer, printing should never fail.

PlanetPress Workflow printer queues

The printer queues displayed in the Configuration Components pane of the PlanetPress
Workflow Configuration program are not to be confused with Windows printer queues. When
you start building a PlanetPress Workflow configuration it contains no printer queues. If you
want Workflow to dispatch spool files to printer queues, you have to create queues in Workflow
and set each one’s properties.

Printer Queue types

The PlanetPress Workflow Configuration program lets you create four types of printer queues:

« Windows Output printer queues are used to send print jobs to local or network printers.
See "Windows Output printer queue" on page 116.

« LPR Output printer queues are used to send print jobs to printers via the LPR/LPD
protocol. See "LPR Output Printer Queue" on page 117.

« FTP Output printer queues are typically used to send print jobs to FTP sites. See "FTP
Output Printer Queue" on page 118.

« Send to Folder printer queues are typically used to send print jobs to local or network
folders. See "Send to Folder printer queue" on page 120.

The properties associated with each queue will differ depending on the queue type. In the case
of an FTP Output printer queue, for example, the properties include the IP address of the FTP

Page 113

PlanetPress. Workflow

server. In the case of a Windows Output printer queue, on the other hand, you will specify the
name of a local or shared Windows printer queue.

Using Printer Queues

To send print jobs to any of those PlanetPress Workflow printer queues, you must use a
"Printer Queue Output" on page 671 task. Note that with a single task, you can send print jobs
to multiple Workflow printer queues simultaneously, regardless of queue types.

Workflow printer queues have a number of unique features that make it possible to design very
flexible Workflow printing solutions. A few examples:

« You could send big output files to a production printer and smaller files to the office
printer, using a Condition in the print process, for example.

« These printer queues offer various automatic load balancing options; see "Load
balancing" on page 121.

« Printer-specific commands can be added after the output has been created, to be
executed before or after printing.

Shared printer queue properties

The options on a printer queue’s Advanced properties tab are common to all printer queues.
They include the printer's speed and any special pre- or post-job commands required for printer
specific reasons. Pre-job commands are added right before the data in the data file, while post-
job commands are placed at the end of the data file.

Advanced tab

« Print speed: Enter the speed, in pages per minute (PPM), of the printer associated with
the printer queue. This value is used to determine how to divide jobs when you use the
Queue Balancing option for load balancing.

« Commands: The list of available commands appears in this box. Select either Pre-job
commands or Post-job commands in the Selected box, and double-click a command
from this list to add it to the appropriate list.

« Selected: Select either Pre-job commands or Post-job commands to add new
commands to the appropriate list and to see those commands that have already selected.
Double-click a command to remove it from the selected list.

Page 114

PlanetPress. Workflow

« Add: Click to add a new command to the list displayed in the Commands box. You must
then edit the new command’s description and value. Note that new commands are shared
by all printer queues.

¢ Delete: Click to remove a command from the Commands box.

« Command description: Use this box to edit the description of the command currently
selected in the Commands box.

« Command value: Use this box to edit the code of the command currently selected in the
Commands box. Use the right-click menu for a list of standard printer control characters.
(See also: "Frequently used printer control characters" below.)

Frequently used printer control characters

Charactername: Character Typical use in printing context:
code:
End-Of-Job \004 Indicates the end of a print job
Backspace \b Moves a character space backwards
Horizontal Tab \t Adds a horizontal tab
Line Feed \012 Moves to the next line
Form Feed \f Moves to the next page
Carriage Return \r Moves to the beginning of the current line
DOS End-Of-File | \032 Indicates the end of a print job in a DOS
environment
Escape \033 Adds an escape character
New Line \n Goes to a new line
(CRLF)

Page 115

PlanetPress. Workflow

Windows Output printer queue

Windows output printer queues send print jobs to local or network printer queues set up in the
Windows session in which PlanetPress Workflow is running. Note that jobs sent to those
queues completely bypass the printer driver.

Properties

General tab

« Printer queue: Select the Windows printer queue to which you want to send print jobs.

« Job name: Enter the job’s file name. By default, the variable %f (Job File Name; see
"System variables" on page 719) is used. You may use a different variable, but you may
not use a data selection. This information may be used for the printer's banner page.

« Job owner name: Enter the job owner name. You may use a PlanetPress Workflow
variable. The field is empty by default, which is equivalent to use the default print job
owner name, i.e. the current logged in user name.

Advanced tab

« Print speed: Enter the speed, in pages per minute (PPM), of the printer associated with
the printer queue. This value is used to determine how to divide jobs when you use the
Queue Balancing option for load balancing.

« Commands: The list of available commands appears in this box. Select either Pre-job
commands or Post-job commands in the Selected box, and double-click a command
from this list to add it to the appropriate list.

« Selected: Select either Pre-job commands or Post-job commands to add new
commands to the appropriate list and to see those commands that have already selected.
Double-click a command to remove it from the selected list.

e Add: Click to add a new command to the list displayed in the Commands box. You must
then edit the new command’s description and value. Note that new commands are shared
by all printer queues.

o Delete: Click to remove a command from the Commands box.

« Command description: Use this box to edit the description of the command currently
selected in the Commands box.

Page 116

PlanetPress. Workflow

« Command value: Use this box to edit the code of the command currently selected in the
Commands box. Use the right-click menu for a list of standard printer control characters.
(See also: "Frequently used printer control characters" on page 115.)

LPR Output Printer Queue

LPR output printer queues send print jobs to LPD-compatible printers using the LPD/LPR
protocol. Note that most of the settings associated with LPR output are configured via the
PlanetPress Workflow user options (See "LPR Output preferences" on page 814).

Properties

General tab

« Printer address: Enter the IP address or host name of the printer receiving LPR jobs.

« Queue name: Enter the printer queue name. Based on printer and network requirements,
this property may not be required.

« Data type: Select the proper data type. Select:
« (I)Binary data if the job file is a standard binary file.

(f) Formatted text to interpret the first character of each line of text as a standard
FORTRAN carriage control character.

(d) DVlIfile if the job file contains data in the TeX DVI format.
(o) PostScript file if the job file is a PostScript file.

(n) Ditroff format if the job file contains data in device independent troff.

(t) Troff format if the job file contains data in troff.

(v) Sun raster file if the job file contains raster images. This ensures that the printer
uses the correct filter to interpret the data.

« Job name: Enter the job’s file name. By default, the variable %f (Job File Name) is used.
You may use a different variable, but you may not use a data selection. This information
may be used for the printer's banner page.

« Job owner name: Enter the job owner name. You may use a PlanetPress Workflow
variable.

Page 117

PlanetPress. Workflow

Advanced tab

« Print speed: Enter the speed, in pages per minute (PPM), of the printer associated with
the printer queue. This value is used to determine how to divide jobs when you use the
Queue Balancing option for load balancing.

« Commands: The list of available commands appears in this box. Select either Pre-job
commands or Post-job commands in the Selected box, and double-click a command
from this list to add it to the appropriate list.

« Selected: Select either Pre-job commands or Post-job commands to add new
commands to the appropriate list and to see those commands that have already selected.
Double-click a command to remove it from the selected list.

« Add: Click to add a new command to the list displayed in the Commands box. You must
then edit the new command’s description and value. Note that new commands are shared
by all printer queues.

¢ Delete: Click to remove a command from the Commands box.

« Command description: Use this box to edit the description of the command currently
selected in the Commands box.

« Command value: Use this box to edit the code of the command currently selected in the
Commands box. Use the right-click menu for a list of standard printer control characters.
(See also: "Frequently used printer control characters" on page 115.)

Note

If you plan to use an LPR output printer queue to send PlanetPress Design documents
generated using the Optimized PostScript Stream option, you should not enter data
selections in the Printer address and Queue name variable property boxes. If you do
need to use information stored in the data to configure the LPR output printer queue, you
should first use Job info variables to store the information, and then use these variables in
the Printer address and Queue name variable property boxes.

FTP Output Printer Queue

Unlike FTP output tasks, which are typically used to send data files to FTP sites, FTP output
printer queues are mostly used to send print jobs to FTP sites.

FTP output printer queue properties are as follows:

Page 118

PlanetPress. Workflow

General tab

e FTP Server: Enter the IP address or host name of the FTP server.
o User name: Enter an FTP server user name.
o Password: Enter a password associated with the FTP server user name entered above.

o Use FTP Client default port number: Forces the FTP connection on port 21, the default
FTP port.

e FTP Port: Enter the FTP port to use. This option is disabled if Use FTP Client default port
number is checked. The port should always correspond with the server's port number.

« Directory: Enter the directory to which the print jobs are to be uploaded. If you leave this
box empty, the job files are sent to the root directory of the FTP server.

« File name: Enter the name under which the print jobs will be saved. Consider using a
dynamic name, since using a static name will cause every new file to overwrite the
previous one.

« Connection mode group

« Active: Select to prompt the FTP client to use active mode when sending files to the
FTP server.

« Passive: Select to prompt the FTP client to use passive mode when sending files to
the FTP server.

Advanced tab

« Print speed: Enter the speed, in pages per minute (PPM), of the printer associated with
the printer queue. This value is used to determine how to divide jobs when you use the
Queue Balancing option for load balancing.

« Commands: The list of available commands appears in this box. Select either Pre-job
commands or Post-job commands in the Selected box, and double-click a command
from this list to add it to the appropriate list.

« Selected: Select either Pre-job commands or Post-job commands to add new
commands to the appropriate list and to see those commands that have already selected.
Double-click a command to remove it from the selected list.

e Add: Click to add a new command to the list displayed in the Commands box. You must
then edit the new command’s description and value. Note that new commands are shared
by all printer queues.

Page 119

PlanetPress. Workflow

o Delete: Click to remove a command from the Commands box.

« Command description: Use this box to edit the description of the command currently
selected in the Commands box.

« Command value: Use this box to edit the code of the command currently selected in the
Commands box. Use the right-click menu for a list of standard printer control characters.
(See also: "Frequently used printer control characters" on page 115.)

Send to Folder printer queue

Unlike Send to Folder output tasks, which are typically used to send data files to local or
network folders, Send to Folder printer queues are mostly used to send print jobs. The files
generated will always be PostScript files.

Properties

General tab

« Folder: Enter the path of the folder to which the print jobs are to be saved.

« File name: Enter the name of the print jobs sent to this queue. To prevent each new file
from overwriting the previous one, you should use variable names. This variable property
box lets you use a combination of text, variables and data selections.

« Concatenate files: If this option is selected, when PlanetPress Workflow tries to save the
print job under an existing name, it appends the content of the new print job file to that of
the existing file, instead of overwriting it.

« Separator string: This option is used to add a separator string between the content of
each file when the Concatenate files option is selected.

Advanced tab

« Print speed: Enter the speed, in pages per minute (PPM), of the printer associated with
the printer queue. This value is used to determine how to divide jobs when you use the
Queue Balancing option for load balancing.

« Commands: The list of available commands appears in this box. Select either Pre-job
commands or Post-job commands in the Selected box, and double-click a command
from this list to add it to the appropriate list.

Page 120

PlanetPress. Workflow

« Selected: Select either Pre-job commands or Post-job commands to add new
commands to the appropriate list and to see those commands that have already selected.
Double-click a command to remove it from the selected list.

e Add: Click to add a new command to the list displayed in the Commands box. You must
then edit the new command’s description and value. Note that new commands are shared
by all printer queues.

+ Delete: Click to remove a command from the Commands box.

« Command description: Use this box to edit the description of the command currently
selected in the Commands box.

« Command value: Use this box to edit the code of the command currently selected in the
Commands box. Use the right-click menu for a list of standard printer control characters.
(See also: "Frequently used printer control characters" on page 115.)

Load balancing

PlanetPress Workflow offers various load balancing options to distribute the printing load and
to make the process faster and more efficient. Print jobs may, for example, be split equally
among several printers, or they may be split according to each printer’'s capacity and speed.

Load balancing can only be used for jobs sent to Printer Queue output tasks and it only
applies when multiple Workflow Printer Queues are selected.

In the General tab of the Printer Queue Output Properties dialog box, you may select multiple
printers, and in the Advanced tab, you can set the load balancing options for the selected
printers.

Associating PlanetPress Design documents and
PlanetPress printer queues

One of the resources stored in a PlanetPress Workflow printer queue is the list of PlanetPress
Design documents associated with it. Also stored in the printer queue are the properties of each
document associated with the queue.

Note that Workflow printer queues are different from normal printer queues; see "PlanetPress
Workflow printer queues" on page 113.
For more information about PlanetPress Design documents, see "PlanetPress Design

Page 121

PlanetPress. Workflow

documents" on page 45.
For information about printing, see "About printing" on page 111.

Assigning documents to a Workflow printer queue

To assign PlanetPress Design documents to PlanetPress Workflow printer queues:

1. In the PPS/PSM Documents group of the Configuration Components pane, select
either a single document or a group of documents.

2. Drag the selected documents over a PlanetPress Workflow printer queue. The selected
document or the group of documents is associated with the printer queue. Each document
keeps its default properties.

Breaking the association between documents and a Workflow printer queue
To break the association between a PlanetPress Design document and a given Workflow

printer queue:

« Select the document as displayed under the printer queue in question and press Delete.

To break the association between a PlanetPress Design document and multiple Workflow
printer queues:

1. Selectthe document as displayed under one of the printer queues in question and from
the right-click menu choose Delete Instances.
The Delete Document Instances dialog box appears.

2. In the Printer Queue list, select all those Workflow printer queues for which you want
unlink the document.

3. Click OK.

Modifying Design document settings

To modify the settings of a PlanetPress Design document assigned to a Workflow printer
queue:

« Double-click on the document located within a printer queue. The Document Properties
dialog appears.

Page 122

PlanetPress. Workflow

The settings available in this window are the same as the Printer Settings dialog of a
document's properties in the Documents list of the Configuration Components pane, but they
are specifically for this document on this printer queue. See "PlanetPress Design document
properties" on page 835 for more details.

Triggers

In PlanetPress Workflow, a trigger is typically a two line piece of PostScript code placed just
before the data. Triggers tell the printer to turn on PostScript mode and specify which document
should be used in the merging process (PlanetPress Design document+data).

Triggers are used in two situations:

« When the server running PlanetPress Workflow sends a PlanetPress Design document
along with the data to the printer, it adds a trigger before the document
(trigger+document+data).

« When the server running PlanetPress Workflow only sends the data to the printer,
because the document is already present on the printer, it adds a trigger before the data
(trigger+data).

PlanetPress Workflow adds the trigger code automatically, but you may want to use custom
triggers. You would do this, for example, to use special printer functions. For more on custom
triggers, see the PlanetPress Design User Guide.

Objectif Lune Printer Driver (PS)

Introduction

The Objectif Lune Printer Driver (PS) allows end-users to print directly to PlanetPress Workflow
from any Windows application, by using the familiar File|Print option. At the other end,
PlanetPress Workflow can capture the incoming stream and optionally convert it to a PDF file
along with its metadata.

Although it is available with every PlanetPress Workflow instance, this feature becomes even
more useful in environments where the Document Input emulation is available (with
PlanetPress Workflow).

Page 123

PlanetPress. Workflow

http://help.objectiflune.com/en/planetpress-design-user-guide/7.6/

Install a Objectif Lune Printer Driver (PS)

The Objectif Lune Printer Driver (PS) is automatically installed during the PlanetPress
Workflow setup, along with a default Windows Printer Queue called PlanetPress Printer.

Install a Windows Printer Queue using the Objectif Lune Printer Driver (PS)

A Windows Printer Queue using the Objectif Lune Printer Driver (PS) can be installed from
PlanetPress Workflow WinQueue Input plugin properties.

To create a new Windows printer queue from any PlanetPress Workflow:

Start your PlanetPress Workflow Configuration program.
Insert a WinQueue Input plugin.

In the WinQueue Input plugin properties, click New.
Enter a Name for the printer queue.

Click OK.

O ke bdh =

Every new Windows printer queue using the Objectif Lune Printer Driver (PS) is shared by
default. Once such a shared queue is created, end-users can install it on their own computer by
going through the same steps they would when installing a new remote printer in their
Operating System. By default, connecting to a shared printer will automatically result in the
Objectif Lune Printer Driver being downloaded to the connecting host.

Printer Properties setup

PlanetPress Workflow WinQueue Input task can be configured to set a Windows printer queue
using Objectif Lune Printer Driver (PS) to produce one of 3 different types of data files: EMF,
PostScript, or PDF.

Printer properties settings

Spool Print Jobs in EMF Format

« This will create an EMF data file.

« This formatis usually reserved for use with the Windows Print Converter action plugin.

Page 124

PlanetPress. Workflow

Spool Print Jobs in RAW Format

« This will create a PostScript data file when the option Create Composed Document
Stream (with Medatada) is unchecked.

« This will create a PDF data file when the option Create Composed Document Stream
(with Medatada) is checked.

Create Composed Document Stream

By default, the Create Composed Document Stream option is:

« Checked if the incoming stream has been produced with the Objectif Lune Printer Driver.
« Unchecked if the incoming stream comes from some other PostScript Driver.

« Grayed out and unchecked if the incoming stream is not PostScript.

Data Capture from PlanetPress Workflow

Once a shared Windows printer queue using Objectif Lune Printer Driver (PS) is installed on
both the server and the client sides, data capture can be achieved the same way as with any
other Windows printer queues.

Open your PlanetPress Workflow Configuration program.
Insert a new process.

Select WinQueue Input from the Plugin Bar and insert it in the new process.

B bnp =

In the WinQueue Input properties, select a Windows print queue using the Objectif Lune
Printer Driver (PS) from the drop-down list.

Click OK.

Send the configuration and start your PlanetPress Workflow service.
Start the windows application from which you want to capture data.
Open your selected document.

Click File | Print.

Choose the same Windows print queue as in step 4.

© © x® N oo

Page 125

PlanetPress. Workflow

Note

Steps 6-8 can be performed at any time, even if PlanetPress Workflow is not yet started.
This is because every Windows printer queue using Objectif Lune Printer Driver (PS) is
paused by default. Once the service has started, it captures every queued job.

PDF creation parameters

PDF files retrieved from a Windows print queue using Objectif Lune Printer Driver (PS) have
the following properties:

- PDF 14
« Optimized PDF (subject to change)

o No down-sampling of images

These settings are pre-configured and cannot be changed by the user.

About Metadata

Metadata files are files containing information on the job itself rather than containing the job per
se. A job sent to the Objectif Lune Printer Driver (PS) creates its own Metadata, allowing users
to retrieve relevant information, such as, for instance, the time and date the print request was
sent and how many pages it contains. For more on this, see the Metadata documentation pages
("Metadata" on page 76).

About processes and subprocesses

Processes

A process is a single workflow within a configuration (see "About Workflow Configurations" on
page 34). A process begins with a single input task, contains one or more tasks and/or
branches, and terminates with one or more output tasks. In its simplest form, a process can
retrieve data from a given folder and save it in a different folder. In most cases, though,
processes are more elaborate and configurations, which may include many processes, can be
extremely complex.

Page 126

PlanetPress. Workflow

PlanetPress Workflow processes act as dispatchers: on the one hand, they retrieve data and
control plugins that retrieve data from watched locations, and on the other hand they can
perform a variety of operations on the data and send data to various devices.

A given process may include Output tasks that generate files used by Input tasks from other
processes.

Each process’s schedule determines when its initial input task can be performed. Other tasks
included in the process are performed regardless of schedule, granted that the previous task
was performed.

The available processes in your PlanetPress Workflow Configuration are listed in the
"Configuration Components pane" on page 832.

There are several types of processes available to you:

« Aregular process will run as soon as an input file is available through its input task or, if it
is scheduled not to run at that time, will start processing as soon as the schedule permits
it. To learn how to create a process see: "Adding a process" on the facing page.

« Startup processes run only once before every other process in a given configuration
(see "Startup processes" on the facing page).

« Subprocesses can be called by any other process (see "Subprocesses" on the facing
page).

« Error processes can only be used in the On Error tab of a task in your process (see
"Creating and using Error processes" on page 101).

Self-replicating processes are in fact regular processes that replicate themselves in the
background when multiple input files are received simultaneously. The input task in a self-
replicating process polls its source once, determines the number of files to process, then
replicates itself up to the maximum allowed and treats the files simultaneously. The initial
process runs again once it has completed itself and replicates again as necessary, until all files
have been processed.

You can either create a regular process that is set to be self-replicating from the start (see
"Creating a process" on the facing page) or change a regular process into a self-replicating
process and vice versa (see "Process properties" on page 869).

Processes in a configuration (except startup processes) will always run concurrently. You can

schedule processes to run only at certain times or intervals via their properties (see "Process
properties" on page 869).

Page 127

PlanetPress. Workflow

Regular and startup processes can be set to be Active (process runs normally) or Inactive
(process will not run at all); see "Activating or deactivating a process" on page 132.

Startup processes

Startup processes run only once before every other process in a given configuration. They can
be used to perform operations that need to be completed once before the configuration can
actually be run, such as to map network drives.

The order in which the Startup processes are arranged in the Configuration Components pane

determines, from top to bottom, the order in which the Startup processes are executed when the
Workflow Service launches. To learn how to reorder processes see: "Reordering objects in the

Configuration Components pane" on page 841.

Startup processes always run sequentially.

To learn how to create a startup process see: "Adding a startup process" on the next page.

Subprocesses

Subprocesses are special processes that can be called by any other process. Subprocesses
act exactly as subroutines in programming languages, allowing users to reuse existing
processes by sharing them to the whole configuration file. They can thus be used to perform
redundant operations that may need to be executed numerous times; for instance, archiving a
copy of a zipped file received as the input job file, then decompressing it before sending the
unzipped version of it back to the calling process.

To learn how to create a subprocess see: "Adding a subprocess" on the next page.
To call a subprocess from another process, use the "Go Sub" on page 479 Process logic task.

Whenever a process calls a subprocess, the main process (the caller) will wait for the called
subprocess to finish its execution before carrying on with its own. This means the subprocess
feature is synchronous with the main process. This also means the calling process actually
appends the subprocess to its own workflow.

Creating a process

Adding a process

There are two different ways to create a new regular process.

Page 128

PlanetPress. Workflow

« In the Ribbon, go to the Home tab and click the Process button in the Processes group.

« In the Configuration Components pane, right-click on any process or the Processes
folder and select Insert > Insert Process or Insert Self Replicating Process.

Regardless of the method, a new process is created with a default name (Process1, Process2,
etc), an Input task and an Output task. The defaults are configurable in the "Default
configuration behavior preferences" on page 773 screen.

Note

While a configuration is limited to a maximum of 512 processes, any given process can
have as many tasks as necessary (see: "About Tasks" on page 300).

Adding a startup process
You may create a startup process in two different ways.

« Inthe Ribbon, go to the Home tab and click the Startup Process button in the
Processes group.

« In the Configuration Components pane, right-click on any process or the Processes
folder and select Insert > Insert Startup Process.

In addition, you may convert a regular process into a startup process:

« Right-click a regular process and select Startup to convert the process into a startup
process.

Note that a self-replicating process can't be converted into a startup process.

Adding a subprocess

To add a PlanetPress Workflow subprocess:
« In the Ribbon, go to the Home tab and click the Subprocess button in the Processes
group.

« In the Configuration Components pane, right-click on the Subprocesses folder and
select Insert > Insert Subprocess.

Page 129

PlanetPress. Workflow

Tip
A branch in a process can be converted into a subprocess; see "Converting a branch to a
subprocess" on page 140.

Editing a process

Designing a process is done by dragging tasks from the Plug-In Bar onto the process in the
Process area. Each task then needs to be configured via the Task properties dialog (see
"About Tasks" on page 300). For a list of all operations you can perform on tasks in the Process
area, please refer to "The Process area" on page 885.

Processes can be deleted, duplicated, renamed, disabled, grouped etc. via the
Configuration Components pane. For a list of all operations that can be performed on
processes in the Configuration Components pane, please refer to "Configuration Components
pane" on page 832.

Special workflow types

PlanetPress Workflow supports multiple input and output types, in so many different
combinations that it would be hard to give example processes for each possibility. However,
some types of processes like HTTP and PDF processes will probably be used more often than
other types of processes. You will find a description of each of these special workflow types
and at least one example of an implementation that uses them in the chapter: "Special workflow
types" on page 278.

Importing processes

You can import individual processes or groups of processes from another PlanetPress
Workflow configuration file without having to import the contents of the entire configuration file.
The PlanetPress Workflow Configuration tool imports everything necessary to run the
processes, including configured tasks and some configuration components.

Note

Resource files must be imported separately; see "Importing Connect resource files" on
page 42, "Importing PlanetPress Design documents" on page 47 and "Importing

Page 130

PlanetPress. Workflow

>rintShop Mail documents" on page 51.

To import processes and other components from a configuration file:

1. From the PlanetPress Workflow Button, choose Import | Configuration Components.
The Import dialog appears.

2. Navigate to the PlanetPress Workflow configuration file containing the processes or
groups of processes you want to import.

3. Select the file, then click Open. The Import Configuration dialog appears displaying all
the processes and/or process groups, as well as the subprocesses, variables,
PlanetPress Design documents and printer queues in the selected configuration file.

4. In the list, select the components you want to import. The PlanetPress Workflow
Configuration program lets you open and import any of the following:

« Complete PlanetPress Watch 4 to 6 configurations, as well as PlanetPress
Workflow 7 and 8 configurations.

» Specific processes from Version 6, 7 and 8 configurations, including their local
variables.

« Specific subprocesses from any PlanetPress Workflow 7 and 8 Tools
configurations.

» Specific global variables from PlanetPress Workflow 7 and 8 Tools configurations.

« References to specific PlanetPress Design or PrintShop Mail documents. Note that
the documents themselves must be imported separately.

« Specific printer queues.

5. Check Overwrite existing components with same name if you want processes with
existing names to be overwritten by those in the imported configuration, or uncheck it to
duplicate those processes under a new automatically generated name.

6. Click OK to start the import.
PlanetPress Workflow Configuration imports the selected objects and automatically
renames duplicate items in the imported configuration.

Page 131

PlanetPress. Workflow

Important considerations

« When importing a PlanetPress Workflow configuration file, resource files like Connect
templates, PlanetPress Design documents and PrintShop Mail documents are not
physically imported as they are not part of the configuration file itself. In order for the
documents to be available, you will need to send each document from Connect Designer,
PlanetPress Design or PrintShop Mail (see their respective documentation for details).

« If you import a PlanetPress Workflow configuration that contains a PlanetPress Fax
output task, you must update the task’s properties and refresh the host name. Otherwise,
when PlanetPress Workflow will attempt to output the file, an error will be generated.

Activating or deactivating a process

All processes are Active by default, but you may make any PlanetPress Workflow process
Inactive as required.

An inactive process will display in the Configuration components as red and strike-through.
Inactive processes can be useful for designing new processes in a live configuration. As the
process does not execute there is no danger of submitting it to a PlanetPress Workflow Service.

To activate or deactivate a process:

1. Right-click the process in question in the Configuration Components pane
2. Click Active to disable or enable the process.

3. Send the configuration. Because making a process active or inactive is a change in the
configuration, to make the change effective in the PlanetPress Workflow Service, you will
have to send the edited configuration to your PlanetPress Workflow Service (see
"Sending a configuration" on page 38).

Note

If you try to send a configuration that contains only inactive processes, the PlanetPress
Workflow Configuration program will ask you to confirm the operation (this can be
changed in the Notification User Options).

Page 132

PlanetPress. Workflow

Process properties

To have access to the properties of a process or subprocess:

« Right-click on the process in the Configuration Components pane.

o Select Properties.

You can also double-click on the process to show its options.

Note

Subprocesses do not have the General tab which is only used for scheduling, but they do
have the Information tab.

Options

General tab

« Active: Select to make the process active. Clear to prevent this process from running
when you send the configuration to PlanetPress Workflow.

« Startup: Select to make this process a startup process (see: "Startup processes" on
page 128). This option is not available for self-replicating processes and error processes.
The order in which the Startup processes are arranged in the Configuration Components
pane determines, from top to bottom, the order in which the Startup processes are
executed when the Workflow Service launches. To change the order you may drag and
drop them (see "Moving and copying configuration components" on page 838).

« Self Replicating: Check this if you want the process to replicate itself in the background
when multiple input files are received simultaneously. When this is checked, the input
task polls its source once, determines the number of files to process, then replicates itself
up to the maximum allowed and treats the files simultaneously. The initial process runs
again once it has completed itself and replicates again as necessary, until all files have
been processed.

« Max percentage of threading (%): Determines how many processes you may have
running at the same time. This is a percentage of the maximum number of threads
specified in the "Messenger plugin preferences" on page 792. For example if the

Page 133

PlanetPress. Workflow

maximum number of threads is 10 and you specify 50% here, a maximum of 5 replications
will occur (the original process + 4 copies).

« As soon as possible: Select to have the process run continuously. Clear to enable the
Time Grid to fine-tune the schedule of the process.

Tip
Non-startup processes starting with the HTTP Server Input, NodeJS Server Input,

LPD Input or SMTP Input task will run trigger-based if they are setto run As soon
as possible with a Polling interval of 0. This reduces CPU usage.

« Day(s) to keep backup: Indicate the number of days to keep backups of jobs processed
by input tasks. Note that backups will only be kept for those input tasks that have the
Keep backup file option selected and that they are required to resubmit input files.

« Polling interval: Enter the frequency (in seconds) at which the process should verify if
there are new jobs to process. The polling interval also applies to scheduled tasks that
only run on certain times. For example, if your process polls every 30 seconds on a task
that's only scheduled to run one hour per week, it will capture the input 120 times during
that period.

Note

The polling interval is ignored when multiple files are present in the input and will
be used only when there are no longer any files to process.

« Month: Select the month of the year when the process should be run or select All months
to have the process run all year long. This option is disabled when "As soon as possible"
is checked.

« Week of month / by date: Select the desired option for the time grid. Note that any
selection you make in this box will be interpreted based on the selection made in the
Month box. If you chose All months in the Month box and Last in the Week of month / by
date box, then the process will run on the last week of every month. If you chose January
in the Month box and First in the Week of month / by date box, then the process will run
only on the first week of January.

Page 134

PlanetPress. Workflow

« Select Date to display dates on the grid’s top ruler.
« Select any of the other options to display days on the top ruler.
« Select All weeks to have the process run every week.

« Select First, Second, Third or Fourth to have the process run on the first, second,
third or fourth week.

« Select Last to have the process run only on the last week.

« Time division: Select the duration of each daily segment in the time grid. If you select
00:15, each segment will represent only 15 minutes and each day will be made up of 96
blocks (4 blocks per hour times 24 hours). If you select 24:00, each segment will
represent an entire day.

« Poll once per activity period: Select to perform this process’ initial input task no more
than once for each set of contiguous blocks (blocks that are on the top of one another).
Choosing this option overrides the polling interval option. By default since the Time Grid
blocks are divided by hours, this option will make your polling happen once every hour.

« Minimal logs: With this option enabled, the process will only log its Start time and the
End time (along with the Time Spent), if no error was encountered during execution of the
process. In case of an error, the entire process information is logged.

The Time Grid

The PlanetPress Workflow Process Options dialog box includes a time grid that lets you set
exactly when you want a process to poll. The grid is composed of blocks that represent time
periods on a given day. To activate the Time Grid, the "As soon as possible" option must be
unchecked.

In the Time Grid, a blue block will indicate that the process is active within that time block.
White blocks mean the process will not poll.

Note that when multiple files are presentin the input, these may continue to be processed after
the period set in the time grid. The "Folder Listing" on page 323 plugin in combination with a
"Time of Day Condition" on page 489 could be used to prevent further processing of those files.

Page 135

PlanetPress. Workflow

Workflow process options ﬁ

Workflow process options
Warkflow process scheduler and eror options E

l Infnrmatinn] On Errar]

W Active o 1alz0]= [22] 23] 24] 25] 26] 27] 28 29] 20] 31 [1ast ~
0000

| Startup process

[~ Self Replicating Process

nler S B el 04:00
1
[As zoon as pozzible 0200
Dray(z] to keep backup
=

12:00

Palling interval [zec]

D=

16:00

b onth

|.-'1‘-.II mohths j

YWeek of month # by date 20:00

|Date j W
£ >

Time divizion

|04:00 E2 Select Al Clear Al

[Paoll once per activity period

k. Cancel Help

« Click on any block to select/ deselect it.
« Click and drag from one block to another to toggle all blocks between the two.

« Shift-click on any block to toggle all blocks from the top-left corner of the grid to the block
you click.

Page 136

PlanetPress. Workflow

« To select all of the time segments for a given day or date, click the day or date on the top
grid ruler. To deselect all of the time segments for a given day or date, CTRL+click the
day or date on the top grid ruler.

« To select all the days or dates for a given time segment, click the time segment on the left
grid ruler. To deselect all the days or dates for a given time segment, CTRL+click the time
segment on the left grid ruler.

« To select the entire grid, use the Select All button located below the grid. To deselect the
entire grid, use the Clear All button located below the grid.

Note

"Toggle" means turn on when it's off and vice versa, when selecting multiple blocks in
one command. This means if you select a certain number of blocks in the Time Grid and
then use the shift+click or drag method, blocks that are on will turn off.

Warning

Changes made to the system time can have adverse effects on the processes managed
by PlanetPress Workflow. When changing from daylight saving time to standard time, for
example, if PlanetPress Workflow starts a given process at 2:00 AM, and if the system
time is then taken back to 1:00AM, the application will start a new instance of the same
process when the system time reaches 2:00 AM for a second time. So, when you
manually change the system time, be aware that it may have an effect on PlanetPress
Workflow and its processes. And for those cases when you know the system time will
change automatically, you may consider creating special schedules.

Information tab
The Information tab lets you enter information that is not critical to your process but may help

others (or yourself in the future) to understand what the process does. It offers two boxes:

« Description: A one-line box to give a title or short description to your process.

« Comments: A multi-line box to give more detailed information, for example the file format
expected, explanation of the system in general.

Page 137

PlanetPress. Workflow

On Error Tab

A process’s On Error tab specifies the default values for error handling of all of the tasks in that
process.

When a task has its own error handling settings, those settings overwrite the process's default
error handling settings. The Set All Tasks button resets the On Error properties of all the tasks
included in the current process to the On Error properties of the process itself.

All other options in the On Error tab of the Process Properties dialog are the same as in the On
Error tab in the Task Properties dialogs; see "Using the On Error tab" on page 100.

About branches and conditions

While some processes can simply start with an input task, manipulate the data with a few action
tasks and finish with an output task, in some cases you may want to have more control over the
flow of your process. For example, you may want multiple outputs, such as printing to multiple
printers as well as generating a PDF and emailing it. To do this, you will need branches. You
may also want to detect certain criteria in your data and act differently depending on that data,
such as sending an email only when an email address is found, or printing to a different printer
depending on who sent you a print job. To do this, conditional branches ("conditions") are
used.

For the list of operations you can perform on Branches and Conditions, please refer to "The
Process area" on page 885.

Branches

A branch is effectively a doubling of your job file (see "Job file" on page 53). As your job file
goes down the process, when a branch is encountered, a copy of the job file will go in that
branch. In the branch, all tasks up to the Output task will be performed, before returning to the
main trunk to continue processes. You can have branches within branches, and all branches
must have an Output task. For more information on branches, see "Branch" on page 474.

A branch is represented as a crossing:

|
-

Conditions

A condition will either execute the branch it creates or the main trunk, but never both. As your
job file goes down the process, when it encounters a condition it will verify whether that

Page 138

PlanetPress. Workflow

condition results in a "true" or "false" value. If the result is true, it goes in the branch, processes
all tasks up to the output, and the process finishes. If the result is false, it goes down the main
trunk and continues processing until the process finishes.

A conditional branch (or condition) is shown as a crossing with a diamond over it, for example:
I

3

F T

There are several Condition tasks:

« "File Name Condition" on page 478

» "File Size Condition" on page 479

« "File/Folder Condition" on page 478
« "Run Script" on page 482

« "SNMP Condition" on page 485

« "Text Condition" on page 488

« "Time of Day Condition" on page 489

Adding a branch or condition

The PlanetPress Workflow Configuration program offers two different commands when it
comes to adding new branches to a process.

« You can add a new branch by dragging and dropping a Branch task or one of the
Condition tasks from the Process Logic category of the Plug-in Bar, into your process.
Branches as well as conditions can thus be added like a task; see "Adding tasks" on
page 301.

« You can add a new branch that contains all of the tasks below the point where you insert
the branch. To do this, right-click on the first task that you want to include in the branch,
and select Branch From Here....

The default output task of a new branch or condition is configurable in the "Default
configuration behavior preferences" on page 773.

Page 139

PlanetPress. Workflow

Converting a branch to a subprocess

To allow for maximum flexibility and backward compatibility with the subprocess feature, the
Convert to subprocess option lets users transform existing processes easily. This option is
available whenever a Branch task is selected; right-clicking on it will display the contextual
menu, which holds the Convert to subprocess option.

Selecting this option automatically creates a new subprocess, takes the branch and all of its
tasks and inserts it in the new subprocess, including the Branch task itself. In the main process,
the branch is removed and replaced with a GoSub action task referring to the newly created
subprocess.

Note

The Branch task's options Backup job file, Backup job information and Backup
emulation are also automatically passed to the subprocess, which means that, if the
subprocess needs to use a different emulation than the calling process, a Change

Emulation task is required.

If any task converted into a subprocess was previously using local variables, these variables
must be removed or transferred to global variables or Job Information variables to be usable in
the newly created subprocess (see "About variables" on page 716).

Page 140

PlanetPress. Workflow

Using Scripts

Scripts can be used to perform various operations, such as to manipulate data, for example.
PlanetPress Workflow can perform scripts written in four different scripting languages and also
provides an interface for editing scripts.

Note

While this chapter provides some very useful and detailed information about scripting
within PlanetPress Workflow, its focus is to inform you about the features, variables and
functions unique to this environment. This chapter assumes that you have a working
knowledge of the scripting language you wish to use and does not purport to teaching
you anything about this language that you don't already know. Learning any of these
language is beyond the scope of this documentation.

Run Script task

Scripts are incorporated in a process via the Run Script task (see "Run Script" on page 482).

When using the Run Script task as a condition, you need a way to tell your process whether
the result is true or false. The condition resultis returned by the "Script.ReturnValue" on

page 174 variable. If the return value is zero (the default), the condition is false. Otherwise, itis
true.

When using the Run Script as an action task, the job file going out of the Run Script action task
will be the same as the one coming in, unless you have specifically changed it within your
script by writing to the file that is the target of the "Watch.GetJobFileName" on page 165
function. The same goes for any Job Info, local or global variables, unless you use the
"Watch.SetJoblInfo" on page 172 or "Watch.SetVariable" on page 173 functions to modify them.

Scripting languages

There are four scripting languages available through the Run Script task: JavaScript (JScript
and Enhanced JScript), VBScript, Python and Perl. Each language has its own strengths and
weaknesses which we will not cover in this documentation. While VBScript is the most used
language at the moment, the examples provided in this chapter are presented in all supported
languages.

Page 141

PlanetPress. Workflow

Note

« The JScript engine is Microsoft’s JScript 5.8, which is the equivalent of JavaScript
1.5 (ECMA-262 3rd edition + ECMA-327 (ES-CP) + JSON).

Enhanced JScript allows the use of more recent JavaScript syntax. Many methods
- basic methods like Date.now (), String.trim(),btoa ()/atob () and more
advanced methods like Array. forEach () -are added to the JScript engine via
the polyfill.js library.

« While JavaScript and VBScript are natively available on Windows operating
systems, Python and Perl require third-party tools to be functional. For Perl,
ActivePerl can be installed. For Python ActivePython (version 2.7.13) can be
installed.

APls

Multiple APIs (methods of communicating with PlanetPress Workflow scripting tools) are
available through the scripting engine, in all languages.

« The Watch object is used to communicate with your current process and configuration.
See "The Watch Object" on page 156.

o The PlanetPress Connect REST API consists of many services that expose access to a
number of areas including Workflow, data entity management and file store operations.
See the Connect REST API Cookbook.

« You can manipulate PDF files using the PlanetPress Alambic API. See "AlambicEdit API
reference" on page 243. Note that in PlanetPress Suite, the PlanetPress Alambic APl is
part of the PDF Tools.

« You can manipulate the Metadata in your process using the Metadata API. See the
"Metadata API" on page 197.

« You can communicate with a SOAP server using the SOAP API. See "SOAP Server API
Reference" on page 149.

« You can communicate with the PlanetPress Capture Database using the Capture API.
See Capture API Reference.

« You can communicate the with the Data Repository using the Data Repository API. See:
"Data Repository API" on page 175.

Page 142

PlanetPress. Workflow

https://github.com/inexorabletash/polyfill
http://www.activestate.com/activeperl/
http://www.activestate.com/activepython
http://help.objectiflune.com/en/PlanetPress-connect-rest-api-cookbook/2021.2/
http://help.objectiflune.com/files/EN/capture-api/

The Script Editor and XSLT Editor

The Script Editor is used to edit scripts in Run Script tasks and the XSLT Editor is used to
edit scripts in Open XSLT action tasks. You can open either editor using the Open Editor
button from the task's Properties dialog. When you do so, the script currently displayed in the
dialog box is pasted to the editor’s scripting box.

Both editors are visually identical and share almost exactly the same commands. They let you
import and export scripts, perform common editing, such as search and replace, and feature
syntax highlighting and formatting.

You can use the Script Editor to edit scripts written in VBScript, JavaScript (JScript, Enhanced
JScript), Perl, and Python.
You can use the XSLT Editor to edit scripts written in XSLT 1.0 and 2.0.

Note

« The JScript engine is Microsoft’s JScript 5.8, which is the equivalent of JavaScript
1.5 (ECMA-262 3rd edition + ECMA-327 (ES-CP) + JSON).
Enhanced JScript allows the use of more recent JavaScript syntax. Many methods
- basic methods like Date.now (), String.trim(),btoa ()/atob () and more
advanced methods like Array. forEach () -are added to the JScript engine via

the polyfill.js library.

« While JavaScript and VBScript are natively available on Windows operating
systems, Python and Perl require third-party tools to be functional. For Perl,
ActivePerl can be installed. For Python ActivePython (version 2.7.13) can be
installed.

For information on the available editor options, refer to "Editor Options" on page 816.

Import and export scripts

Both the Script Editor and XSLT Editor let you import and export scripts.

Note

When you import a script, it replaces any script currently displayed in the editor.

Page 143

PlanetPress. Workflow

https://github.com/inexorabletash/polyfill
http://www.activestate.com/activeperl/
http://www.activestate.com/activepython

Importing a script

To import a script:

1. In the editor, choose File > Import. The Open dialog box appears.

2. Toimport a script that uses a different scripting language or that was saved under a
different file format, make a selection in the Files of type drop-down list.

3. Navigate to the script you want to import and select it.

4. Click OK. The scriptis imported, displayed and formatted according to the syntax of the
language selected in the editor. If the imported file had the extension of a recognized
scripting language (.vbs or .js, for example), the editor language is automatically changed.

Exporting a script

To export a script:

1. In the editor, choose File > Export. The Save As dialog box appears.

2. To save the script using a different scripting language or under a different file format,
make a selection in the Save as type drop-down list.

3. Navigate to the location where you want to save the exported script.
4. Enter the name of the script in the File name box.

5. To save the script using a different scripting language or under a different file format,
make a selection in the Save as type drop-down list.

6. Click OK.

Find Strings in a Script

The Find Text dialog box allows you to search for text strings in the editor. The available
options help you limit the search, making searches quicker and easier.

To find strings in a script:

Note

If you only want to search a particular section of the script, you should select it before
performing the following procedure.

Page 144

PlanetPress. Workflow

1. Choose Search | Find, or press CTRL+F. The Find Text dialog box appears. The last
used string is displayed in the Text to find drop-down list box.

2. Setthe search settings and options.

« Text to find: Enter a new search string or select a previous search from the drop-
down list.

« Case sensitive: Select to limit the search to instances of text with the same case as
the text in the Text to find box.

« Whole words only: Select to limit the search to complete words matching the textin
the Text to find box. Whole words are defined as strings that have a space or
punctuation before and after the word.

« Regular expressions: Select to treat the regular expressions of the scripting
language as text to search. If you clear this option, the regular expressions of the
language are notincluded in the search.

« Global: Select to search the entire content of the script.

« Selected text: Select to find matching text within the text block you select. A portion
of text must be selected before you run the search.

e Forward: Select to search the script forward, from the location of the cursor or from
the beginning of the script, depending on what you choose as the origin (From
cursor begins where the cursor is currently located in the script, Entire scope begins
from the beginning of the script or beginning of script selection). If you limit the
scope to selected text, you move forward only within the selection. When the search
reaches the end of the script or script selection, the search finishes. It does not loop
back to the beginning.

« Backward: Select to search the script backward, from the location of the cursor or
from the end of the script, depending on what you choose for the origin (From cursor
begins where the cursor is currently located in the script, Entire scope begins from
the beginning of the script or beginning of script selection). If you limit the scope to
selected text, you move backward only within the script selection. When the search
reaches the beginning of the script or script selection, the search finishes. It does
not loop back to the beginning.

« From cursor: Select to start the search from the position of the cursor.

« Entire scope: Select to search the entire script or a script selection. The scope
croplands to a script selection if you make a selection before executing the Find.

3. Click OK. The first matching string is highlighted in the script.

Page 145

PlanetPress. Workflow

4. To find the next matching string, choose Search | Find Again or press F3.

Find and replace Strings in a Script

The Replace With dialog box lets you search for and replace text strings in the editor. The
available options help you limit the search, making replacements quicker and easier.

To find and replace strings in a script:

1. Choose Search | Replace, or press CTRL+R. The Replace With dialog box appears.
The last used strings are displayed in the Text to find and Replace with boxes.

2. Setthe replacement settings and options.

« Text to find: Enter a new search string or select a previous search from the drop-
down list.

« Replace with: Enter the string that will replace the string displayed in the Text to
find box.

+ Case sensitive: Select to limit the search to instances of text with the same case as
the text in the Text to find box.

« Whole words only: Select to limit the search to complete words that match the text
in the Text to find box. Whole words are defined as strings that have a space or
punctuation before and after the word.

« Regular expressions: Select to treat the regular expressions of the scripting
language as text. If you clear this option, the regular expressions of the language
are blocked from the search.

« Prompt on replace: Select to have PlanetPress Workflow display a prompt before it
replaces text. When you use the Replace All function, you are prompted each time
matching text is found. The prompt includes an All button for replacing all matching
text. This suppresses any further prompting.

« Global: Select to search the entire content of the script.

« Selected text: Select to find matching text only within a text block you select. The
text must be selected before you run the search.

e Forward: Select to search the script forward, from the location of the cursor or from
the beginning of the script, depending on what you choose as the origin (From
cursor begins where the cursor is currently located in the script, Entire scope begins
from the beginning of the script or beginning of script selection). If you limit the
scope to selected text, you move forward only within the selection. When the search

Page 146

PlanetPress. Workflow

reaches the end of the script or script selection, the search finishes. It does not loop
back to the beginning.

o Backward: Select to search the script backward, from the location of the cursor or
from the end of the script, depending on what you choose for the origin (From cursor
begins where the cursor is currently located in the script, Entire scope begins from
the beginning of the script or beginning of script selection). If you limit the scope to
selected text, you move backward only within the script selection. When the search
reaches the beginning of the script or script selection, the search finishes. It does
not loop back to the beginning.

« From cursor: Select to start the search from the position of the cursor.

« Entire scope: Select to search either the entire script, or a script selection. The
scope corresponds to a script selection if you make a selection before executing the
Find.

3. Do one of the following:

« Click OK to replace the first string encountered. If you selected Prompt on replace,
a dialog box opens to ask you whether to proceed with the replacement. You can
OK to replace the first string only, or you can click All to replace that string as well
as every other string that matches the replacement settings.

« Click Replace All to replace all the strings that match the replacement settings.

4. To find and replace the next matching string, choose Search | Find Again or press F3.
Once again, if you selected Prompt on replace, a dialog box opens to ask you whether
to proceed with the replacement. You can OK to replace that string only, or you can click
All to replace that string as well as every other string that matches the replacement
settings.

Go to a line in a script

The Go To Line dialog box lets you jump to a specific line within your script. It works whether
or not the line numbers are displayed on the left side of the editor window. (To learn how to
toggle the line number display settings, see "Editor Options" on page 816).

To gotoaline in a script:
1. Click anywhere in the Script Editor, then choose Search > Go To Line, or press Alt+G.

The Go To Line dialog box appears. The last used line numbers are displayed in the
Enter new line number drop-down list box.

Page 147

PlanetPress. Workflow

2. Enter a new line number in the Enter new line number box or select one from drop-down
list.

3. Click OK.
Bookmarks in a script

Bookmarks help you identify and jump to specific places within your script.

Bookmarks are displayed in the editor’s gutter, so you will not be able to see them unless the
gutter is both visible and sufficiently wide. If line numbers are also displayed in the gutter,
bookmarks may be harder to see. To control line number and gutter display, see "Editor
Options" on page 816.

Note

Bookmarks are not preserved when you close the editor.

Toggling bookmarks

To toggle bookmarks:

« Place the cursor on a line in your script and, from the editor's pop-up menu, choose
Toggle Bookmark and a given bookmark number.

If the bookmark you selected was not displayed on any line, itis added to the line where you
placed the cursor. If the bookmark you selected was displayed on the line where you placed the
cursor, itis removed. If the bookmark you selected was displayed on a different line, it is moved
to the line where you placed the cursor.

Jumping to a bookmark

Before you can jump to bookmarks, you must add bookmarks to specific lines in your script (see
above).

To jump to a bookmark:

« From the editor’s pop-up menu, choose Go To Bookmark and a given bookmark
number.

If the bookmark you selected was displayed on a line, the cursor jumps to that line.

Page 148

PlanetPress. Workflow

SOAP Server API| Reference

PlanetPress Workflow offers a SOAP Server API Reference allowing jobs to be submitted from
a third party application using the SOAP protocol. SOAP is short for Simple Object Access
Protocol.

While there are multiple possibilities for solutions using a SOAP server implementation, the
SOAP Server API Reference is specifically for submitting jobs from a SOAP client. It
implements methods that will allow SOAP clients to submit jobs and get information from
PlanetPress Workflow executing them.

Methods, structures

Description

"GetProcessList" on the
next page

Allows SOAP clients to request the list of available
PlanetPress Workflow processes, based on their
authentication credentials.

"GetProcessTaskList" on
page 151

Allows a user to remotely request the tasks list of a process.
This will be useful with the PostJob method since it needs a
TaskIndex.

"GetSOAPProcessList" on
page 152

Allows users to request the list of PlanetPress Workflow
processes that contain a SOAP Input plugin with the SOAP
action name. This is useful when working with the SubmitJob
method since it requires a SOAPActionName.

"PostJob" on page 153

Allows users to remotely submit files to PlanetPress Workflow
by using the Resubmit from here feature, which lets a user
specify a starting task index from which the File is to be
processed.

"PostJobInfoStruc" on
page 154

Structure containing any required information to prepare the
file for resubmission into a PlanetPress Workflow process.

"SubmitJob" on page 154

Allows users to remotely submit files to their PlanetPress
Workflow from a SOAP client. The SOAP client has the option
to wait for a response file from PlanetPress Workflow SOAP

Page 149

PlanetPress. Workflow

server.

"SubmitJobInfStruc" on Structure containing any required information to prepare the
page 156 file for a valid insertion into a PlanetPress Workflow process.
Note

With the SOAP API reference, new SOAP plugins have been introduced. The old plugin,
which could be used as an Input, Action or Output task, was renamed Legacy SOAP
Client and has become obsolete.

GetProcesslList

The GetProcessList function allows SOAP clients to request the list of available PlanetPress
Workflow processes, based on their authentication credentials.

Syntax

GetProcesslList (user name, Password) : GetProcessListResult

Parameters

« user name: String containing the user name.

« Password: String containing the password. This is case sensitive.
Return Value

« GetProcessListResult: Structure containing the following information:

« Success: Integer indicating the system-defined Success/Error level of the
operation. A result of 0 means that the operation was successful.

« Message: String containing text information about the Success status.
» ProcesslList: Structure containing the following information details.
« ProcessName: String containing the process name.

« Active: Boolean value specifying whether the process is currently active.

Page 150

PlanetPress. Workflow

Note

To obtain access to the complete list of processes for all users, the end-user must have
administrator privileges.

GetProcessTaskList

The GetProcessTaskList function will allow a user (a SOAP client) to remotely request the
tasks list of a process. This will be useful with the PostJob method since it needs a TaskIndex.

Syntax

GetProcessTasklList (ProcessName, user name, Password)
GetProcessTaskListResult

Parameters

« ProcessName: The Name of the PlanetPress Workflow process.
« user name: String containing the user name.

« Password: String containing the password. This is case sensitive.
Return Value

o GetProcessTaskListResult — Structure containing the following information:

« Success: Integer indicating the system-defined Success/Error level of the
operation. A result of 0 means that the operation was successful.

e Message: String containing text information about the Success status.
« TaskNames: Structure containing the following information details:

« TaskName: String containing the name of the task

« TaskIndex: Integer: 1 based index of the task.

« TaskDepth: Integer: 1 based depth of the task.

Page 151

PlanetPress. Workflow

Note

The TaskNames array will be sorted by the execution order of the process with the
primary input of the process having an index of 1.

GetSOAPProcessList

The GetSOAPProcessList function will allow users to request the list of PlanetPress Workflow
processes that contain a SOAP Input plugin with the SOAP action name. This is useful when
working with the SubmitJob SOAP API method since it requires a SOAPActionName.

Syntax

GetSOAPProcesslist (user name, Password) : GetSOAPProcessListResult
Description

Parameters

« user name: String containing the user name.

« Password: String containing the password. This is case sensitive.
Return Value

o GetSOAPProcessListResult: Structure containing the following information:

« Success: Integer indicating the system-defined Success/Error level of the
operation. A result of 0 means that the operation was successful.

« Message: String containing text information about the Success status.

e ProcessList: Structure containing the following information details.

« SOAPActionName: String containing the name of the process as seen in
your PlanetPress Workflow.

» Active — Boolean value indicating if the process is active in your PlanetPress
Workflow.

Page 152

PlanetPress. Workflow

Note

If a user has administrator privilege, he will have access to all processes and therefore he
will see all the processes.

PostJob

The PostJob method allows a user (a SOAP client) to remotely submit files to PlanetPress
Workflow by using the Resubmit from here feature. The main advantage of this feature is that it
allows a user to specify a starting task index from which the File is to be processed.

Syntax

PostJob (File, PostJobInfStruc , user name, Password)
PostJobResult

Description

Parameters

« File: base64Binary. This is an array of byte base64 encoded (see
http://en.wikipedia.org/wiki/Base64).

« PostJobInfStruc: Structure containing any required information to prepare the file for
resubmission into a PlanetPress Workflow process (see "PostJoblnfoStruc" on the next
page).

« User name: String containing the user name.

« Password: String containing the password. This is case sensitive.

Return Value

PostjobResult: Structure containing the following information:

« Success: Integer indicating the system-defined Success/Error level of the operation. A
result of 0 means that the operation was successful.

e Message: String containing text information about the Success status.

« PostjobInfStruc: Structure containing any required information to prepare the file for
resubmission into a PlanetPress Workflow process (see "PostJobInfoStruc" on the next
page).

Page 153

PlanetPress. Workflow

http://en.wikipedia.org/wiki/Base64

Note

The task index can be retrieved by using the GetProcessTaskList method. See point
GetProcessTaskList for details.

Note

The PostJob method can never return a file to the calling application.

PostJobinfoStruc

Structure containing any required information to prepare the file for resubmission into a
PlanetPress Workflow process using a SOAP client.

« VariableList: Array of complex type, containing pairs of variable names and variables
value. The list also contains the Job Info variables.

» VariableName: String

» VariableValue: String
e ProcessName: String: name of the PlanetPress Workflow process.
« TaskIndex: Integer: 1 based index of the task where the resubmission should start.
« FirstPage: Integer: first page of data to process.

« LastPage: Integer: Last page of data to process.

Note

If both FirstPage and LastPage are set to 0, the entire data file is used.

SubmitJob

The SubmitJob method allows a user to remotely submit files to their PlanetPress Workflow
from a SOAP client. The SOAP client has the option to wait for a response file from PlanetPress
Workflow SOAP server.

Page 154

PlanetPress. Workflow

Syntax

SubmitJob (File, SubmitJobInfStruc , ReturnJobFile, user name,
Password) : SubmitJobResult

Arguments

« File — base64Binary. This is an array of byte base64 encoded (see
http://en.wikipedia.org/wiki/Base64).

« SubmitJobInfStruc — Structure containing any required information to prepare the file for
a valid insertion into a PlanetPress Workflow process (see "SubmitJobInfStruc" on the
next page).

+ ReturnJobFile — Boolean value. When true, PlanetPress Workflow SOAP server returns
the job file. When false, there no file is returned to the SOAP client. (For example: when
submitting a job for print, there is no need to return a file)

« user name: String containing the user name.

« Password: String containing the password. This is case sensitive.

Return Value

SubmitJobResult: Structure containing the following information:

« Success: Integer indicating the Success/Error level of the operation. A result of 0 means
the operation was successful.

« Message: String containing text information about the Success/Failure status.

« SubmitJobInfStruc: Structure containing any required information to prepare the file for a
valid insertion into a PlanetPress Workflow process (see "SubmitJobInfStruc" on the next
page).

e ResultFile: base64Binary. If Success is different than 0 or the ReturnJobFile was set to
False in the initial call, no file is returned. Otherwise, ResultFile contains the job file, as it
existed at the completion of the PlanetPress Workflow process (for instance, if the

process creates a PDF and sets it as the current job file, the PDF is the file that gets
returned to the calling SOAP client).

Page 155

PlanetPress. Workflow

http://en.wikipedia.org/wiki/Base64

Note

The SubmitJob method only returns a file if the PlanetPress Workflow process contains
a SOAP Input task.

Note

If ReturnJobFile is set to true, the schedule options of the process should be setto a
pooling lower than four seconds, so the client application gets a timely response.

Note

To return the file, the process must be completed before the timeout of the server occurs.
The Timeout option can be set in your PlanetPress Workflow preferences.

SubmitJobInfStruc

Structure containing any required information to prepare the file for a valid insertion into a
PlanetPress Workflow process using SOAP.

« VariableList: Array of complex type, containing pairs of variable name and variable
value. The list also contains the Joblnfo variables.

» VariableName: String
» VariableValue: String

« SOAPActionName: String containing the name of the Input SOAP task’s action name.

The Watch Object

PlanetPress Workflow scripting offers a number of methods of communicating with your
process by means of PlanetPress Workflow automation object's methods and functions. The
automation object is available in all 4 languages through their own syntax - the examples
provided here are for JavaScript.

Page 156

PlanetPress. Workflow

Note

While the functions here are in mixed case to simplify reading, it's important to note that
some languages (especially JavaScript) are case-sensitive and will require the proper
case. Examples in this chapter will always use the proper case when relevant.

Here is a list of the methods and functions that are available to you through the automation
object (or "Watch" object). While these examples are all in JavaScript, you can click on any
variable name to open a page to see examples for each supported language.

Variable Name Description

Example Usage (VBScript)

"Script.ReturnValue" on page 174 Returns a boolean True or False value to a
Workflow scripted condition

Example usage: Script.ReturnvValue = 1;

"Watch.ExecuteExternalProgram" on | Calls and executes an external program in the
page 160 command line.

Example usage: Watch.ExecuteExternalProgram("lpr -S
192.168.100.001 -P auto
c:\\myfile.ps", "c:\\", 0, true);

"Watch.ExpandResourcePath" on Expands a Connect resource file name (e.g.

page 162 invoice.OL-template) to its fully qualified path (e.g.
C:\ProgramData\Objectif Lune\PlanetPress
Workflow\Documents\invoice.OL-template).

Example usage: var fullPath =
Watch.ExpandResourcePath

("invoice.OL-template");

"Watch.ExpandString" on page 162 Retrieves the content of any Workflow string,

Page 157

PlanetPress. Workflow

Variable Name

Example Usage (VBScript)

Description

containing any variable available to Watch,
including data selections.

Example usage:

var watchDate = Watch.ExpandString

("2y-sm-%d") ;

"Watch.GetConnectToken" on
page 163

Uses the default Connect Server host as defined in
the Workflow preferences to log into the Connect
Server and retrieve an authorization token.

Example usage:

var tokenConnect =
Watch.GetConnectToken () ;

"Watch.GetConnectTokenEx" on
page 164

Uses the arguments passed to it to log into the
Connect Server and retrieve an authorization token.

Example usage:

var tokenConnect =
Watch.GetConnectTokenEx ("localhost",

1234, "myUser", "secret");

"Watch.GetJobFileName" on
page 165

Retrieves a string containing the job path and file
name located in the job spool folder.

Example usage:

var s = Watch.GetJobFilename () ;

"Watch.GetJoblInfo" on page 166

Retrieves the content of a numbered job info (%1 to
%?9).

Example usage:

var s = Watch.GetJobInfo (9):;

"Watch.GetMetadataFilename" on
page 167

Retrieves a string containing the job's metadata
path and filename. This is useful when using the
Metadata APl in your script. (See Metadata API.)

Page 158

PlanetPress. Workflow

http://help.objectiflune.com/files/EN/metadata-api/

Variable Name Description

Example Usage (VBScript)

Example usage: var s = Watch.GetMetadataFileName () ;
"Watch.GetOriginalFileName" on Retrieves a string containing the job's original path
page 167 and filename. Note: this filename is generally no

longer available if it has been captured by Watch.

Example usage: var s = Watch.GetOriginalFileName () ;

Watch.GetPDFEditObject Is used to manipulate PDF files using the
AlambicEdit API. The AlambicEdit library allows
Workflow to access, create or modify PDF files.

"Watch.GetResources" on page 168 | Retrieves a specific type of Connect resources
when it is passed a file extension (e.g. "OL-
template") or all Connect resources when itis
passed an empty string.

Example usage: var allTemplates =
Watch.GetResources ("OL-template") ;

"Watch.GetVariable" on page 169 Retrieves the content of a local or global variable
by name.
Example usage: var s = Watch.GetVariable

("MyVariable"™);

"Watch.InstallResource" on Is used to copy or unpack resources, such as a
page 169 Connect Designer template, Data Mapping
Configuration, package file, etc., from the supplied
path to the Connect Documents folder.

Example usage: Watch.InstallResource ("c:\myfile.ol-
package") ;

Page 159

PlanetPress. Workflow

http://www.objectiflune.com/Documentation/files/EN/alambicedit-api/AlambicEdit.html

Variable Name

Example Usage (VBScript)

Description

"Watch.Log" on page 170

Writes to the Workflow log file, or the message
window when in debug - can accept multiple log
levels from 1 (red) to 4 (gray).

Example usage:

Watch.Log ("Hello, World!"™, 3);

"Watch.SetJobInfo" on page 172

Writes the value of a string to a numbered job info.

Example usage:

Watch.SetJobInfo (9, "Job info 9
Value") ;

"Watch.SetVariable" on page 173

Writes the value of a string to a local or global
variable by name.

Example usage:

Watch.SetVariable ("MyVariable",
"Hello World!");

"Watch.Sleep" on page 173

Pauses all processing for X milliseconds.

Example Usage:

Watch.Sleep (1000);

Watch.ExecuteExternalProgram

Calls and executes an external program through a specified command line. The program's
execution will be directed by the appropriate flags specified as this method's parameters.

Syntax

Watch.ExecuteExternalProgram const CommandLine: WideString; const WorkingDir:
WideString;, ShowFlags: Integer; WaitForTerminate: WordBool: integer;

const CommandLine

The command line to execute as a widestring.

const WorkingDir

Page 160

PlanetPress. Workflow

The working directory for the execution of the command line as a widestring.

ShowFlags

Integer value representing the flag to use during the execution of the command line. These
flags have an effect on the execution window opened by the ExecuteExternalProgram

procedure.
oo e
0 Hide the execution window.
1 Display the window normally.
2 Display the window minimized.
3 Display the window maximized.
4 Makes the window visible and brings it to the top, but does not make it the active
window.

WaitForTerminate

A Boolean value that, if true, pauses the script until the command line has been fully
executed.

Examples
JavaScript

Watch.ExecuteExternalProgram("lpr -S 192.168.100.001 -P auto
c:\\myfile.ps", "c:\\", 0, true);

VBScript

Watch.ExecuteExternalProgram "lpr -S 192.168.100.001 -P auto
c:\myfile.ps", "c:\", 0, true

Python

Watch.ExecuteExternalProgram ("lpr -S 192.168.100.001 -P auto
c:\\myfile.ps", "c:\\", 0, True)

Page 161

PlanetPress. Workflow

Perl

SWatch->ExecuteExternalProgram("lpr -S 192.168.100.001 -P auto
c:\\myfile.ps", "c:\\", 0, true);

Watch.ExpandResourcePath

The watch.ExpandResourcePath method expands a Connect resource file name (e.g.
invoice.OL-template) to its fully qualified path (e.g. C:\\ProgramData\Objectif Lune\PlanetPress
Workflow\Documents\invoice.OL-template). It returns empty (") if the resource does not exist,
and will log an empty line next to the task number if logged.

Files in the Connect resources folder are visible in Workflow's Configuration Components pane
under Connect Resources (see "Connect resources" on page 41).

Syntax
Watch.ExpandResourcePath(filename)

filename
A string containing the file name.

Examples

JavaScript

Watch.ExpandResourcePath ("invoice.OL-template") ;
VBScript

Watch.ExpandResourcePath "invoice.OL-template”
Python

Watch.ExpandResourcePath ("invoice.OL-template") ;
Perl

SWatch->ExpandResourcePath ("invoice.OL-template");
Watch.ExpandString

Provides access to the emulated job file and to all variables. This function returns a string that
is the expanded version of the input string.

Page 162

PlanetPress. Workflow

Syntax
Watch.ExpandString(String ToExpand)

StringToExpand

A regular parseable string that may contain system variables (%u, %f), user variables (%1 to
%9), octal codes, and data selections.

Example

This example results in expanding the string of the variables to the date value in the following
format: “YYYY-MM-DD”.

JavaScript

var s;

s= Watch.ExpandString ("%y-%m-%d") ;
Watch.Log ("Current Date is: " + s, 2);
VBScript

Dim s

s= Watch.ExpandString ("%y-%m-%d")
Watch.Log "Current Date is: " + s, 2
Python

s= Watch.ExpandString ("%y-%m-%d")
Watch.Log ("Current Date is: " + s, 2)
Perl

Ss = SWatch->ExpandString ("$y-%m-%d") ;
SWatch->Log ("Current Date is: " . $s,2);

Watch.GetConnectToken

The Watch.GetConnectTokenmethod uses the default Connect Server host as defined in the
Workflow preferences (see "OL Connect preferences" on page 787) to log into the Connect
Server and retrieve an authorization token.

Syntax
Watch.GetConnectToken()

Page 163

PlanetPress. Workflow

Return value

The method returns a JSON structure like the following:

"host": "localhost",

"port": 1234,

"token": "fdjhfds89r378cm034573890mc3y893r092p",
"method": "basic"

}

where:

host is the host or IP address of the server.

port is the TCP port number.
e« token is the authentication token.

« method is the authentication method; currently, only basic is supported.

Examples
JavaScript
Watch.GetConnectToken () ;

VBScript
Watch.GetConnectToken
Python
Watch.GetConnectToken () ;
Perl
SWatch->GetConnectToken () ;
Watch.GetConnectTokenEx

The watch.GetConnectTokenEx method uses the arguments passed to it to log into the Connect
Server and retrieve an authorization token.

Syntax

Watch.GetConnectTokenEx(host, port, username, password)

Page 164

PlanetPress. Workflow

The arguments contain the Connect Server settings (see "OL Connect preferences" on
page 787), in the form of strings (host, username and password) and a number (port).

Return value

The method returns a JSON structure containing the host, port, token and authentication
method. For example:

"host": "localhost",

"port": 1234,

"token": "fdjhfds89r378cm034573890mc3y893r092p",
"method": "basic"

host is the host or IP address of the server.

port is the TCP port number.

e« token is the authentication token.

« method is the authentication method; currently, only basic is supported.

Examples

JavaScript

Watch.GetConnectTokenEx ("localhost", 1234, "myUser", "secret");
VBScript

Watch.GetConnectTokenEx "localhost", 1234, "myUser", "secret"
Python

Watch.GetConnectTokenEx ("localhost",1234, "myUser", "secret") ;
Perl

SWatch->GetConnectTokenEx ("localhost",1234, "myUser", "secret") ;
Watch.GetJobFileName

Returns the complete path and file name of the job. This method is the same as PW _
GetJobFileName. getjobfilename() obtains the file name of a PlanetPress Workflow process.
This is useful for manipulating the job file, for example to replace data within it. If your script
writes to this file, the modified contents will be used by the next plugin in your process.

Page 165

PlanetPress. Workflow

Example

In the following example, GetJobFileName() retrieves the name of the job file, which is then
logged using "Watch.Log" on page 170.

JavaScript

var s;

s = Watch.GetJobFilename () ;

Watch.Log ("The job filename is: " + s, 3);
VBScript

Dim s

s = Watch.GetJobFileName

Watch.Log "The job filename is: " + s, 3
Python

s = Watch.GetJobFileName ()

Watch.Log ("The job filename is: " + s, 3)
Perl

Ss = $SWatch->GetJobFileName;
SWatch->Log ("The job filename is: " + $s, 3);

Watch.GetJoblInfo

Returns the job information corresponding to the specified index. Index is an integer from 1 to 9.
(See also: "Job Info variables" on page 717.)

Syntax
Watch.GetJobInfo(Index: integer): string

Example

JavaScript

var s;

s = Watch.GetJobInfo (3);

Watch.Log ("Jdobinfo 3's value is: " + s, 2);

Page 166

PlanetPress. Workflow

VBScript

Dim s

s = Watch.GetJobInfo (3)

Watch.Log "Jobinfo 3's value is: " + s, 2
Python

s = Watch.GetJobInfo (3)

Watch.Log ("Jdobinfo 3's value is: " + s, 2)
Perl

Ss = SWatch->GetJobInfo (3);
SWatch->ShowMessage ("Jobinfo 3's value is: " . $s, 2);

Watch.GetMetadataFilename

Returns the complete path and file name of the metadata file associated with the current job file.

Example

JavaScript
Watch.GetMetadataFileName () ;
VBScript
Watch.GetMetadataFileName
Python
Watch.GetMetadataFileName ()
Perl
SWatch->GetMetadataFileName () ;
Watch.GetOriginalFileName

Returns the original name of the file, when it was captured. This method is the same as PW_
GetOriginalFileName.

Example
JavaScript

Watch.GetOriginalFileName () ;

Page 167

PlanetPress. Workflow

VBScript
Watch.GetOriginalFileName
Python
Watch.GetOriginalFileName ()
Perl
SWatch->GetOriginalFileName () ;
Watch.GetResources

The watch.GetResources method retrieves a specific type of Connect resources when itis
passed a file extension (e.g. "OL-template") or all Connect resources when itis passed an
empty string.

Files in the Connect resources folder are visible in Workflow's Configuration Components pane
under Connect Resources (see "Connect resources" on page 41).
For the file types see: Connect file types.

Syntax

Watch.GetResources(resourcetype)

resourcetype

A string containing a file extension (e.g. "ol-template”) to get a specific type of resource, or an
empty string to get all resources.

Examples

JavaScript

Watch.GetResources ("OL-template™) ;
VBScript

Watch.GetResources "OL-template"
Python

Watch.GetResources ("OL-template") ;
Perl

SWatch->GetResources ("OL-template™) ;

Page 168

PlanetPress. Workflow

https://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#General/File_Types.htm

Watch.GetVariable

Returns the string value of the corresponding variable name. Note that if an undeclared
variable is called using this method, an error will be generated.

Syntax

Watch.GetVariable(Name: String): String

Example

JavaScript

var s;
s = Watch.GetVariable ("MyVariable");
Watch.Log ("MyVariable's value is: " + s, 2);
s = Watch.GetVariable ("global.MyVariable");

Watch.Log ("Jobinfo 3's wvalue is: " + s, 2);

VBScript

Dim s

s = Watch.GetVariable ("MyVariable™)

Watch.Log "MyVariable's value is: " + s, 2

s = Watch.GetVariable ("global.MyVariable")

Watch.Log "global.MyVariable's value is: " + s, 2

Python

s = Watch.GetVariable ("MyVariable")

Watch.Log("global.MyVariable's value is: " + s, 2)

Perl

Ss = SWatch->GetJobInfo (3);
SWatch->ShowMessage ("global.MyVariable's value is: " . $s, 2);

Watch.InstallResource

The watch.InstallResource (path) method copies or unpacks a resource, such as a Connect
Designer template, Data Mapping Configuration, or package file, from the supplied path to the
Connect resources folder (%PROGRAMDATA%\Objectif Lune\PlanetPress Workflow
8\PlanetPress Watch\OLConnect).

If a file already exists, it will be overwritten.

Page 169

PlanetPress. Workflow

The original resource file, which is processed by this functionality, will not be deleted or altered
in any way.

The Workflow process will wait for the file(s) to be unpacked or copied to the Connect
resources folder, so that the next plugin in line that uses an installed resource will have the
latest, up-to-date version of the file.

Files in the Connect resources folder are visible in Workflow's Configuration Components pane
under Connect Resources (see "Connect resources" on page 41).

Syntax
Watch.InstallResource(path)

path
A string containing the resource path.

Examples

JavaScript

Watch.InstallResource ("c:\\myfile.ol-package");
VBScript

Watch.InstallResource "c:\myfile.ol-package"
Python

Watch.InstallResource ("c:\\myfile.ol-package");
Perl

SWatch->InstallResource ("c:\\myfile.ol-package");
Watch.Log

Creates messages that are added to PlanetPress Workflowwatch.log file. The PlanetPress

Workflow watch.log file is located in the following folder:
%PROGRAMDATA%\Objectif Lune\PlanetPress Workflow 8\PlanetPress Watch\Log

Page 170

PlanetPress. Workflow

View error messages in the Services Console while PlanetPress Workflow is in Run mode by
choosing Tools | Services | Service Console. In the Service Console, error messages appear
with colors that correspond to the message level.

Level Type Text Colorin Service Console
1 Error Red
2 Warning Orange
3 Information Black
4 Debug Grey
Arguments
Message

A string representing the message that is logged in the log file. Note that the text of the
message must use the locale encoding of the system where the PlanetPress Workflow
software will be running, otherwise it will be unreadable.

Level

An integer between 1 and 4, specifying the severity level of the error message. Set message
levels as follows.

Level Description

1 The message is logged as an Error in the log file.

2 The message is logged as a Warning in the log file.

3 The message is logged as Information in the log file.

4 The message only appears when the application runs in Debug mode.

Page 171

PlanetPress. Workflow

Examples
In the following example, log() will write an information entry in the watch log that says "this is a
log"
VBScript
Watch.Log "this is a log", 3
JavaScript
Watch.Log ("this is a log", 3);
Python
Watch.Log("this is a log",3)
Perl
SWatch->Log ("this is a log",3);
Watch.SetJoblInfo
Sets the job information at the specified index to a specified string value. (See also: "Job Info
variables" on page 717.)
Syntax
Watch.SetJobinfo(Index: Integer; Value: String)

Example

JavaScript

Watch.SetJobInfo (3, "Job info 3 Value");
VBScript

Watch.SetJobInfo 3, "Job info 3 Value"
Python

Watch.SetJobInfo (3, "Job info 3 Value")
Perl

SWatch->SetJobInfo (3, "Job info 3 Value");

Page 172

PlanetPress. Workflow

Watch.SetVariable

Sets the variable to a specified string value. Note that if an undeclared variable is called using
this method, an error will be generated.

Syntax

Watch.SetVariable (Name: String; Value: String)

Example
JavaScript

Watch.SetVariable ("MyVariable", "Desired value");
Watch.SetVariable ("global.MyVariable", "Desired wvalue");

VBScript

Watch.SetVariable "MyVariable", "Desired value"
Watch.SetVariable "global.MyVariable", "Desired value"/

Python

Watch.SetVariable ("MyVariable", "Desired value")
Watch.SetVariable ("global.MyVariable"™, "Desired value™)

Perl

SWatch->SetVariable ("MyVariable", "Desired value");
SWatch->SetVariable ("global.MyVariable", "Desired value");

Watch.Sleep

Pauses the process for the specified number of milliseconds. This can be used while waiting
for something else to happen when the delay is known.

Syntax

Watch.Sleep(milliseconds: integer)

Example

In the following example, s1eep () pauses the process for 1 second (1000 milliseconds)

JavaScript
Watch.Sleep (1000);

Page 173

PlanetPress. Workflow

VBScript

Watch.Sleep 1000
Python

Watch.Sleep (1000)
Perl

SWatch->S1eep (1000) ;

Script.ReturnValue

Set this variable to 1 (true) or O (false) in order to return a true or false status to PlanetPress
Workflow, when using your script as a conditional branch. This variable will have no effect if the
scriptis run as an action.

If the property is not set, the default value is false.

Example

This example will always return true, as the condition is static. Itis, after all, simply an example.
You get the idea.

JavaScript

var everythingOK;

everythingOK = true;

if (everythingOK) {
Script.ReturnValue

} else {
Script.ReturnValue = 0

Il
'_\
~

}
VBScript

Dim everythingOK

everythingOK = true

if (everythingOK = true) then
Script.ReturnValue = 1

else
Script.ReturnValue = 0

end if

Page 174

PlanetPress. Workflow

Python

everythingOK = True

if everythingOK:
Script.ReturnValue = 1

else:

Script.ReturnValue = 0

Perl

SeverythingOK = 1;

if ($SeverythingOK) {
SScript->{Returnvalue} = 1;
} else {
SScript->{Returnvalue} = 0;

}

Data Repository API

The Data Repository is a permanent structure to store data that can then be reused, modified or
augmented at a later time, by different processes.

The Data Repository can be accessed at runtime by the Push To Repository plugin and other
tasks (see "Data Repository" on page 96) and at design time via the "Data Repository
Manager" on page 854.

This topic explains how to access the Data Repository in script.

For a quick start, turn to this How-to: Interacting with the Data Repository API.

Warning

All operations on the Repository must be performed through this API - rather than directly
accessing the physical file - since the Repository's underlying file structure may change
over time. This APl is guaranteed to remain compatible with future versions of the Data
Repository. It is used by all Workflow tasks dealing with the Repository.

Data repository structure

The table below lists the different levels in the repository and what their names corresponds to:

Page 175

PlanetPress. Workflow

https://learn.objectiflune.com/howto/interacting-data-repository-api

The term is the same as an Excel is the same as a Database ...

Group Sheet Table

Key Column Field

KeySet Row Record
Note

Group and key names are case-insensitive.

APl Reference

Obtaining an instance of the Repository Object

The Data Repository is accessed via a COM object that exposes methods to store and retrieve
data within the Repository.

JavaScript

var repoObject = new ActiveXObject
("RepositoryLib.WorkflowRepository") ;

VB Script

set repoObject = CreateObject ("RepositoryLib.WorkflowRepository")
In each example in this documentation, the object repoobject is deemed having been obtained
through the above call to the COM object.

The default Repository is always stored at the same location (see "Where to find the Data
Repository" on page 99).

The connectionstring property allows to create an instance of the Repository at another
location; see ConnectionString.

Page 176

PlanetPress. Workflow

Using a JSON parameter or return value

Whenever a parameter or return value is defined as a JSONStringArray type, that JSON array
is itself a string. Since a JSON array internally defines double quotes as the delimiter for each
element, you must enclose the entire string in single quotes. Alternatively, you can escape the
double quotes inside the JSON Array.

For instance, the following calls to AddGroup() are correct:

repoObject.AddGroup ("MyGroup", ' ["FirstKey", "SecondKey"]');
repoObject.AddGroup ("MyGroup", " [\"FirstKey\", \"SecondKey\"]");

But the following is incorrect:

repoObject.AddGroup ("MyGroup", "['FirstKey', 'SecondKey']");

Many methods require using the JSONStringArray type but JSON is not natively supported in
VB Script. Therefore, for those methods, only JavaScript sample code is provided. There are

many resources on the Web that propose ways of implementing JSON parsing in VB Script so
you can implement whichever you see fit. However, using JavaScript is highly recommended.

Repository management methods

Name Description

"CheckRepository" on page 185 Verifies the integrity of the repository and recovers
unused space left by deleted keysets. Similar to
packing a database, the operation is non-destructive
but it does require exclusive access to the Repository.
You should therefore only perform this operation when
you know for sure no other process is accessing the
Data Repository.

"ClearRepository" on page 186 Deletes all groups, keys and keysets from the
repository, returning it to a blank state. Use with
caution!

"ClearGroupData" on page 185 Deletes all keysets inside GroupName while retaining

the existing key structure.

Page 177

PlanetPress. Workflow

Name Description

"ClearAllData" on page 185 Delete all keysets in all groups, while retaining the
existing key structure.

ConnectionString Creates/opens a Repository to read from and write to at
a custom location. Set ConnectionStringtoa
string containing a full path and file name.

"Version" on page 196 Returns the version of the DLL library used by the
Repository.

Group methods

Name Description

"AddGroup" on page 182 Creates a group named GroupName and optionally
creates keys listed in keyNames. The keyNames
parameter may be empty.

"ListGroups" on page 189 Retrieves the list of all group names in the Repository,
stored in a JSONStringArray..

"RemoveGroup" on page 190 Deletes the group named GroupName, along with all its
keysets and keys.

"RenameGroup" on page 193 Renames group oldName to newName. While this
operation has no impact on the data stored in the
specified group, it does require any plugin and/or script
that uses oldName to be modified to refer to newName.

Key Methods

Description

"AddKey" on page 183 Adds key KeyName to group GroupName. KeyName

Page 178

PlanetPress. Workflow

Name Description

must not already exist in the specified group. Note that this
method only adds a key name to the group, not a key
value. See "AddValue" on page 184 for information on
how to set a value for a key.

"Listkeys" on page 189 Retrieves the list of all Key names and data types in Group
GroupName, stored in a JSONStringObject. You should
use JSON.Parse() to convert the string into an actual
JavaScript object. You can then use the for...in construct
to list the different properties for that object (i.e. the keys in
the group).

"RemoveKey" on page 191 Removes existing key KeyName from group
GroupName. The key to remove must exist in the group,
otherwise an error is raised. All values for the key, in all
keysets for the group, are removed. Note that when the
Group contains a large number of KeySets, this operation
may take a while.

"RenameKey" on page 193 Renames key oldName to newName in group
GroupName. While this operation has no impact on the
data stored in that Group, it does require any plugin and/or
script that uses oldName to be modified to refer to
newName.

Value Methods

Name Description

"AddValue" on page 184 Creates a new KeySet by assigning Value to the key
KeyName in Group GroupName. Note that KeyName
must exist in GroupName, otherwise an error is raised.
See "AddKey" on page 183 for information on adding a
key to a group. Upon successful completion, the method

Page 179

PlanetPress. Workflow

Name Description

returns the ID of the newly created KeySet.

"GetValue" on page 187 Performs a lookup in group GroupName and retrieves
the first value for key KeyName that matches Condition.
The condition is specified using basic SQL WHERE
syntax. The Condition may be left empty in which case
the very first value found for the specified KeyName is
returned.

"SetValue" on page 194 Updates multiple keysets in group GroupName by
setting the key KeyName to Value for all keysets that
match Condition. The condition is specified using basic
SQL WHERE syntax. The Condition may be left empty in
which case all keysets in GroupName are updated. Note
that KeyName must existin GroupName, otherwise an
error is raised. The method returns an array of the keyset
ID's that were updated ([1,2]), or an empty array ([]) if no
keysets were updated.

"SetValueByID" on page 195 Updates KeyName with Value in group GroupName,
where the keyset's ID matches the ID parameter.
KeyName must exist in GroupName, otherwise an error
is raised. The method returns the ID of the keyset that
was updated or -1 if the keyset was not updated.

Note that this method is functionally equivalent to using
"SetValue" on page 194 with its Condition parameter set
to "ID=ID".

KeySet methods

Description

"AddKeySets" on page 183 Inserts a new keyset inside

Page 180

PlanetPress. Workflow

Name Description

GroupName and assigns values to
keys as specified in KeyValues. Every
key specified in KeyValues must exist
otherwise an error is raised. However, it
is not required to specify all available
keys in KeyValues. Only the keys
specified are updated in GroupName
while unspecified keys are set to an
empty string.

"GetKeySets" on page 186 Retrieves Keys values in GroupName
for keysets that match Condition. When
an asterisk * is passed as the Keys
parameter, all keys are retrieved. When
Condition is left empty, all keysets are
retrieved.

"RemoveKeySets" on page 192 Deletes all keysets in GroupName that
match Condition. The condition is
specified using basic SQL WHERE
syntax. Condition may be left empty, in
which case all keysets in GroupName
are deleted. The method returns the
number of keysets that were deleted.

Skin/Formats/CrossReferencePrintFormat Deletes the keyset whose ID equals ID
("RemoveKeySetBylDDeletes the keyset whose | from GroupName. Returns 1 if
ID equals ID from GroupName. Returns 1 if successful, 0 otherwise.

successful, 0 otherwise. This method is
funCtiona”y eqUivalent tO USing RemoveKeySetS Note that th|S method iS functiona”y

with its Condition parameter setto "ID=ID". equivalent to using "RemoveKeySets"
SyntaxRemoveKeySetByID(GroupName: string, | on page 192 with its Condition
ID: integer): integer Examplesin each of these parameter set to "ID=ID".

examples, the object repoObject is deemed
having been obtained through a call to the COM

Page 181

PlanetPress. Workflow

Name Description

object "RepositoryLib.WorkflowRepository" (see
Obtaining an instance of the Repository
Object).JavaScript/* both methods perform the
same task */repoObject. RemoveKeySetByID
("Users", 10);repoObject. RemoveKeySets
("Users", "ID=10");VB Script/* both methods
perform the same task
*IrepoObject.RemoveKeySetByID "Users",
10repoObject.RemoveKeySets "Users",
"ID=10"" on page 1)

AddGroup

Creates a group named GroupName and optionally creates keys listed in keyNames. The
keyNames parameter may be empty.

Syntax

AddGroup (GroupName: string, keyNames: JSONStringArray)

Examples

In each of these examples, the object repoobiect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

repoObject.AddGroup ("Users", '["FirstName", "LastName"]');
repoObject.AddGroup ("Users", '');

VB Script

repoObject.AddGroup "Users", "[""FirstName"", ""LastName""]"

repoObject.AddGroup "Users", ""

Page 182

PlanetPress. Workflow

AddKey

Adds key KeyName to group GroupName. KeyName must not already exist in the specified
group. Note that this method only adds a key name to the group, not a key value. See
"AddValue" on the next page for information on how to set a value for a key.

Syntax

AddKey (GroupName: string, KeyName: string)

Examples

In each of these examples, the object repoobiect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

repoObject.AddKey ("Users", "email"):;

VB Script

repoObject.AddKey "Users", "email"
AddKeySets

Inserts a new keyset inside GroupName and assigns values to keys as specified in
KeyValues. Every key specified in KeyValues must exist otherwise an error is raised.
However, it is not required to specify all available keys in KeyValues. Only the keys specified
are updated in GroupName while unspecified keys are set to an empty string.

Syntax

AddKeySets (GroupName: string, KeyValues: JSONObjectArrayString):
JSONIntegerArray

Examples

Basic examples

In each of these examples, the object repoobect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

Page 183

PlanetPress. Workflow

JavaScript

repoObject.AddKeySets ("Users", '[{"FirstName": "John","LastName":
"Smith"}, {"FirstName": "Richard", "LastName": "Doe"}]1');
VB Script

repoObject.AddKeySets "Users","
[{""FirStName"":""JOhn"",""LaStName""Z""Smith""},
{""FirStName"":""RiChard"",""LaStName"": ""Doe""}] w

Inserting a row

In most cases, you won't need to insert or update a row in a script, as this can be easily done
through the the Push to Repository action task. However, in some cases you might want to
script it for simplicity's sake.

This JavaScript example inserts 2 different rows into the Users group.

var repoObject = new ActiveXObject
("RepositoryLib.WorkflowRepository");

repoObject.AddKeySets ("customers", '[{"CustomerID": "CUJS123456",
"FirstName": "John","LastName": "Smith"},

{"CustomerID": "CURD654321", "FirstName": "Richard", "LastName":
"Doe"}1");

Tip: to update a row instead of adding it, use the GetValue() function to get the KeySet ID; then
update each individual value using SetValueByID() (see "GetValue" on page 187 and
"SetValueByID" on page 195).

Sample return value

The method returns a JSONIntegerArray containing the ID's of all keysets inserted into
GroupName:

'[131,132]"

AddValue

Creates a new KeySet by assigning Value to the key KeyName in Group GroupName. Note
that KeyName must exist in GroupName, otherwise an error is raised. See "AddKey" on the
previous page for information on adding a key to a group. Upon successful completion, the
method returns the ID of the newly created KeySet.

Page 184

PlanetPress. Workflow

Syntax

AddValue (GroupName: string, KeyName: string, Value: string):
integeroc4

Examples

In each of these examples, the object repoobiect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

repoObject.AddValue ("Users", "LastName", "Smith");

VB Script

repoObject.AddValue "Users", "LastName", "Smith"
CheckRepository

Verifies the integrity of the repository and recovers unused space left by deleted keysets.
Similar to packing a database, the operation is non-destructive but it does require exclusive
access to the Repository. You should therefore only perform this operation when you know for
sure no other process is accessing the Data Repository.

Syntax

CheckRepository ()
ClearAllData

Delete all keysets in all groups, while retaining the existing key structure.

Syntax

ClearAllData ()
ClearGroupData

Deletes all keysets inside GroupName while retaining the existing key structure.

Syntax

ClearGroupData (GroupName: string)

Page 185

PlanetPress. Workflow

ClearRepository

Deletes all groups, keys and keysets from the repository, returning it to a blank state. Use with
caution!

Syntax

ClearRepository ()

GetKeySets

Retrieves Keys values in GroupName for keysets that match Condition.
When an asterisk * is passed as the Keys parameter, all keys are retrieved.

To ensure backward compatibility with versions prior to 2018.1, all keys are retrieved when the
Keys parameter is left empty. It is however recommended to use an asterisk instead.

When Condition is left empty, all keysets are retrieved, which is useful for reports, cleanup, or
custom filters based on more complex conditions.

GetKeySets () converts the results coming from the Repository from UTF8 to Ansi, in order to
make results with special characters like 'éeéé?a' compatible with scripting.
To obtain the UTF8 value, without conversion, use GetKeySetsw ().

Syntax

GetKeySets (GroupName: string, Keys: JSONStringArray, Condition:
string): JSONStringArray

Examples

Basic examples

In each of these examples, the object repoobect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

repoObject.GetKeySets ("Users", '["FirstName", "LastName"]',
"Gender="'M"'") ;

VB Script

Page 186

PlanetPress. Workflow

myKeySet = repoObject.GetKeySets ("Users",
[""FirstName"",""LastName""]", "Gender='M'")

Querying a single row

This JavaScript example shows how to get one or more rows from the repository and use them
in the process. The script gets 3 fields ("firstname", "lastname" and "email") from the
CustomerlD field. It assumes there's a local variable called %{CustomerlD} set in the workflow
process.

var CustomerID = Watch.GetVariable ("CustomerID") ;

var repoObject = new ActiveXObject
("RepositoryLib.WorkflowRepository");

var customer = repoObject.GetKeySets ("customers",'
["firstname","lastname", "customerID"]',6 "customerID = '"" +

CustomerID + "'");
Watch.SetJobInfo (9, customer) ;

By replacing the last option from GetKeySets (the filter on CustomerlD) with an asterisk, you
can get all the rows from the data repository.

Return value: JSONStringArray

The method returns a JSONStringArray of key-value pairs, for example:

'"[{"FirstName": "John", "LastName": "Smith"}, {"FirstName":
"Richard", "LastName": "Doe"}]'

The return value (saved for example in the %9 Joblinfo variable, as the above example does)
can be used in a number of ways:

« ltcan be returned to a web page that's making an HTTP request to Workflow. JSON is the
simplest way to transfer information between any system that supports JavaScript.

« ltcan be passed to Designer and loaded up directly as an object in a script there.

o The JSON can be converted to XML, which makes it useable in the DataMapper module.
This can be easily done in a preprocessor script in the DataMapper (see DataMapper

online help).
GetValue

Performs a lookup in group GroupName and retrieves the first value for key KeyName that
matches Condition. The condition is specified using basic SQL WHERE syntax. The

Page 187

PlanetPress. Workflow

http://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#datamapper/index.htm
http://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#datamapper/index.htm

Condition may be left empty in which case the very first value found for the specified
KeyName is returned.

Syntax

GetValue (GroupName: string, KeyName: string, Condition: string)

Examples

In each of these examples, the object repoobect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

var myValue = repoObject.GetValue ("Users", "email", "
LastName='Smith' AND FirstName='John' "); /* retrieves email for
John Smith */

var myValue = repoObject.GetValue ("Users", "email", "
LastName='Smith' "); /* retrieves email for first user named Smith
*/

var myValue = repoObject.GetValue ("Users", "email", ""); /*

retrieves email for first user */

VB Script

myValue = repoObject.GetValue ("Users", "email", "
LastName=""Smith"" AND FirstName=""John"" ") /* retrieves email for
John Smith */

myValue = repoObject.GetValue ("Users", "email", "
LastName=""Smith"" ") /* retrieves emaill for first user named Smith
*/

myValue = repoObject.GetValue ("Users", "email", "") /* retrieves

email for first user */

Retrieving a KeySet ID

This JavaScript example retrieves the KeySet ID, which is then used to update values in the
row.

/* Get KeySet ID */

var repoObject = new ActiveXObject
("RepositoryLib.WorkflowRepository")

var keySetID = repoObject.GetValue ("customers", "ID",

Page 188

PlanetPress. Workflow

"CustomerID='CURD654321"'") ;

/* Update Values */

repoObject.SetValueByID ("customers", "FormOfAddress", "Mr.",
keySetID);

repoObject.SetValueByID ("customers", "Country", "US", keySetID);
repoObject.SetValueByID ("customers", "Language", "EN", keySetID);

ListGroups

Retrieves the list of all group names in the Repository, stored in a JSONStringArray.

Syntax

ListGroups () : JSONStringArray

Example

In each of these examples, the object repoobiect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

var repoObject = new ActiveXObject
("RepositoryLib.WorkflowRepository");

var myList = JSON.parse (repoObject.ListGroups()):;
for (var i=0; i<myList.length; i++) {

/* Log all group names to the console */
Watch.Log (myList[i],2);

}

Sample return value
'["Users","Cart","Orders"]"'
ListKeys

Retrieves the list of all Key names and data types in Group GroupName, stored in a
JSONStringObject. You should use JSON.Parse() to convert the string into an actual
JavaScript object. You can then use the for...in construct to list the different properties for that
object (i.e. the keys in the group).

Syntax

ListKeys (GroupName: string) :JSONStringArray

Page 189

PlanetPress. Workflow

Examples

In each of these examples, the object repoobiect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

var repoObject = new ActiveXObject
("RepositoryLib.WorkflowRepository") ;

var myList = JSON.parse (repoObject.ListKeys ("Internal"));
for (var Property in myList) {

/* Log all key names for group Users to the console */
Watch.Log (Property, 2) ;

}

Sample return value

{"ID": "meta", "FirstName": "string", "LastName": "string", "email": "string", "DateC": "meta",
"DateM": "meta"}

As shown in the sample, the value associated with each key name is actually the data type for
that key. Only two values are currently possible: string and meta, where meta denotes an
internally generated key.

RemoveGroup

Deletes the group named GroupName, along with all its keysets and keys.

Syntax

RemoveGroup (GroupName: string)

Examples

In each of these examples, the object repoob-ect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

repoObject.RemoveGroup ("Users") ;

Page 190

PlanetPress. Workflow

VB Script

repoObject.RemoveGroup "Users"
RemoveKey

Removes existing key KeyName from group GroupName. The key to remove must existin the
group, otherwise an error is raised. All values for the key, in all keysets for the group, are
removed. Note that when the Group contains a large number of KeySets, this operation may
take a while.

Syntax

RemoveKey (GroupName: string, KeyName: string)

Examples

In each of these examples, the object repoobect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

repoObject.RemoveKey ("Users", "email");

VB Script

repoObject.RemoveKey "Users", "email"
RemoveKeySetByIlD

Deletes the keyset whose ID equals ID from GroupName. Returns 1 if successful, 0 otherwise.

Note

This method is functionally equivalent to using "RemoveKeySets" on the next page
with its Condition parameter set to "ID=ID".

Syntax

RemoveKeySetByID (GroupName: string, ID: integer): integer

Page 191

PlanetPress. Workflow

Examples

In each of these examples, the object repoobiect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

/* both methods perform the same task */
repoObject.RemoveKeySetByID ("Users", 10);
repoObject.RemoveKeySets ("Users", "ID=10");

VB Script

/* both methods perform the same task */
repoObject.RemoveKeySetByID "Users", 10
repoObject.RemoveKeySets "Users", "ID=10"

RemoveKeySets

Deletes all keysets in GroupName that match Condition. The condition is specified using
basic SQL WHERE syntax. The method returns the number of keysets that were deleted.
When passing 'ID' as the Condition, all keysets in GroupName will be deleted.

Syntax

RemoveKeySets (GroupName: string, Condition: string): integer

Examples

Basic examples

In each of these examples, the object repoobect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

repoObject.RemoveKeySets ("Users", 'Gender="M""');

VB Script

repoObject.RemoveKeySets "Users", "Gender='M"'"

Page 192

PlanetPress. Workflow

Deleting a row
This script attempts to delete a client from the rows, then returns "true" or "false" in JobInfo

variable %9 as a response.

var CustomerID = Watch.GetVariable ("CustomerID") ;

var repoObject = new ActiveXObject
("RepositoryLib.WorkflowRepository") ;

var deletedCount = JSON.parse (repoObject.RemoveKeySets
("customers", "customerID = '" + CustomerID + "'"));
var answer = (deletedCount > 0) ? "true" : "false";
Watch.SetJobInfo (9, answer);

RenameGroup

Renames group oldName to newName. While this operation has no impact on the data stored
in the specified group, it does require any plugin and/or script that uses oldName to be
modified to refer to newName.

Syntax

RenameGroup (o0ldName, newName: string)

Examples

In each of these examples, the object repoobiect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

repoObject.RenameGroup ("Users", "Customers"):;

VB Script

repoObject.RenameGroup "Users", "Customers"
RenameKey

Renames key oldName to newName in group GroupName. While this operation has no
impact on the data stored in that Group, it does require any plugin and/or script that uses
oldName to be modified to refer to newName.

Page 193

PlanetPress. Workflow

Syntax
RenameKey (GroupName: string, oldName: string, newName: string)

Examples

In each of these examples, the object repoobect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

repoObject.RenameKey ("Users", "LastName", "SurName"):;

VB Script

repoObject.RenameGroup "Users", "LastName", "SurName"

SetValue

Updates multiple keysets in group GroupName by setting the key KeyName to Value for all
keysets that match Condition. The condition is specified using basic SQL WHERE syntax. The
Condition may be left empty in which case all keysets in GroupName are updated. Note that
KeyName must exist in GroupName, otherwise an error is raised. The method returns an array
of the keyset ID's that were updated ([1,2]), or an empty array ([]) if no keysets were updated.

Note

There is currently no Update feature in the API for a whole KeySet (a row).

Syntax

SetValue (GroupName: string, KeyName: string, Value: string,
Condition: string): string

Examples

In each of these examples, the object repoobiect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

Page 194

PlanetPress. Workflow

repoObject.SetValue ("Users", "FormOfAddress", "Mr.", "Gender="M"'"
) ;
repoObject.SetValue ("Users", "FormOfAddress", "Ms.", "Gender="F"

AND MaritalStatus='Married'");

repoObject.SetValue ("Users", "FormOfAddress", "Miss", "Gender='F'
AND MaritalStatus='"'");

VB Script

repoObject.SetValue "Users", "FormOfAddress", "Mr.", "
Gender=""M"" "

repoObject.SetValue "Users", "FormOfAddress", "Ms.", "
Gender=""F"" AND MaritalStatus=""Married"" "
repoObject.SetValue "Users", "FormOfAddress", "Miss", "
Gender=""F"" AND MaritalStatus="""" "

SetValueByID

Updates KeyName with Value in group GroupName, where the KeySet's ID matches the ID
parameter. KeyName must existin GroupName, otherwise an error is raised. The method
returns the ID of the keyset that was updated or -1 if the keyset was not updated.

The KeySet ID can be retrieved with cetvalue () ("GetValue" on page 187).

Note

There is currently no Update feature in the API for a whole KeySet (a row).

Syntax
SetValueByID (GroupName: string, KeyName: string, Value: string, ID:
integer): integer6id

Note

This method is functionally equivalent to using "SetValue" on the previous page with its
Condition parameter set to "ID=ID".

Page 195

PlanetPress. Workflow

Examples

In each of these examples, the object repoobiect is deemed having been obtained through a
call to the COM object "RepositoryLib.WorkflowRepository" (see "Obtaining an instance of the
Repository Object" on page 176).

JavaScript

/* both methods perform the same task */
repoObject.SetValueByID ("Users", "FormOfAddress", "Mr.", 10);
repoObject.SetValue ("Users", "FormOfAddress", "Mr.", "ID=10");

VB Script

/* both methods perform the same task */
repoObject.SetValueByID "Users", "FormOfAddress", "Mr.", 10
repoObject.SetValue "Users", "FormOfAddress", "Mr.", "ID=10"

Updating a row

There is currently no 'update' feature in the API for a whole KeySet. This JavaScript example
retrieves the KeySet ID, which is then used to update values in the row.

/* Get KeySet ID */

var repoObject = new ActiveXObject
("RepositoryLib.WorkflowRepository") ;

var keySetID = repoObject.GetValue ("customers", "ID",
"CustomerID='CURD654321'"'") ;

/* Update Values */

repoObject.SetValueByID ("customers", "FormOfAddress", "Mr.",
keySetID);

repoObject.SetValueByID ("customers", "Country", "US", keySetID);
repoObject.SetValueByID ("customers", "Language", "EN", keySetID);

Version

Returns the version of the DLL library used by the Repository.

Syntax

Version () : string

Page 196

PlanetPress. Workflow

Metadata API

The "Metadata" on page 76 is a hierarchical structure describing the data in a job. Itis
composed of 5 basic levels, from top to bottom: Job, Group, Document, Datapage, and Page.
There is a set of plugins that allow to edit the Metadata during a Workflow process (see
"Metadata tasks" on page 560), but you can also manipulate the Metadata in your process via
scripts using the Metadata API.

In the Metadata API, each unit, on all levels in the hierarchy, is represented by an object called
a "Node" on page 215.

A Node item is a collection of its lower level node type items. At the top of this tree sits a single
Node object named "MetaJob" on page 200. The MetaJob is a collection of "MetaGroup" on
page 203 objects, where each MetaGroup is a collection of one or more "MetaDocument" on
page 206 objects. In turn, MetaDocument objects hold "MetaDatapage" on page 210 objects,
which have "MetaPage" on page 213 objects.

In addition, a Node contains a collection of "Attributes" on page 232 and can contain any
number of "Fields" on page 233.

All of these objects are contained in a "MetaFile" on the next page object, and they are
obtained, directly or indirectly, through methods of this object.

Note

In an OL Connect job, only the first three levels in the Metadata hold information about
the job: Job, Group and Document. A Group has information about a record set in the
Connect database and a Document has information about one record in that set. This
information appears in the Fields collection of the respective Node object. (When viewing

the Metadata file, this information is visible under 'User defined information'.) The Data
Model fields are added into the Document level.

Note

Be aware that changing the order and location of the various Node objects (except for the
Page object) within the Metadata structure, and/or setting the "Selected" on page 219
property of a Node, may affect the output of a job (see "Including or excluding nodes from
the output" on page 216 and "How Metadata affects the output" on page 81).

Page 197

PlanetPress. Workflow

MetaFile

The MetaFile object represents the physical Metadata file and is used to load and save the
Metadata from and to the file system. It also publishes the "Metadob" on page 200 object, which
is the root node of the Metadata structure.

The MetaFile object is the only object that is formally published to the user. All the other objects
are obtained, directly or indirectly, through methods of this object.

A standalone, empty MetaFile object can be created using CreateObject
("MetadataLib.MetaFile") in any script program, even outside of Workflow, or the {145E89F9-
C2DF-4604-821A-9BD6C4B468DA} CLSID with CoCreatelnstance.

The current job's Metadata file name can be obtained using the Watch.GetMetadataFilename
method (see "Watch.GetMetadataFilename" on page 167) when using the "Run Script" on
page 482 task. Note that the exact syntax may vary according to the selected script language.
When writing a plugin using the plugin SDK the current job's Metadata file name can be
obtained by calling the IWatchJob::MetadataFilename method from within
IWatchPlugin::Execute.

Warning

Under no circumstances should any other objects of this library be created direcitly.
Always use the published APIs to create new objects.

Warning

The Metadata objects point to an underlying persistent data store. This means that if there
are live references to Metadata objects and the underlying data is destroyed (e.g. a new
file is loaded), the objects would point to invalid data. The effect of calling any object
method in these circumstances is undefined and may resultin memory corruption, crash
or loss of data.

Methods

Name Description

Page 198

PlanetPress. Workflow

Job() Returns the "Metadob" on the next page node, which
sits at the top of the Metadata tree structure.

"LoadFromFile(const String Loads a Metadata file from the file system.
Filename)" below

"SaveToFile(const String Saves a Metadata file to the file system.
Filename)" below

"Export(const String Filename, Exports the Metadata in a non-native format.
TExportFormat Format)" below

LoadFromFile(const String Filename)

Loads a Metadata file from the file system. This function throws an error when the Metadata file
is invalid or when it can't be found. Note that this error should be caughtin a try-catch block.

Filename
Name of the file to load.

Exceptions
« EOleException: Invalid Metadata file or other error while loading.

SaveToFile(const String Filename)

Saves the current Metadata structure in a file.
Filename
Name of the file to save into. If the file already exists, the file is overwritten and its current

contents is lost.

Export(const String Filename, TExportFormat Format)

Exports the Metadata in a non-native format.
Filename

Name of the file to save to. If the file already exists, the file is overwritten and its current
content s lost.

Page 199

PlanetPress. Workflow

Format

Format in which to save the file. The only value currently supported is efXml21 (value = 0),
which is an XML format corresponding to the former Metadata native file format.

Exceptions

o EOleException: The specified export format is invalid.

MetaJob

Properties

Name

Type

Description

"Attributes" on

MetaCollection

Returns the node's attribute collection. (See

page 220

page 232 the "Metadata Attributes reference" on
page 84.)

"Count" on Integer Returns the number of child nodes.

page 218

"Fields" on MetaCollection Returns the node's field collection.

page 233

"NodeType" on TNodeType Returns the node type of the current Node.

page 218 Note that the TNodeType type is not defined in
an Active Script environment, such as the Run
Script task. See the detailed reference for the
numerical values to use.

"Selected" on Bool Indicates whether or not the Node is set to be

page 219 printed.

"SelectedCount" on | Integer Returns the number child nodes selected to be

page 219 output. (See also: "Including or excluding
nodes from the output" on page 216.)

"SelectedState" on Integer Returns an integer indicating whether the node

is selected or not, taking its parents into

Page 200

PlanetPress. Workflow

account.

0: The node is not selected.
1: The node is selected but one of its parents is

not.

2: The node and all of its parents are selected.

Methods
Name Return Description
type

"Add(Integer Index)" on page 220 Node Adds a new child node to the
current node.

"AttributeBylndex(Integer Index)" on String Returns the specified attribute's

page 221 value.

"AttributeByName(const String Name)" on String Returns the value of the

page 221 attribute of the specified name.

"Clear()" on page 222 Deletes all the child nodes as
well as the attributes and fields.

"DatapageCount()" on page 222 Integer Returns the total number of
datapages present underneath
this node.

"DocumentCount()" on page 223 Integer Returns the total number of
documents in all groups.

"FieldByIndex(Integer Index)" on page 223 | String Returns the specified field's
value.

"FieldByName(const String Name)" on String Returns the value of field of the

page 224 specified name.

"FieldByNamelndex(const String Name, String Returns the value of the N'th

Page 201

PlanetPress. Workflow

Integer Index)" on page 224 field of the specified name.

"ltem(Integer Index)" on page 226 Node Returns the child (node) item
located at the specified index.

Group(Integer Index), see "ltem(Integer Node Returns the MetaGroup at the

Index)" on page 226 specified index.

"PageCount()" on page 226 Integer Returns the total number of
pages present underneath this
node.

"Paste()" on page 227 Node Inserts the clipboard's content
as the last child of the current
node.

"PasteAt(Integer Index)" on page 227 Node Inserts the clipboard's content
as a child node at the specified
index.

"Select(TSelectWhat SelectWhat)" on Selects the child nodes

page 228 according to the SelectWhat
parameter.

The TSelectWhat type is not
defined in an Active Script
environment, such as the Run
Script task. See the detailed
reference for the numerical
values to use.

"SelectedDatapageCount()" on page 228 Integer Returns the number of
datapages selected to be output
that are underneath this node.

"SelectedDocumentCount()" on page 228 Integer Returns the number of
documents selected to be
output that are underneath this
node.

Page 202

PlanetPress. Workflow

"SelectedPageCount()" on page 229 Integer Returns the number of pages
selected to be output that are
underneath this node.

"Sort(const String Name, optional Sorts the sub-nodes according
TSortFlags Flags, optional const String to a number of criteria.
Name2, optional TSortFlags Flags2,
optional const String Name3, optional
TSortFlags Flags3)" on page 230

MetaGroup
Properties
Name Type Description
"Attributes" on MetaCollection Returns the node's attribute collection. (See
page 232 the "Metadata Attributes reference" on
page 84.)
"Count" on Integer Returns the number of child nodes.
page 218
"Fields" on MetaCollection Returns the node's field collection.
page 233
"Index" on Integer Gets the index of the node in its parent.
page 218
"NodeType" on TNodeType Returns the node type of the current Node.
page 218 Note that the TNodeType type is not defined in
an Active Script environment, such as the Run
Script task. See the detailed reference for the
numerical values to use.
"Parent" on Node Returns the parent node of the current node.
page 219

Page 203

PlanetPress. Workflow

"Selected" on Bool
page 219

Indicates whether or not the Node is set to be
printed.

"SelectedCount" on | Integer
page 219

Returns the number child nodes selected to be
output. (See also: "Including or excluding
nodes from the output" on page 216.)

"SelectedState" on Integer
page 220

Returns an integer indicating whether the node
is selected or not, taking its parents into
account.

0: The node is not selected.

1: The node is selected but one of its parents is
not.

2: The node and all of its parents are selected.

Methods
Name Return Description
type
"Add(Integer Index)" on page 220 Node Adds a new child node to the

current node.

"AttributeBylndex(Integer Index)" on String Returns the specified attribute's
page 221 value.
"AttributeByName(const String Name)" on String Returns the value of the

page 221

attribute of the specified name.

"Clear()" on page 222

Deletes all the child nodes as
well as the attributes and fields.

"Copy() " on page 222

Places a copy of the node in the
metadata clipboard.

"Cut()" on page 222

Removes the node and places
itin the metadata clipboard.

Page 204

PlanetPress. Workflow

"DatapageCount()" on page 222 Integer Returns the total number of
datapages present underneath

this node.
"Delete()" on page 223 Deletes the node.
"FieldByIndex(Integer Index)" on page 223 | String Returns the specified field's
value.
"FieldByName(const String Name)" on String Returns the value of field of the
page 224 specified name.
"FieldByNamelndex(const String Name, String Returns the value of the N'th
Integer Index)" on page 224 field of the specified name.
"IndexIndob()" on page 225 Integer Returns the index of this page

in the job, taking all the pages
from all the datapages from all
the documents from all the
groups into account.

"ltem(Integer Index)" on page 226 Node Returns the child (node) item
located at the specified index.

Document(Integer Index), see "ltem Node Returns the MetaDocument at

(Integer Index)" on page 226 the specified index.

"PageCount()" on page 226 Integer Returns the total number of
pages present underneath this
node.

"Paste()" on page 227 Node Inserts the clipboard's content
as the last child of the current
node.

"PasteAt(Integer Index)" on page 227 Node Inserts the clipboard's content
as a child node at the specified
index.

Page 205

PlanetPress. Workflow

"Select(TSelectWhat SelectWhat)" on Selects the child nodes

page 228 according to the SelectWhat
parameter.

The TSelectWhat type is not
defined in an Active Script
environment, such as the Run
Script task. See the detailed
reference for the numerical
values to use.

"SelectedDatapageCount()" on page 228 Integer Returns the number of
datapages selected to be output
that are underneath this node.

"SelectedPageCount()" on page 229 Integer Returns the number of pages
selected to be output that are
underneath this node.

"SelectedIndexInJob()" on page 229 Integer Index of the page among all the
selected pages in the Job.

"Sort(const String Name, optional Sorts the sub-nodes according
TSortFlags Flags, optional const String to a number of criteria.
Name2, optional TSortFlags Flags2,
optional const String Name3, optional
TSortFlags Flags3)" on page 230

MetaDocument
Properties
Name Type Description
"Attributes" on MetaCollection Returns the node's attribute collection. (See
page 232 the "Metadata Attributes reference" on
page 84.)
"Count" on Integer Returns the number of child nodes.

Page 206

PlanetPress. Workflow

page 218

"Fields" on MetaCollection Returns the node's field collection.

page 233

"Index" on Integer Gets the index of the node in its parent.

page 218

"NodeType" on TNodeType Returns the node type of the current Node.
page 218 Note that the TNodeType type is not defined in

an Active Script environment, such as the Run
Script task. See the detailed reference for the
numerical values to use.

"Parent" on Node Returns the parent node of the current node.
page 219

"Selected" on Bool Indicates whether or not the Node is set to be
page 219 printed.

"SelectedCount" on | Integer Returns the number child nodes selected to be
page 219 output. (See also: "Including or excluding

nodes from the output" on page 216.)

"SelectedState" on | Integer Returns an integer indicating whether the node
page 220 is selected or not, taking its parents into
account.

0: The node is not selected.

1: The node is selected but one of its parents is
not.

2: The node and all of its parents are selected.

Methods

Name Return Description
type

Page 207

PlanetPress. Workflow

"Add(Integer Index)" on page 220 Node Adds a new child node to the
current node.

"AttributeBylndex(Integer Index)" on String Returns the specified attribute's

page 221 value.

"AttributeByName(const String Name)" on String Returns the value of the

page 221 attribute of the specified name.

"Clear()" on page 222 Deletes all the child nodes as
well as the attributes and fields.

"Copy() " on page 222 Places a copy of the node in the
metadata clipboard.

"Cut()" on page 222 Removes the node and places
itin the metadata clipboard.

"Delete()" on page 223 Deletes the node.

"FieldByIndex(Integer Index)" on page 223 | String Returns the specified field's
value.

"FieldByName(const String Name)" on String Returns the value of field of the

page 224 specified name.

"FieldByNamelndex(const String Name, String Returns the value of the N'th

Integer Index)" on page 224 field of the specified name.

"IndexInGroup()" on page 225 Integer Returns the index of this page
in its parent group, taking all the
pages from all the datapages
from all documents into
account.

"IndexInJob()" on page 225 Integer Returns the index of this page

in the job, taking all the pages
from all the datapages from all

Page 208

PlanetPress. Workflow

the documents from all the
groups into account.

"ltem(Integer Index)" on page 226 Node Returns the child (node) item
located at the specified index.

Datapage(Integer Index), see "ltem(Integer | Node Returns the MetaDatapage at

Index)" on page 226 the specified index.

"PageCount()" on page 226 Integer Returns the total number of
pages present underneath this
node.

"Paste()" on page 227 Node Inserts the clipboard's content
as the last child of the current
node.

"PasteAt(Integer Index)" on page 227 Node Inserts the clipboard's content
as a child node at the specified
index.

"Select(TSelectWhat SelectWhat)" on Selects the child nodes

page 228 according to the SelectWhat
parameter.

The TSelectWhat type is not
defined in an Active Script
environment, such as the Run
Script task. See the detailed
reference for the numerical
values to use.

"SelectedPageCount()" on page 229 Integer Returns the number of pages
selected to be output that are
underneath this node.

"SelectedIndexIinGroup()" on page 229 Integer Index of the page among all the
selected pages in its parent
Group.
Page 209

PlanetPress. Workflow

"SelectedIndexIndob()" on page 229 Integer Index of the page among all the
selected pages in the Job.

"Sort(const String Name, optional Sorts the sub-nodes according
TSortFlags Flags, optional const String to a number of criteria.
Name2, optional TSortFlags Flags2,
optional const String Name3, optional
TSortFlags Flags3)" on page 230

MetaDatapage
Properties

Name Type Description

"Attributes" on MetaCollection Returns the node's attribute collection. (See

page 232 the "Metadata Attributes reference" on
page 84.)

"Count" on Integer Returns the number of child nodes.

page 218

"Fields" on MetaCollection Returns the node's field collection.

page 233

"Index" on Integer Gets the index of the node in its parent.

page 218

"NodeType" on TNodeType Returns the node type of the current Node.

page 218 Note that the TNodeType type is not defined in
an Active Script environment, such as the Run
Script task. See the detailed reference for the
numerical values to use.

"Parent" on Node Returns the parent node of the current node.

page 219

"Selected" on Bool Indicates whether or not the Node is set to be

Page 210

PlanetPress. Workflow

page 219 printed.

"SelectedCount" on | Integer Returns the number child nodes selected to be
page 219 output. (See also: "Including or excluding
nodes from the output" on page 216.)

"SelectedState" on Integer Returns an integer indicating whether the node
page 220 is selected or not, taking its parents into
account.

0: The node is not selected.

1: The node is selected but one of its parents is
not.

2: The node and all of its parents are selected.

Methods
Name Return Description
type

"Add(Integer Index)" on page 220 Node Adds a new child node to the
current node.

"AttributeBylndex(Integer Index)" on String Returns the specified attribute's

page 221 value.

"AttributeByName(const String Name)" on | String Returns the value of the

page 221 attribute of the specified name.

"Clear()" on page 222 Deletes all the child nodes as
well as the attributes and fields.

"Copy() " on page 222 Places a copy of the node in the
metadata clipboard.

"Cut()" on page 222 Removes the node and places
itin the metadata clipboard.

Page 211

PlanetPress. Workflow

"Delete()" on page 223

Deletes the node.

"FieldByIndex(Integer Index)" on page 223 | String Returns the specified field's
value.

"FieldByName(const String Name)" on String Returns the value of field of the

page 224 specified name.

"FieldByNamelndex(const String Name, String Returns the value of the N'th

Integer Index)" on page 224 field of the specified name.

"IndexInDocument()" on page 225 Integer Returns the index of this page
in its parent document, taking
all the pages from all the
datapages into account.

"IndexInGroup()" on page 225 Integer Returns the index of this page
in its parent group, taking all the
pages from all the datapages
from all documents into
account.

"IndexIndob()" on page 225 Integer Returns the index of this page
in the job, taking all the pages
from all the datapages from all
the documents from all the
groups into account.

"ltem(Integer Index)" on page 226 Node Returns the child (node) item
located at the specified index.

Page(Integer Index), see , see "ltem Returns the MetaPage at the

(Integer Index)" on page 226 specified index.

"Paste()" on page 227 Node Inserts the clipboard's content
as the last child of the current
node.

"PasteAt(Integer Index)" on page 227 Node Inserts the clipboard's content

Page 212

PlanetPress. Workflow

as a child node at the specified

index.
"Select(TSelectWhat SelectWhat)" on Selects the child nodes
page 228 according to the SelectWhat
parameter.

The TSelectWhat type is not
defined in an Active Script
environment, such as the Run
Script task. See the detailed
reference for the numerical
values to use.

"SelectedIindexInDocument()" on Integer Index of the page among all the

page 229 selected pages in its parent
Document.

"SelectedIindexIinGroup()" on page 229 Integer Index of the page among all the
selected pages in its parent
Group.

"SelectedIndexInJob()" on page 229 Integer Index of the page among all the

selected pages in the Job.

"Sort(const String Name, optional Sorts the sub-nodes according
TSortFlags Flags, optional const String to a number of criteria.
Name2, optional TSortFlags Flags2,
optional const String Name3, optional
TSortFlags Flags3)" on page 230

MetaPage

Properties
Name Type Description
"Attributes" on MetaCollection Returns the node's attribute collection. (See the
page 232 "Metadata Attributes reference" on page 84.)

Page 213

PlanetPress. Workflow

"Fields" on MetaCollection Returns the node's field collection.

page 233

"Index" on Integer Gets the index of the node in its parent.

page 218

"NodeType" on | TNodeType Returns the node type of the current Node.

page 218 Note that the TNodeType type is not defined in an
Active Script environment, such as the Run Script
task. See the detailed reference for the numerical
values to use.

"Parent" on Node Returns the parent node of the current node.

page 219

Methods
Name Return Description
type

"AttributeBylIndex(Integer String Returns the specified attribute's value.

Index)" on page 221

"AttributeByName(const String | String Returns the value of the attribute of the

Name)" on page 221 specified name.

"Copy() " on page 222 Places a copy of the node in the metadata

clipboard.
"Cut()" on page 222 Removes the node and places itin the
metadata clipboard.

"Delete()" on page 223 Deletes the node.

"FieldByIndex(Integer Index)" String Returns the specified field's value.

on page 223

Page 214

PlanetPress. Workflow

"FieldByName(const String String Returns the value of field of the specified

Name)" on page 224 name.

"FieldByNamelndex(const String Returns the value of the N'th field of the

String Name, Integer Index)" specified name.

on page 224

"IndexInDocument()" on Integer Returns the index of this page in its parent

page 225 document, taking all the pages from all the
datapages into account.

"IndexInGroup()" on page 225 | Integer Returns the index of this page in its parent
group, taking all the pages from all the
datapages from all documents into account.

"IndexIndob()" on page 225 Integer Returns the index of this page in the job,
taking all the pages from all the datapages
from all the documents from all the groups
into account.

"ltem(Integer Index)" on Node Returns the child (node) item located at the

page 226 specified index.

"SelectedIindexInDocument()" Integer Index of the page among all the selected

on page 229 pages in its parent Document.

"SelectedIndexIinGroup()" on Integer Index of the page among all the selected

page 229 pages in its parent Group.

"SelectedIndexIindob()" on Integer Index of the page among all the selected

page 229 pages in the Job.

Node

Node objects are items in the Metadata's single-rooted tree-like structure. Each Node itemis a
collection of its lower level Node type. There are 5 types of Metadata Node objects:

« "Metadob" on page 200
« "MetaGroup" on page 203

Page 215

PlanetPress. Workflow

« "MetaDocument" on page 206
« "MetaDatapage" on page 210
« "MetaPage" on page 213

The MetaJob is a collection of MetaGroup objects, where each MetaGroup is a collection of one
or more MetaDocument objects, and so on, except for the MetaPage which does not have child
nodes.

Properties and methods

All Node objects share a number of properties and methods that are common to all Node
object types. There are also properties and methods that are either unique to a specific Node
object type, or shared between only a few of them.

Each Node object type provides methods to access its children (in other words, Nodes that are
located underneath that Node item in the tree structure). The method's name varies to match
the type of Node. For example, the child accessor method in a MetaDocument node is named
Datapage.

There is also a generic accessor method named 1tem thatis common across all Node object
types. The ltem method of the MetaGroup returns a MetaDocument, while the same method for
a MetaDatapage returns a MetaPage.

Note: The "MetaPage" on page 213 object does not have a child accessor method as it does
not contain any Node objects.

For the available properties and methods see the Node type's documentation: "MetaJob" on
page 200, "MetaGroup" on page 203, "MetaDocument" on page 206, "MetaDatapage" on
page 210, and "MetaPage" on page 213.

Including or excluding nodes from the output

The Selected property of any Node object is used to select whether the node - and all of its
children, down to the smallest unit - are to be included in the final output or not.

If a node has its Selected property set to true, all of its children that also have their own
Selected property set to true will print.

If Selected is false, its children will not print, regardless of their Selected status.

Methods like Count, Index or PageCount work on all nodes, regardless of their Selected
attributes.

Methods whose names start with "Selected" however are meant to work with selected nodes. In
other words, "Selected..." methods only consider nodes that are set to be part of the output.

Page 216

PlanetPress. Workflow

SelectedCount only considers child nodes that have their Selected property set to true, but also
checks if their parents also have their Selected property to true. It is therefore possible that a
node is selected but is not counted.

The SelectedState property can be used to verify the effective selection state of a node, i.e.
whether or not a node will be part of the output and, if not, whether itis because it is itself not
selected or one of its parents is not.

Attributes and Fields

In addition to being a collections of objects, a Metadata Node also contains two types of
elements, called "Attributes" on page 232 and "Fields" on page 233. These are name/value
pairs, where the name is case-insensitive.

« An Attribute is a read-only, system-defined element which holds certain information
about a certain node in the Metadata structure. This information can be static (e.g. the size
of a physical page) or evaluated on-the-fly (e.g. the number of documents in a group).
Attributes are non-repetitive (i.e. name is unique) and do not persist through Metadata
recreation.

For an overview of Attributes and in which Node objects they are available, see the
"Metadata Attributes reference" on page 84.

« A Field is a read-write, user-defined element which holds custom information about a
certain node in the Metadata structure. Fields are repetitive (i.e. the same field may
appear multiple times) and persist through Metadata recreation.

They are each stored in a collection container object (a MetaAttributeCollection and a
MetaFieldCollection, respectively).

As is the case with Nodes, both collections share a number of methods and properties. The
Fields collection however has additional methods to support multiple entries with the same
name, which is forbidden with attributes.

Node properties and methods reference

This topic gives detailed information about all properties and methods of the Node object. The
availability of a property or method with an actual Node object, however, depends on the type
of the Node: "Metadob" on page 200, "MetaGroup" on page 203, "MetaDocument" on

page 206, "MetaDatapage" on page 210, and "MetaPage" on page 213.

Page 217

PlanetPress. Workflow

Properties
Attributes

Returns the attribute collection (MetaCollection) of the current node. See "Attributes" on
page 232.

Count

Not available in MetaPage

Returns the number of child nodes in the current node.

Fields

Returns the field collection (MetaCollection) of the current node. See "Fields" on page 233.

Index

Not available in MetaJob
Gets the index of the node in its parent.

Returns:

The index (0-based) at which the current node is found in the parent's node list.

Exception:

o EOleException: Index is lower than 0 or higher than Count-1.

NodeType

Returns a value representing the type (TNodeType) of the current node.

Return value Node type
0 Job
2 Group

Page 218

PlanetPress. Workflow

3 Document
5 Datapage
6 Page

Note

In an Active Script environment, such as the Run Script task, the return value is a
numerical value.

However, in environments where the TNodeType type is defined, the node types are
ntJob, ntGroup, ntDocument, ntDatapage, and ntPage.

Parent

Not available in MetaPage

Returns the parent node of the current node.

Selected

Not available in MetaPage

Indicates whether or not the node is set to be printed (see "Including or excluding nodes from
the output" on page 216). If a node has its Selected property set to true, all of its child that also
have their own Selected property set to true will print. If Selected is false, its child will not print,
regardless of their Selected status.

(reading) Returns:

True if the node is selected, false otherwise.

(writing) Parameters:

Select True to mark as selected to be printed, false if itis not to be printed.

SelectedCount

Not available in MetaPage

Page 219

PlanetPress. Workflow

Returns the number of child nodes in the current node that are set to be output, meaning that
they have their Selected property set to true, taking the parents into account.

Returns:

The number (integer) of child nodes that will be included in the output. If the current node and
all of its parents have their Selected property set to true, this amounts to the number of child
nodes that are selected. If any parent is not selected, returns 0.

SelectedState

Indicates whether the node is selected or not, taking its parents into account.

Returns:

Returns an integer indicating the selected state of the node. If the node and all of its parents are
selected, the method returns ssTrue (2). If the node is selected but one of its parents is not, the
return value is ssDisabled (1). If the node is not selected, the return value is ssFalse (0).

Return value State
0 False: The node is not selected.
1 Disabled: The node is selected but one of its parents is not.
2 True: The node and all of its parents are selected.
Note

In an Active Script environment, such as the Run Script task, the return value is a
numerical value.

However, in environments where the Selected State type is defined, the types are
ssFalse (= 0), ssDisabled (= 1), and ssTrue (= 2).

Methods

Add(Integer Index)

Not available in MetaPage

Adds a new Node as a child of the current node.

Page 220

PlanetPress. Workflow

Parameters:

Index

Specifies where in the child list to add the node. The node is inserted before the node at the
specified index. In other words, the node being inserted becomes the node found at Index. To
add a node at the start of the collection, use 0. To add it at the end, use Node.Count.

Returns:

Reference to the Node that was added.

Exception:

o EOleException: The value of Index is invalid.
AttributeByIndex(Integer Index)
Returns the value of the Metadata attribute at the specified index.

Parameters:

Index

0-based index of the attribute value to retrieve. The index of the first element is 0 and the
index of the last is Count-1.

Returns:

The value of the attribute as a string.
Exception:

« EOleException: Index is lower than 0 or higher than Count-1.
AttributeByName(const String Name)
Returns the value of the metadata attribute of the specified name.

Parameters:

Name
Name of the attribute to retrieve.

Page 221

PlanetPress. Workflow

Returns:

The value of the attribute as a string. If an attribute named Name is not found, an empty string is
returned.

Clear()

Not available in MetaPage

Deletes all the child nodes of the current node, as well as all of its attributes and fields.
Copy()

Not available in MetaJob

Places a copy of the current node, along with all of its children, attributes and fields, in the
metadata clipboard. Modifying the original node after the copy is made does not modify the
copy in the clipboard.

Cut()
Not available in MetaJob

Places a copy of the current node, along with all of its children, attributes and fields, in the
metadata clipboard and immediately removes the original from the Metadata structure.

Warning

The node being cut is removed immediately. Any reference to it orits child nodes
becomes invalid. The results of calling methods of such references is undefined.

DatapageCount()

MetaJob and MetaGroup only

Page 222

PlanetPress. Workflow

Returns the number of MetaDatapage nodes in all child nodes. This methods recursively goes
through all child nodes to count the total number of MetaDatapage that are contained
underneath the current node.

Returns:

Total number (integer) of MetaDatapage nodes found under the current node.

Delete()

Not available in MetaJob
Removes the current node, along with all of its children, attributes and fields, from the metadata

structure.

Warning

The node being deleted is removed immediately. Any reference to it or its child nodes
becomes invalid. The results of calling methods of such references is undefined.

DocumentCount()

MetaJob only

Returns the number of MetaDocument in all child nodes. This method recursively goes through
all child nodes to count the total number of MetaDocument nodes that are contained
underneath the current node.

Returns:

Total number (integer) of MetaDocument nodes found under the current node.
FieldBylndex(Integer Index)
Returns the value of the Metadata Field at the specified index. (See: "Fields" on page 233.)

Parameters:

Index

Page 223

PlanetPress. Workflow

0-based index of the field value to retrieve. The index of the first element is 0 and the index of
the lastis Count-1.

Returns:

The value of the field as a string.

Exception:

o EOleException: Index is lower than 0 or higher than Count-1.

FieldByName(const String Name)

Returns the value of the Metadata Field of the specified name. (See: "Fields" on page 233.) If
more than one field has the same name, this method returns the value of the first one it finds,
starting at the first field in the list.

Parameters:
Name

Name of the field to retrieve.
Returns:

The value of the field as a string. If an field named Name is not found, an empty string is
returned.

FieldByNamelndex(const String Name, Integer Index)

Returns the value of the n'th metadata field of the specified name. This method can be used to
retrieve the value of a specific field when more than one field has the same name.

Parameters:

Name
Name of the field to retrieve.

Index

Ordinal of the field to retrieve. To retrieve the value of the first field named Name, use 0. For
the second field, use 1, and so on.

Page 224

PlanetPress. Workflow

Returns:

The value of the specified field as a string. If an field named Name is not found, or Index is
higher or equal to the number of fields named Name (in other words, you specify 4 to get the
fifth but there are only three), an empty string is returned.

Exception:

o EOIleException: Index is lower than 0.
IndexInDocument()
MetaPage and MetaDatapage only

Returns the index of this page in its parent document, taking all the pages from all the
datapages into account.

Returns:

Absolute index (integer, 0-based) of the page within all the pages under the parent document.

IndexInGroup()

MetaDocument, MetaDatapage and MetaPage only

Returns the index of this page in its parent group, taking all the pages from all the datapages
from all documents into account.

Returns:

Absolute index (integer, 0-based) of the page within all the pages under the parent group.
IndexIndob()
Not available in MetaJob

Returns the index of this page in the job, taking all the pages from all the datapages from all the
documents from all the groups into account.

Page 225

PlanetPress. Workflow

Returns:

Absolute index (0-based) of the page within all the pages in the job.

ltem(Integer Index)

Group (Integer Index) MetaJob only
Document (Integer Index) MetaGroup only
Datapage (Integer Index) MetaDocument only
Page (Integer Index) MetaDatapage only

Returns the child node located at the specified index.

Parameters:

Index

0-based index of the node to retrieve. The index of the first node is 0 and the index of the last
is Count-1.

Returns:

Reference to the specified node.
Exception:
« EOleException: Index is lower than 0 or higher than Count-1.
PageCount()
MetaJob, MetaGroup and MetaDocument only
Returns the number of MetaPage in all child nodes. This methods recursively goes through all
child nodes to count the total number of MetaPage that are contained underneath the current

node.

Returns:

Total number of MetaPage found under the current node.

Page 226

PlanetPress. Workflow

Paste()

Not available in MetaPage

Inserts the contents of the metadata clipboard as the last child node of the current node. This
removes the node from the clipboard, making it empty after the paste operation.

Returns:
Reference to the top node being pasted.
Exception:

« EOleException: The node type of the clipboard and the current node don't match. For
example, trying to paste a MetaGroup in a MetaGroup or a MetaPage in a MetaDocument.

PasteAt(Integer Index)

Not available in MetaPage

Inserts the contents of the metadata clipboard at the specified index in the current node. This
removes the node from the clipboard, making it empty after the paste operation.

Parameters:

Index

Specifies where in the child list to add the node. The node is inserted before the node at the
specified index. In other words, the node being inserted becomes the node found at Index. To
add a node at the start of the collection, use 0. To add it at the end, use Node.Count.

Returns:
Reference to the top node being pasted.
Exceptions:

« EOleException: The node type of the clipboard and the current node don't match. For
example, trying to paste a MetaGroup in a MetaGroup or a MetaPage in a MetaDocument.

o EOleException: The value of Index is invalid.

Page 227

PlanetPress. Workflow

Select(TSelectWhat SelectWhat)

Not available in MetaPage

Changes the "selected" status of the current node as well as all of its child nodes according to
the SelectWhat parameter.

Parameters:

SelectWhat

Indicates what to select. The value swNone changes the Selected property of the current
node and all child nodes to false, while swAll changes it to true.

Script users: use 0 for swNone, 1 for swAll.

SelectedDatapageCount()

MetaJob and MetaGroup only

Returns the number of datapages under the current node that are set to be part of the output, i.e.
that have their Selected property set to true, as well as all of their parents.

Returns:

The number of such nodes, if any. If the current node is not selected or one of its parents is not,
it returns 0.

SelectedDocumentCount()

MetaJob only

Returns the number of documents under the current node that are set to be part of the output,
i.e. that have their Selected property set to true, as well as all of their parents.

Returns:

The number of such nodes, if any. If the current node is not selected or one of its parents is not,
it returns 0.

Page 228

PlanetPress. Workflow

SelectedIndexinDocument()

MetaDatapage and MetaPage only

Returns the index of this page in its parent document, taking only the selected pages into
account.

Returns:

Absolute index (0-based) of the page within all the selected pages under the parent document.
If the page is not set to be output (i.e. its SelectedState is different than ssTrue), it returns -1.

SelectedIndexIinGroup()

MetaDocument, MetaDatapage and MetaPage only

Returns the index of this page in its parent group, taking only the selected pages from all the
datapages from all documents into account.

Returns:

Absolute index (0-based) of the page within all the selected pages under the parent group. If
the page is not set to be output (i.e. its SelectedState is different than ssTrue), it returns -1.

SelectedIindexinJob()

Not available in MetaJob

Returns the index of this page in the job, taking only the selected pages from all the datapages
from all the documents from all the groups into account.

Returns:

Absolute index (0-based) of the page within all the selected pages in the job. If the page is not
set to be output (i.e. its SelectedState is different than ssTrue), it returns -1.

SelectedPageCount()

MetaJob, MetaGroup and MetaDocument only

Page 229

PlanetPress. Workflow

Returns the number of pages under the current node that are set to be part of the output, i.e. that
have their Selected property set to true, as well as all of their parents.

Returns:

The number of such nodes, if any. If the current node is not selected or one of its parents is not,
it returns 0.

Sort(const String Name,
optional TSortFlags Flags,
optional const String Name2,
optional TSortFlags Flags2,
optional const String Name3,
optional TSortFlags Flags3)

Not available in MetaJob

Sorts the sub-nodes contained in the node according to a number of sort criteria. Unselected
sub-nodes will be placed at the end, after all the selected sub-nodes, in the order in which they
were placed prior to the sort.

Each of the three sort criteria can be modified by specifying one or more flags.

Value Meaning

1 The name refers to an Attribute rather than a field.

2 The sortis done in descending order (i.e. the highest to the lowest).
4 The field is an integer numeric value.

Note

In an Active Script environment, such as the Run Script task, you must work with the
numerical values.

In environments where the flags are defined, you may instead use sfAttribute (= 1),
sfDescending (= 2), and sfNumeric (= 4).

Page 230

PlanetPress. Workflow

All the parameters to this method except for the first one are optional. If a Name is specified, it
must be valid for every sub-node. If, for example, the specified field is not found in a sub-node,
or a numeric sort is performed and one of the values is not numeric (i.e. consists of only decimal
characters, no thousand or decimal separator allowed), the method will fail.

If a sub-node contains multiple occurrences of fields with the specified name, only the first
occurrence will be considered.

String comparisons are done without regards to the case (case-insensitive) using the Windows
Win32 API function CompareString(LOCALE_USER_DEFAULT, NORM_IGNORECASE, ...).

Parameters:

Name

Name of the field or attribute contained in each sub-node whose value will be used as the first
sort criteria. If it is an attribute instead of a field, this needs to be specified in the Flags
parameter.

Flags (optional)
Set of flags that modify how the sorting on Name is done.

Name2 (optional)

Name of the field or attribute contained in each sub-node whose value will be used as the
second sort criteria. If it is an attribute instead of a field, this needs to be specified in the
Flags2 parameter.

Flags2 (optional)
Set of flags that modify how the sorting on Name?Z2 is done.

Name3 (optional)

Name of the field or attribute contained in each sub-node whose value will be used as the
third sort criteria. If it is an attribute instead of a field, this needs to be specified in the Flags3
parameter.

Flags3 (optional)
Set of flags that modify how the sorting on Name3 is done.

Page 231

PlanetPress. Workflow

Exceptions:

o EOIleException: Specified field or attribute does not exist in one of the sub-nodes.

« EOIleException: A numeric sort is specified and one of the fields or attributes does not
contain a valid numeric integer value.

« EOleException: An error occurred while comparing two strings.

Attributes

An Attribute is a read-only, system-defined element: a name/value pair, where the name is
case-insensitive. It holds certain information about a certain "Node" on page 215 in the
Metadata structure. This information can be static (e.g. the size of a physical page) or evaluated
on-the-fly (e.g. the number of documents in a group).

Attributes are non-repetitive (i.e. name is unique) and do not persist through Metadata
recreation.

For an overview of Attributes and the Node types in which they are available, see the
"Metadata Attributes reference" on page 84.

Attributes are stored in a collection container object, just like the Node's "Fields" on the facing
page. As is the case with the different types of Nodes, both collections share a number of
methods and properties. The Fields collection however has additional methods to support
multiple entries with the same name, which is forbidden with attributes.

Warning

Attributes are intended for system-defined data. Please restrict user-defined data to
Fields, and do not modify the Attributes.

Properties
Name Type Description
Count Integer Returns the number of elements in the collection.

Page 232

PlanetPress. Workflow

Methods

Name Return Description
type

"Add(const String Name, const Adds a new element to the collection

String Value)" on page 235 or overwrites its value.

Clear() Clears all elements from the
collection.

"CountByName(const String Name)" | Integer Returns the number of elements with

on page 237 the specified name.

"Delete(Integer Index)" on page 237 Deletes the element at the specified
index.

"ltem(Integer Index)" on page 237 String Returns the value of the element
stored at the specified index.

"ltemByName(const String Name)" String Returns the value of the element of

on page 238 the specified name.

"Name(Integer Index)" on page 239 String Returns the name of the element
stored at the specified index.

Fields

A Field is a read-write, user-defined element: a name/value pair, where the name is case-
insensitive. It holds custom information about a certain "Node" on page 215 in the Metadata
structure. Fields are repetitive (i.e. the same field may appear multiple times) and persist

through Metadata recreation.

Fields are stored in a collection container object, just like "Attributes" on the previous page. As
is the case with the different types of Nodes, both collections share a number of methods and
properties. The Fields collection however has additional methods to support multiple entries
with the same name, which is forbidden with attributes.

Page 233

PlanetPress. Workflow

Properties

Name Type Description
Count Integer Returns the number of elements in the collection.
Methods
Name Return Description
type

"Add(const String Name, const Adds a new element to the collection or
String Value)" on the facing overwrites its value.
page
"Add2(const String Name, Adds a new element with a customizable
const String Value, TAddFlags behavior if the name already exists.
Flags, Integer Index (optional))" Note that the TAddFlags type is not defined
on the facing page in an Active Script environment, such as

the Run Script task. See the detailed

reference for the numerical values to use.
Clear() Deletes all the elements of the collection.
"CountByName(const String Integer Returns the number of elements with the
Name)" on page 237 specified name.
"Delete(Integer Index)" on Deletes the element at the specified index.
page 237
"ltem(Integer Index)" on String Returns the value of the element stored at
page 237 the specified index.
"ltemByName(const String String Returns the value of the element of the
Name)" on page 238 specified name.
"ltemByNamelndex(const String Returns the value of the n'th element of the
String Name, Integer Index)" on specified name.

Page 234

PlanetPress. Workflow

page 238

"Name(Integer Index)" on String Returns the name of the element stored at
page 239 the specified index.

Attributes and Fields methods

This topic lists the methods of the "Attributes" on page 232 and "Fields" on page 233 collection
container objects.

Note that the add2 () and the TtemByNameIndex () functions are only available with Fields. Fields
support multiple entries with the same name, which is forbidden with Attributes.

Add(const String Name, const String Value)

Adds a new element to the collection. If the specified name already exists in the collection, the
new value overwrites the previous one.

Parameters

Name

Name of the element to add. The name must adhere to this syntax rules: start with a letter,
followed by zero or more letters, numbers, underscore or dash. The name is not case-
sensitive.

Value
Value of the element. There is no restriction on the content, although binary is discouraged.

Exceptions

o EOleException The name is empty orinvalid.

Add2(const String Name, const String Value, TAddFlags Flags, Integer Index (optional))

Fields only

Adds a new field to the collection. The behavior of the method when the specified name
already exists in the collection is determined by the Flags argument.

Page 235

PlanetPress. Workflow

Parameters

Name

Name of the field to add. The name must adhere to this syntax rules: start with a letter,
followed by zero or more letters, numbers, underscore or dash. The name is not case-
sensitive.

Value
Value of the element. There is no restriction on the content, although binary is discouraged.

Flags

Additional flags for the method. This determines how the method behaves when the specified
name already exists.

afReplace 0 Overwrites the previous value with the new
afAppend 1 Appends the new value at the end of the previous one
afDuplicate 2 Creates a new field with the same name
afFail 3 Raise an error
Note

In an Active Script environment, such as the Run Script task, you must use the numerical
value, since the TAddFlags type is not defined in an Active Script environment.

Index (optional)

Instance of the field to modify. This must be a numeric value equal to 0 or greater and can
only be used with the afReplace flag.

Exceptions

« EOleException The name is empty or invalid.
« EOleException The flags value is invalid.

« EOleException The name already exists and the afFail flag was specified.

Page 236

PlanetPress. Workflow

o EOleException The index is invalid.

o EOIleException An index is specified but afReplace is not specified.

CountByName(const String Name)

Returns the number of attributes or fields (integer) with the specified name.

Parameters

Name
Name of the element to count.

Returns

Number of occurrences of elements with the specified name.
Note that when counting an attribute by name, the only possible values are 1 and 0 because
attributes can only occur once.

Delete(Integer Index)

Delete a specified element from the collection.

Parameters

Index

0-based index of the element to delete. The first element in the collection is at index 0 and the
last is at Count-1.

Exceptions

« EOleException Index is lower than 0 or higher than Count-1.

ltem(Integer Index)

Returns the value of the element at the specified index in the collection.

Parameters

Index

Page 237

PlanetPress. Workflow

0-based index of the element to delete. The first element in the collection is at index 0 and the
last is at Count-1.

Returns

The value of the specified element as a string.

Exceptions

« EOleException Index is lower than 0 or higher than Count-1.

ltemByName(const String Name)

Returns the value of the element of the specified name.

Parameters

Name
Name of the element to retrieve.

Returns

The value of the element as a string. If no element is found, an empty string is returned.
Fields only: If more than one field has the specified name, the value of the first one in the listis
returned.

ltemByNamelndex(const String Name, Integer Index)

Fields only

Returns the value of the n'th field of the specified name. This method can be used to retrieve
the value of a specific field when more than one field has the same name.

Parameters

Name
Name of the field to retrieve.

Index

Page 238

PlanetPress. Workflow

Ordinal of the field to retrieve. To retrieve the value of the first field named Name, use 0. For
the second field, use 1, and so on.

Returns

The value of the specified field as a string. If an field named Name is not found, or Index is
higher or equal to the number of fields named Name (in other words, you specify 4 to get the
fifth but there are only three), an empty string is returned.

Exceptions

o EOleException Index is lower than 0.

Name(Integer Index)

Returns the name of the element at the specified index.

Parameters

Index
0-based Index of the element value to retrieve. The first element in the collection is at index O,
and the last is at Count-1.

Returns

The name of the element as a string.

Exceptions

« EOleException Index is lower than 0 or higher than Count-1.

StringSort

StringSort is a convenience class that provides a generic sorting class for ActiveScript-
compatible languages. Itis a non-trivial task to sort data in scripting, especially in VBScript
where there is no equivalent for the JScript sort function. It is designed as a list of strings. Each
string in the listis a key based on which the sort is done. Each key can have an optional integer
value that can be used, for example, to retrieve a record in an array.

Page 239

PlanetPress. Workflow

To create a StringSort object, use CreateObject("MetadatalLib.StringSort") or the {A07730B7-
4100-457E-91E2-31BFF24E1EC4} CLSID. Although the object is published by the metadata
library, itis completely independent of the metadata and can be used in any script, including

those run outside of PlanetPress Suite.

Methods

Name Returns

Description

"Add(const String Key, Integer Value)" Integer
on the facing page

Adds a new item in the sort list.

Clear() Empties the sort list, removing all
the strings.
"Count()" on the facing page Integer Returns the number of elements

in the list.

"Delete(Integer Index)" on the facing

Removes an item from the sort

page list.

"Find(const String Key)" on the facing Integer Finds an itemin the listand
page returns its index.

"Key(Integer Index)" on page 242 String Returns the key at the specified

index.

"Sort()" on page 242

Sorts the list.

"SortByValue()" on page 242

Sorts the list based on the value
instead of the key.

"Value(Integer Index)" on page 242 Integer

Returns the value at the specified
index.

Page 240

PlanetPress. Workflow

Add(const String Key, Integer Value)

Adds a new string key in the list, with an optional associated integer Value.

Key
String on which the sort will be performed.

Value (optional)

Integer associated with the string. This value is not used and will not be changed by the sort
class. If the string goes to another position in the list after the sort, this value will move as well
to the new index of the string.

Return value: 0-based index (integer) of the newly added string. It is therefore always equal to
Count-1.

Count()

Returns the number of strings in the list.

Return value: Integer. Number of strings in the list. If the list does not contain any string, the
return value is 0.

Delete(Integer Index)

Removes a single string from the list.

Index
0-based index of the string to remove.

Exceptions
« EOleException Index is lower than O or higher than Count-1.

Find(const String Key)

Finds a string and returns its position in the list.

Key
String to find.

Page 241

PlanetPress. Workflow

Return value: 0-based index (integer) of the string. If the string is not found, the method returns
-1.

Key(Integer Index)

Returns the key at the specified index.

Index
0-based index (integer) of the string to retrieve.

Return value: String. Value of the key at the specified index.

Exceptions

« EOleException Index is lower than O or higher than Count-1.

Sort()

Sorts the items in the list according to their key. The sort performed is a simple alphabetical
string sort: 30 comes after 200. The strings are expected to be formatted correctly to return the
desired order (ex: "030", "200" will be sorted with 30 first and then 200).

SortByValue()

Sorts the items in the list according to their value instead of the key.

Value(Integer Index)

Retrieves the value of the optional integer at the specified index.

Index
0-based index (integer) of the value to retrieve.

Return value: The integer value at the specified index.

Exceptions

« EOleException: Index is lower than 0 or higher than Count-1.

Page 242

PlanetPress. Workflow

AlambicEdit API reference

The AlambicEdit library allows Workflow to access, create or modify PDF files. It does so by
wrapping Adobe PDF Library API calls in an object-oriented COM API. The use of COM as the
underlying technology allows Workflow's scripting environment to create an instance of that
COM object through the Watch.GetPDFEditObject method (see "The Watch Object" on

page 156).

The object's hierarchy is modeled on the PDF document structure:

« The PDF objectimplements the IPDF interface. This interface defines methods to open,
close and save files, as well as to access meta information such as the XMP attachment.
The interface also implements a Pages collection object to access the list of pages in the
PDF. (See "PDF object" on page 245.)

« The Pages collection object implements the IPages interface. This interface defines
methods to add, import, move or delete pages as well to access individual Page items.
(See "Pages collection object" on page 257.)

« The Page objectimplements the IPage interface. This interface defines methods to
retrieve information from a page or modify it. A page may also be drawn on a Windows
Device Context (DC), but note that access to DCs may not be available in all scripting
languages. (See "Page object" on page 262.)

"IPdflnfos" on page 273, "IPdfPrintParams" on page 274 and "IPdfRect" on page 275 are the
structures used.

Note

In OL Connect, PDF files are normally best handled by "OL Connect tasks" on page 591.
However, the AlambicEdit API can provide a solution in special situations; see for
example Stamping one PDF file on another PDF file.

Syntax conventions

The syntax for methods, properties and structures is as follows.

Page 243

PlanetPress. Workflow

https://learn.objectiflune.com/howto/stamping-one-pdf-file-on-another/

Methods

Syntax

RETURN_VALUE_TYPE methodName([ARGUMENT_TYPE arg1[, ARGUMENT_TYPE
arg2f,...JlIl)

Methods with a RETURN_VALUE_TYPE of VOID do not have a return value.

In case of failure, methods raise an exception.

Examples
VOID Open(STRING fileName, BOOLEAN doRepair)

STRING GetXYML()

JavaScript implementation:
myPDF.Open("C:\PDFs\\SomeDocument.pdf', false);
var myXYML = myPDF.GetXYMLY();

Note: In JavaScript, all method calls must include parentheses, even for methods that do not
require arguments (e.g. Watch.GetPDFEditObject(), myPDF.Pages()).

VBScript implementation:
myPDF.Open "C:\\PDFs\\SomeDocument.pdf", false
myXYML = myPDF.GetXYML

Properties

Syntax
PROPERTY _TYPE propName

Examples
INTEGER Orientation

JavaScript implementation:
var currentOrientation = myPDF.Pages(0).Orientation;
myPDF.Pages(0).Orientation = 180;

Page 244

PlanetPress. Workflow

VBScript implementation:
currentOrientation = myPDF.Pages(0).Orientation
myPDF.Pages(0).Orientation = 180;

Structures

Syntax

STRUCT_NAME {
FIELD TYPE fieldName1],
FIELD TYPE fieldName2],
L

}

Examples

IPDFRect {
LONG lefft,
LONG top,
LONG right,
LONG boftom

}

JavaScript implementation:
var pdfRect = myPDF.Pages(0).Size();
var pageWidth = pdfRect.right - pdfRect.left;

VBScript implementation:
set pdfRect = myPDF.Pages(0).Size
pageWidth = pdfRect.right - pdfRect.left

PDF object

The PDF object implements the IPDF interface. This interface defines methods to open, close
and save files, as well as to access meta information such as the XMP attachment. The
interface also implements a Pages collection object to access the list of pages in the PDF.

To instantiate the PDF object, call the Watch.GetPDFEditObject method in Workflow's scripting
environment.

Javascript implementation: var myPDF = Watch.GetPDFEditObject();

Page 245

PlanetPress. Workflow

VBScript implementation: set myPDF = Watch.GetPDFEditObject

IPDF methods

Name Return type Description

"Close()" on page 248 Closes the PDF file. If changes were
made but not saved, they are silently lost.
All IPage objects must be released before
closing a PDF.

"Create(filename)" on Creates a new empty PDF file.

page 249

"Getlnfos()" on page 249 "IPdflInfos" on | Retrieves the contents of the Document

page 273 Information Dictionary from the PDF.

"GetVersion(*major, *minor)" Returns the version of the underlying PDF

on page 250 file format. For example, for PDF 1.7, 1 is
returned in major and 7 is returned in
minor.
Note that this method is not available in
scripts.

"GetXMP()" on page 250 STRING Retrieves the XMP attachment embedded
in the PDF.

"GetXYML()" on page 250 STRING Retrieves the entire extractable text from
the PDF in XYML format.

"IsProtected(filename)" on BOOL Returns True if the PDF file is password-

page 251

protected. When a file is password-
protected, the OpenEx() method must be
used instead of the Open() method.

"MergeWith(pdfFilename)"
on page 251

Merges the pages of pdfFilename (the
source) with the pages of the current PDF
(the destination).

Page 246

PlanetPress. Workflow

"MergeWith2(pdfFilename, Overlays each page of pdfFilename (the
xnum, ynum, xoffset, yoffset, source) onto pages of the current PDF (the
scaleFactor)" on page 251 destination) in a grid whose size is
specified by xnum and ynum. The pages
are laid from left to right and then from top
to bottom.
"Open(filename, doRepair)" Opens an existing PDF, optionally
on page 252 repairing it.
"OpenEx(filename, Opens an existing, password-protected
password, doRepair)" on PDF, optionally repairing it.
page 253
"Pages()" on page 253 IPages (see Provides access to the Pages collection of
"Pages the PDF.
collection
object" on
page 257)
"Print(printername)" on Prints a range of PDF pages to the
page 254 specified Windows printer with default
options.
"PrintEx(printername, Prints a range of PDF pages to the
*PdfPrintParams)" on specified Windows printer with specific
page 254 printer options stored in an
"IPdfPrintParams" on page 274 structure.
"Save()" on page 255 Saves changes to the PDF file. The
version of the PDF file format is the
highest possible for a newly created file
and is unchanged when saving an
existing file, unless the SetVersion method
was called in which case the file format
used will be the one set by SetVersion.
"Setinfos(Infos)" on Sets the contents for the PDF's Document
page 255 Information Dictionary.

Page 247

PlanetPress. Workflow

"setTolerances Sets the floating point values for the
(tolerableDeltaWidth, tolerable factors.
tolerableDeltaHeight,
tolerableDeltaFontHeight,
tolerableGap)" on page 256

"SetVersion (major, minor)" Sets the version of the underlying PDF file

on page 256 format. This is applied when the file is
saved.

"SetXMP(xmpPacket)" on Sets the XMP attachment by replacing the

page 257 existing one with xmpPacket.

IPDF methods reference

Close()

Closes the PDF file. If changes were made but not saved, they are silently lost. All IPage
objects must be released before closing a PDF.

Syntax
VOID Close ()

Note: Before using Close() in Javascript, you should call the CollectGarbage() global method to
ensure all references to pages are properly discarded. This additional statement is not required
with other languages. For instance:

var objPDF = Watch.GetPDFEditObject ()

objPDF.Open (Watch.GetJobFileName (), false);

var objPages = objPDF.Pages|();

var objPage = null;

for (var 1=0; i<objPages.Count(); i++) {
objPage = objPages.Item(i);

}

objPage=null;

objPages=null;

CollectGarbage () ;

objPDF.Close() ;

Page 248

PlanetPress. Workflow

If you run the above code without calling the CollectGarbage() method, the Close() method will
error out.

Create(filename)

Creates a new empty PDF file. See also: "Save()" on page 255.

Syntax
VOID Create (STRING filename)

filename
Name of the file to create. The file is not physically written to disk until IPDF.Save() is called.

ConvertToVDX(pdfFilename, ppmlFilename)

Converts a PDF file to a VDX file by adding the necessary entries in the catalog and root
dictionaries as well as embedding a PPML file as a stream object in the PDF. The validity of
the PPML is left to the caller.

This method opens, modifies, saves and closes the specified PDF file. This means that,
contrary to the other methods of the IPDF interface, this method works on - and only on - the
PDF file specified by the first argument; IPDF.Open() or .Create() do not need to be called
beforehand. If they were called, the file opened or created by these methods is untouched
(unless of course pdffFilename specifies the same filename as Open()).

Syntax
VOID ConvertToVDX (STRING pdfFilename, STRING ppmlFilename)

pdfFilename
Name of the file to convert.

ppmiFilename
Name of the PPML file to embed.

Getlnfos()

Retrieves the contents of the Document Information Dictionary from the PDF.

Syntax
IPdfinfos Getinfos ()

Page 249

PlanetPress. Workflow

Return value

An "IPdflnfos" on page 273 structure containing the PDF properties. Cannot be NULL.

GetVersion(*major, *minor)

Returns the version of the underlying PDF file format.
Note: This method is not available in all scripting environments.

Syntax
GetVersion(LONG *major, LONG *minor)

major
Pointer to a LONG that receives the major version number.

minor
Pointer to a LONG that receives the minor version number.

GetXMP
Retrieves the XMP attachment embedded in the PDF.

Syntax
STRING GetXMP ()

Return value

String containing the complete text of the PDF's XMP attachment.

GetXYML()

Retrieves the entire extractable text from the PDF in XYML format.

Syntax
STRING GetXYML ()

Return value

A string containing the complete text of the PDF in XYML format.

Page 250

PlanetPress. Workflow

IsProtected(filename)

Returns True if the PDF file is password-protected. When a file is password-protected, the
OpenEx() method must be used instead of the Open() method. See also: "OpenEx(filename,
password, doRepair)" on page 253.

Syntax
BOOL IsProtected (STRING filename)

filename
Name of the file to check for password-protection.

Return value

True if the file is password-protected, False otherwise.

MergeWith(pdfFilename)

Merges the pages of pdfFilename (the source) onto the pages of the current PDF (the
destination). Each page of the source is overlaid transparently onto the corresponding
destination page, 1 on 1,2 on 2, 3 on 3, etc. The source must have the same number of pages
than the destination and each pair of pages should have the same size. The resulting file is not
optimized.

This method is the same as calling: PDF.MergeWith2(pdfFilename, 1, 1, 0, 0, 1.0); (see
"MergeWith2(pdfFilename, xnum, ynum, xoffset, yoffset, scaleFactor)" below).

Syntax
VOID MergeWith (STRING pdfFilename)

pdfFilename
Name of the source PDF from which pages are taken to be overlaid on the pages of the

destination PDF.

MergeWith2(pdfFilename, xnum, ynum, xoffset, yoffset, scaleFactor)

Merges the pages of pdfFilename (the source) onto the pages of the current PDF (the
destination). Each page of the source is overlaid transparently onto a destination page in a grid
whose size is specified by xnum and ynum. The pages are laid from left to right and then from
top to bottom. The resulting file is not optimized.

Page 251

PlanetPress. Workflow

In PlanetPress Suite, this method is useful for n-Up imposition. For example, (xnum=1, ynum=1,
scaleFactor=1.0) means that each source is overlaid on the corresponding destination page, 1
on 1,2 on 2,3 on 3, etc. Having (xnum=3, ynum=2) with xoffset, yoffset and scaleFactor set
accordingly results in a 3x2 mosaic looking like this:

4]l

There is no separator between the source pages on the destination page. A space can be
obtained by using an offset bigger than the size of the scaled source page.

Syntax

VOID MergeWith2 (STRING pdfFilename, LONG xnum, LONG ynum, LONG xoffset, LONG
yoffset, FLOAT scaleFactor)

pdfFilename
Name of the source PDF from which pages are taken.

Xxnum
Number of columns.

ynum
Number of rows.

xoffset
Horizontal space to put between the top left corner of each source page, in points.

yoffset
Vertical space to put between the top left corner of each source page, in points.

scaleFactor
Scale at which to draw on source pages on the destination. Use 1.0 to draw the page at its

nominal size.

Open(filename, doRepair)

Opens an existing PDF, optionally repairing it.

Syntax
Page 252

PlanetPress. Workflow

VOID Open (STRING filename, BOOL doRepair)

filename
Name of the file to open.

doRepair
Boolean. If true, the software automatically attempts to repair the file if it is found to be

damaged or corrupt. Otherwise, the operation fails if the file is damaged.

OpenEx(filename, password, doRepair)

Opens an existing, password-protected PDF, optionally repairing it. See also: "IsProtected
(flename)" on page 251.

Syntax
VOID OpenEx (STRING filename, STRING password, BOOL doRepair)

filename
Name of the file to open.

password
Password to open the file.

doRepair

Boolean. If true, the software automatically attempts to repair the file if it is found to be
damaged or corrupt. Otherwise, the operation fails if the file is damaged.

Pages()

Provides access to the Pages collection of the PDF.

Syntax
IPages Pages ()

Return value

An IPages collection object. Each page in the zero-based collection can be accessed through
the IPages.ltem() method. Note that since ltem() is the collection's default method, it can be
omitted altogether (e.g. IPages(0) is the same as IPages.ltem(0)).

Page 253

PlanetPress. Workflow

Print(printername)

Prints a range of PDF pages to the specified Windows printer with default options. See also:
"PrintEx(printername, *PdfPrintParams)" below.

Syntax

VOID Print (

STRING printerName,
LONG fromPage,
LONG toPage

)

printerName (optional)

Name of the printer to print to. The default options of the printer will be used. If NULL, the
default printer is used.

fromPage
0-based index of the first page to print.

toPage
0-based index of the last page to print. To print all pages from fromPage to the end, use -1.

PrintEx(printername, *PdfPrintParams)

Prints a range of PDF pages to the specified Windows printer with specific printer options
stored in an "IPdfPrintParams" on page 274 structure. See also: "Print(printername)" above.

Syntax

VOID PrintEx (
STRING printerName,
IPdfPrintParams * PdfPrintParams

)

printerName (optional)
Name of the printer to print to. The default options of the printer will be used. PdfPrintParams ,
ifnon-NULL, may override some of them. If NULL, the default printer is used.

PdfPrintParams (optional)

Page 254

PlanetPress. Workflow

Pointer to an "IPdfPrintParams” on page 274 structure that specifies various print options. If
NULL , default values are used.

Save()

Saves changes to the PDF file. The version of the PDF file format is the highest possible for a
newly created file and is unchanged when saving an existing file, unless the SetVersion
method was called in which case the file format used will be the one set by SetVersion. See
also: "SetVersion (major, minor)" on the next page.

Syntax
VOID Save (BOOL optimize)

optimize
If true, the file is optimized before being written to disk, i.e. objects are garbage-collected

and/or regenerated, the PDF is linearized, efc.

SetInfos(Infos)

Sets the contents for the PDF's Document Information Dictionary.

Syntax
VOID Setinfos (IPdfinfos Infos)

Infos
"IPdfinfos" on page 273 structure containing the new values.

setPageCacheSize(cacheSize)

Sets the maximum number of IPage objects in the cache. Calling this method flushes the
cache.

Syntax
VOID setPageCacheSize (UNSIGNED LONG cacheSize)

cacheSize
Maximum number of IPage pointers that the cache can hold, between 1 and 1000.

Page 255

PlanetPress. Workflow

setTolerances(tolerableDeltaWidth, tolerableDeltaHeight, tolerableDeltaFontHeight,
tolerableGap)

Sets the floating point values for the tolerable factors.

Syntax

VOID setTolerances (

FLOAT tolerableDeltaWidth,
FLOAT tolerableDeltaHeight,
FLOAT tolerableDeltaFontHeight,
FLOAT tolerableGap

)

tolerableDeltaWidth
Tolerable delta width factor value.

tolerableDeltaHeight
Tolerable delta height factor value.

tolerableDeltaFontHeight
Tolerable delta font height factor value.

tolerableGap
Tolerable delta gap between words factor value.

SetVersion (major, minor)

Sets the version of the underlying PDF file format. This is applied when the file is saved. See
also: "Save()" on the previous page.

Syntax
VOID SetVersion (LONG major, LONG minor)

major
Major version number.

minor
Minor version number.

Page 256

PlanetPress. Workflow

SetXMP(xmpPacket)

Sets the XMP attachment by replacing the existing one with xmpPacket.

Syntax
VOID SetXMP (STRING xmpPacket)

xmpPacket
New XMP attachment to use instead of the existing one.

Pages collection object

The Pages collection object implements the IPages interface. This interface defines methods to
add, import, move or delete pages as well to access individual Page items.

Itis accessed via the "PDF object" on page 245.

IPages methods

Name Return type Description

"Count()" on the LONG Returns the number of items in the Pages collection,
next page in other words the number of pages in the PDF.
"Delete()" on the Deletes a page from the PDF.

next page

"ExtractTo Extracts pages from the PDF and creates a new file
(destFilename, with these pages.

srcindex, srcCount,
optimize)" on

page 259

"Insert(index, Inserts a new blank page in the PDF file.
*mediaSize)" on

page 259

"InsertFrom Inserts pages from another PDF file into this one. All
(srcFilename, relevant resources are copied with the pages.

Page 257

PlanetPress. Workflow

srcindex, srcCount,

destindex)" on

page 260

"InsertFrom2 Inserts pages from another IPages object into this

(srcPages, one. All relevant resources are copied with the

srcindex, srcCount, pages.

destindex)" on

page 260

"ltem(index)" on IPage (see Returns a Page object from the PDF. Note that

page 261 "Page sinceItem () is the collection's default method, it
object” on can be omitted altogether (e.g. IPages (0) is the
page 262) same as IPages.Item(0)).

"Move(index, count, Moves a range of pages within the same PDF.

offset)" on page 261

IPages methods reference

Count()

Returns the number of items in the Pages collection, in other words the number of pages in the
PDF.

Syntax
LONG Count ()

Return value

The number of pages in the PDF.

Delete()
Deletes a page from the PDF.

Syntax
VOID Delete (LONG index)

index

Page 258

PlanetPress. Workflow

0-based index of the page to delete.

ExtractTo(destFilename, srcindex, srcCount, optimize)

Extracts pages from the PDF and creates a new file with these pages. All relevant resources
are copied with the pages. If the target file already exists, it is overwritten.

Syntax

VOID ExtractTo (
STRING destFilename,
LONG srcindex,

LONG srcCount,

BOOL optimize

)

destFilename
Name of the PDF to create with the specified pages.

srcindex
0-based index of the first page to copy.

srcCount
Number of contiguous pages starting from srcindex to extract.

optimize
If true, optimize (linearize and garbage-collect) the output file.

Insert(index, *mediaSize)

Inserts a new blank page in the PDF file. See also: "Count()" on the previous page.

Syntax

VOID Insert (
LONG index,
IPdfRect * mediaSize

)

index

Page 259

PlanetPress. Workflow

0-based index at which to insert the page. The page is inserted *before* the page at index
“index ". To insert a page at the end, use IPages.Count().

mediaSize
"IPdfRect" on page 275 structure containing the rectangular dimensions of the new page, in

points. Cannot be NULL.

InsertFrom(srcFilename, srcindex, srcCount, destindex)

Inserts pages from another PDF file into this one. All relevant resources are copied with the
pages. See also: "Count()" on page 258.

Syntax
VOID InsertFrom (
STRING srcFilename,
LONG srcindex,
LONG srcCount,
LONG destindex

)

srcFilename
Name of the PDF from which pages are retrieved.

srcindex
0-based index of the first page to copy.

srcCount
Number of contiguous pages starting from srcindex to insert. If srcCount is -1, all pages from
srcindex up to the end are inserted.

destindex
0-based index of the position where to insert the pages. They will be inserted before the page

at index destindex. To insert the pages at the end, use IPages.Count().

InsertFrom?2(srcPages, srcindex, srcCount, destindex)

Inserts pages from another IPages object into this one. All relevant resources are copied with
the pages. See also: "Count()" on page 258.

Syntax

Page 260

PlanetPress. Workflow

VOID InsertFrom?2 (
IPages srcPages,
LONG srcindex,
LONG srcCount,
LONG destindex

)

srcPages
IPages collection from which the pages are retrieved.

srcindex
O-based index of the first page to copy.

srcCount

Number of contiguous pages starting from srcindex to insert. If srcCount is -1, all pages from
srcindex up to the end are inserted.

destindex

0-based index of the position where to insert the pages. They will be inserted before the page
at index destindex. To insert the pages at the end, use IPages.Count().

ltem(index

Returns a Page object from the PDF. Note that since Item() is the collection's default method, it
can be omitted altogether (e.g. IPages(0) is the same as IPages.ltem(0)).

Syntax
IPage ltem (LONG index)

index
0-based index of the page to acquire.

Return value

An IPage object for the specified page. (See "Page object" on the next page.)

Move(index, count, offset)

Moves a range of pages within the same PDF.

Syntax
Page 261

PlanetPress. Workflow

VOID Move (
LONG index,
LONG count,
LONG offset

)

index
0-based index of the first page of the range.

count
Number of contiguous pages to move.

offset

Number of hops to move the pages. If negative, the pages are moved towards the beginning
of the file. If positive, towards the end.

Page object

The Page object implements the IPage interface. This interface defines methods to retrieve
information from a page or modify it. A page may also be drawn on a Windows Device Context
(DC), but note that access to DCs may not be available in all scripting languages.

IPage properties

Name Type Description

Orientation Integer Gets/sets the orientation of the page, in degrees. The value
is always a multiple of 90 and is the number of degrees the
page should be rotated clockwise when displayed or printed.

IPage methods

Name Return type Description
"ExtractText(left, bottom, String Deprecated. Returns the text located
right, top)" on page 265 inside the region bounded by the lefft,

bottom, right and top parameters. If
multiple lines are found, they are

Page 262

PlanetPress. Workflow

separated by a CR-LF pair.

"ExtractText2(left, top, right, String Returns the text located inside the region
bottom)" on page 267 bounded by the left, top, right and bottom
parameters. If multiple lines are found,
they are separated by a CR-LF pair.
"MediaSize()" on page 268 "IPdfRect" on | Returns the size of the actual media, i.e.
page 275 the sheet of paper.

"setincludeBorders
(pbIncludeBorders)" on
page 268

Sets whether or not borders are included
for IPage.ExtractText2(). If true, a character
is considered to be inside the region using
the 30% rule (i.e. atleast 30% of the
character must be enclosed in the region).
Otherwise, the character must be entirely
enclosed in the region to be returned.

"setTolerances
(tolerableDeltaWidth,
tolerableDeltaHeight,
tolerableDeltaFontHeight,
tolerableGap)" on page 268

Sets the floating point values for the
tolerable factors.

"Merge(imagefFile, left, top,
rotateAngle, scaleFactor)"
on page 269

Inserts an image file and places it on the
page at a specific location.

Supported image types are: JPG and
PNG.

"Merge2(srcPage, left, top,
rotateAngle, scaleFactor)"
on page 270

Transparently places a PDF page on top
of the current page at a specific location.

"MergeTolLayer(imageFile,
left, top, rotateAngle,

scaleFactor, layerName)" on

page 271

This method behaves the same as Merge()
but allows to insert the image as a layer
(aka an Optional Content Group).
Supported image types are JPG and PNG.

"MergeTolLayer2(srcPage,

This method behaves the same as Merge2

Page 263

PlanetPress. Workflow

left, top, rotateAngle, () but allows to put the source page as a

scaleFactor, layerName)" on layer (aka an Optional Content Group).

page 272

"Size()" on page 273 "IPdfRect" on | Returns the size of the rectangle thatis
page 275 used to clip (crop) the content of the page

before applying it to the medium, in points.

IPage methods reference

Draw(context, scale, offsetX, offsetY)

Draws the page onto the device context. This method is highly dependent on the state of the
device context and there are a few interaction pitfalls to lookout for. See below for details.

Note: This method is not available in all scripting environments.

Syntax

VOID Draw (
HDC context,
FLOAT scale,
LONG offsetX,
LONG offsetY

)

context
Device context on which to draw the page.

scale

Scale at which to draw. To draw at the 100% size, use a scale of device_dpi/72. Do not use
the DC to do the scaling; this will result in scaling artifacts being drawn.

offsetX

Horizontal offset from the left edge of the DC surface, in *device* units, at which to start the
drawing.

offsetY

Page 264

PlanetPress. Workflow

Vertical offset from the top edge of the DC surface, in *device* units, at which to start the
drawing.

The drawing is done in PDF user space units (72th of an inch). In order to have a smooth
drawing of the page, the device context must have its mapping mode setto MM_TEXT with a
1:1 mapping between logical space (SetWindowExtEx) and device space (SetViewportExtEx).
Since MM_TEXT has its origin at the top instead of the bottom, the drawing is done vertically
mirrored; this means that the other mapping modes may not work because they are based at
the bottom. A 100% zoom is obtained by setting the scale to the ratio of the device dpi divided
by 72.

The Acrobat library automatically clips the drawing based on the viewable portion of the DC. If
the DC is translated or scaled, either by a world transform (SetWorldTransform) or a logical-to-
device space transform (SetWindowOrgEx or SetViewportOrgEx), the *untransformed* space
is used. As a result, all scaling and translation operation must be done by the library itself to
work correctly. Otherwise, unwanted scaling artifacts or clipping will occur.

As such, the drawing code of the caller should look similar to this to obtain the same result as
what Acrobat does:

1. Fill the entire drawing area with gray.
2. Determine the origin (orgx, orgy) (for example, at (0, 0), or as indicated by scroll bars).

3. Draw a white rectangle of size (CropBox.width * zoom, CropBox.height * zoom) at (orgx,
orgy) representing the page (optional; Acrobat does not do that, and this method already
draws the white page background).

4. Call the IPage.Draw() method to draw the page at (orgx, orgy).

Note that extra care must be taken when filling rectangles as to whether the boundary pixel will
be inside or outside the region.

ExtractText(left, bottom, right, top)

Returns the text located inside the region bounded by the left, bottom, right and top parameters.
If multiple lines are found, they are separated by a CR-LF pair.

Page 265

PlanetPress. Workflow

Warning

This method is subject to many limitations (see below) and exists for backward-
compatibility and debugging purposes only. For production purposes, use ExtractText2()
instead.

Syntax

VOID ExtractText (
FLOAT left,

FLOAT boftom,
FLOAT right,
FLOAT top

)

left
Distance in inches of the left limit of the region from the left edge of the /CropBox.

bottom
Distance in inches of the bottom limit of the region from the bottom edge of the /CropBox.

right
Distance in inches of the right limit of the region from the left edge of the /CropBox.

top
Distance in inches of the top limit of the region from the bottom edge of the /CropBox.

Return value

A string containing the text extracted from the specified region.

Limitations

o No Unicode support.

o A word is extracted only if it fits entirely in the region.
« Empty lines are not supported.

« A maximum of 4096 chars is returned.

« A word can contain a maximum of 128 chars.

Page 266

PlanetPress. Workflow

« Horizontal moveto is not considered as a space.

/CropBox size is not taken into account (an object whose left is at 144 is considered to be
2 inches from the edge even if the /CropBox starts at 72).

Only horizontal text is supported; vertical or rotated text is undefined.

Rotated pages are unsupported.

/UserUnit is not supported.

ExtractText2(left, top, right, bottom)

Returns the text located inside the region bounded by the left, top, right and bottom parameters.
If multiple lines are found, they are separated by a CR-LF pair.

Syntax

VOID ExtractText2 (
FLOAT left,

FLOAT top,

FLOAT right,

FLOAT bottom

)

left

Distance in inches of the left limit of the region from the left edge of the /CropBox. Must be
between 0 and 5000.

top
Distance in inches of the top limit of the region from the top edge of the /CropBox. Must be
between 0 and 5000.

right
Distance in inches of the right limit of the region from the left edge of the /CropBox. Must be
between 0 and 5000.

bottom
Distance in inches of the bottom limit of the region from the top edge of the /CropBox. Must be

between 0 and 5000.

Return value

A string containing the text extracted from the specified region.

Page 267

PlanetPress. Workflow

MediaSize()

Returns the size of the physical medium on which the page is intended to be placed, in points.
This corresponds to the /MediaBox entry of the /Page object in the PDF. See also: "Size()" on
page 273.

Syntax
IPdfRect MediaSize ()

Return value

An "IPdfRect" on page 275 structure containing the dimensions, in points, of the media size.
Cannot be NULL.

setincludeBorders(pblncludeBorders)

Sets whether or not borders are included for IPage.ExtractText2(). If true, a character is
considered to be inside the region using the 30% rule (i.e. at least 30% of the character must be
enclosed in the region). Otherwise, the character must be entirely enclosed in the region to be
returned. See also: "ExtractText2(left, top, right, bottom)" on the previous page.

Syntax
VOID setincludeBorders (LONG pbincludeBorders)

pbincludeBorders
If zero, the char must be completely inside the region. Otherwise, the 30% rule applies.

setTolerances(tolerableDeltaWidth, tolerableDeltaHeight, tolerableDeltaFontHeight,
tolerableGap)

Sets the floating point values for the tolerable factors.

Syntax

VOID setTolerances (

FLOAT tolerableDeltaWidth,
FLOAT tolerableDeltaHeight,
FLOAT tolerableDeltaFontHeight,
FLOAT tolerable Gap

)

tolerableDeltaWidth

Page 268

PlanetPress. Workflow

Tolerable delta width factor value.

tolerableDeltaHeight
Tolerable delta height factor value.

tolerableDeltaFontHeight
Tolerable delta font height factor value.

tolerableGap
Tolerable gap between words factor value.

Merge(imageFile, left, top, rotateAngle, scaleFactor)

Inserts an image file and places it on the page at a specific location.
Supported image types are: JPG and PNG. It calls MergeToLayer internally.

Syntax

VOID Merge (
STRING imageFile,
FLOAT left,

FLOAT top,

FLOAT rotateAngle,
FLOAT scaleFactor

)

imageFile
Full name of the image to insert on the current page.

left

Coordinate at which to place the left edge of the image from the left edge of the page, in
points.

top
Coordinate at which to place the top edge of the image from the top of the page, in points.

rotateAngle

Angle at which to rotate counter-clockwise the inserted image, in degrees. The rotation is
done after the image is placed at (left, top) and centered around that point.

Page 269

PlanetPress. Workflow

scaleFactor

Scale at which to display the image. For bitmaps, this is based on a 72 dpi resolution. Use 1.0
for the nominal size.

Merge2(srcPage, left, top, rotateAngle, scaleFactor)

Transparently places a PDF page on top of the current page at a specific location. The source
page can be either from the same PDF or another opened file. If the source is from the same
PDF file, the source page is not modified. This allows to have the same behavior as
IPDF.MergeWith() by first inserting the pages from an external file, merging them and then
deleting them, but with more flexibility.

Syntax

VOID Merge?2 (
IPage srcPage,
FLOAT left,

FLOAT top,

FLOAT rotateAngle,
FLOAT scaleFactor

)

srcPage
IPage object to overlay on the current page.

left

Coordinate at which to place the left edge of the image from the left edge of the page, in
points.

top
Coordinate at which to place the top edge of the image from the top of the page, in points.

rotateAngle

Angle at which to rotate counter-clockwise the inserted image, in degrees. The rotation is
done after the image is placed at (left, top) and centered around that point.

scaleFactor

Scale at which to display the image. For bitmaps, this is based on a 72 dpi resolution. Use 1.0
for the nominal size.

Page 270

PlanetPress. Workflow

MergeTolayer(imageFile, left, top, rotateAngle, scaleFactor, layerName)

This method behaves the same as Merge() but allows to insert the image as a layer (aka an
Optional Content Group).

Supported image types are JPG and PNG. If the input file is a PNG with an alpha channel, the
PNG is alpha blended with the page underneath. Monochrome PNG files are drawn
transparently, with the white used as the transparent color.

Syntax

VOID MergeToLayer (
STRING imagefFile,
FLOAT left,

FLOAT top,

FLOAT rotateAngle,
FLOAT scaleFactor,
STRING layerName

)

imageFile
Full name of the image to insert on the current page.

left

Coordinate at which to place the left edge of the image from the left edge of the page, in
points.

top
Coordinate at which to place the top edge of the image from the top of the page, in points.

rotateAngle
Angle at which to rotate counter-clockwise the inserted image, in degrees. The rotation is

done after the image is placed at (left, top) and centered around that point.
scaleFactor
Scale at which to display the image. For bitmaps, this is based on a 72 dpi resolution. Use 1.0

for the nominal size.

layerName

Page 271

PlanetPress. Workflow

Name of an Optional Content Group in which to put the layer containing the image. The string
cannot be empty but can be NULL if no layer is required.

MergeTolLayer2(srcPage, left, top, rotateAngle, scaleFactor, layerName)

This method behaves the same as Merge2() but allows to put the source page as a layer (aka
an Optional Content Group).

Syntax

VOID MergeToLayer2 (
IPage srcPage,

FLOAT left,

FLOAT top,

FLOAT rotateAngle,
FLOAT scaleFactor,
BSTRIlayerName

)

srcPage
IPage object to overlay on the current page.

left

Coordinate at which to place the left edge of the image from the left edge of the page, in
points.

top
Coordinate at which to place the top edge of the image from the top of the page, in points.

otateAngle

Angle at which to rotate counter-clockwise the inserted image, in degrees. The rotation is
done after the image is placed at (left, top) and centered around that point.

scaleFactor
Scale at which to display the image. For bitmaps, this is based on a 72 dpi resolution. Use 1.0

for the nominal size.

layerName

Page 272

PlanetPress. Workflow

Name of an Optional Content Group in which to put the layer created from the source page. The
string cannot be empty but can be NULL if no layer is required.

layerName

Name of an Optional Content Group in which to put the layer created from the source page.
The string cannot be empty but can be NULL if no layer is required.

Size()

Returns the size of the rectangle that is used to clip (crop) the content of the page before
applying it to the medium, in points. This corresponds to the /CropBox entry of the /Page PDF
object. It can be seen as the bounding box of the page since by definition, anything outside of it
should be left out of the drawing, although there may be empty areas within it.

See also: "MediaSize()" on page 268.

Syntax
IPdfRect Size ()

Return value

An "IPdfRect" on page 275 structure containing the dimensions, in points, of the page size.
Cannot be NULL.

IPdfiInfos

The IPdflnfos structure contains the same basic information that can be found in Acrobat
Reader's™ File Properties . To instantiate the IPdflnfos structure, create the
AlambicEdit.Pdflnfos object in Workflow's scripting environment.

Javascript implementation:
var pdfinfos = new ActiveXObject("AlambicEdit.Pdfinfos");

VBScript implementation:
set pdfinfos = CreateObject("AlambicEdit.Pdflnfos")

Page 273

PlanetPress. Workflow

Structure

iPdfInfos {
STRING Title
The document's title.
STRING Author
The name of the person who created the document.
STRING Subject
The subject of the document.
STRING Keywords
Keywords associated with the document. Multiple keywords
separated with semi-colons.

STRING Creator
If the document was converted to PDF from another format,
name of the application that created the original document from
which it was converted.
STRING Producer
If the document was converted to PDF from another format,
name of the application that converted it to PDF.
STRING CreationDate
The date and time the document was created, in human-read
form.

)
IPdfPrintParams

The IPdfPrintParams structure contains information used to control the printing of the file. To
instantiate the IPdfPrintParams structure, create the AlambicEdit.PdfPrintParams objectin
Workflow's scripting environment.

Javascript implementation:
var pdfPrintParams= new ActiveXObject("AlambicEdit.PdfPrintParams");

VBScript implementation:
set pdfPrintParams = CreateObject("AlambicEdit.PdfPrintParams")

Page 274

PlanetPress. Workflow

Structure

IPdfPrintParams {
STRING docName
Name of the document,; this is the name displayed in the W
spooler window.
STRING pageRange
Pages to print and/or page ranges separated by commas; e.
"0,3,5-12". Page numbers are (O-based. Leave empty to print all

pages.
LONG copies
Number of copies to print.
BOOL shrinkToFit

If true, the page will be resized (shrunk or expanded) an
rotated to fit to the physical media on which it is being printed.

BOOL printAnnotations
If true, annotations will be printed.

)
IPdfRect

The IPdfRect structure defines a rectangular region within a PDF page. To instantiate the
IPdfRect structure, create the AlambicEdit.PdfRect object in Workflow's scripting environment.

Javascript implementation:
var pdfRect = new ActiveXObject("AlambicEdit.PdfRect");

VBScript implementation:
set pdfRect = CreateObject("AlambicEdit.PdfRect")

Structure

IPdfRect {

LONG left

Left edge of the rectangle.
LONG top

Top edge of the rectangle.
LONG right

Right edge of the rectangle.
LONG bottom

Bottom edge of the rectangle.

Page 275

PlanetPress. Workflow

All values are expressed in points (72 points per inch).

NOTE: the PDF's coordinate system has its origin on the bottom left corner of the page,
extending up and to the right. Therefore, a Letter-sized page has the following rectangular

values:
(612,792)
Left 0
Top 792
Right 612
Bottom 0
(0.0)

Stopping execution

When using a script, you may come to a point where you'd like the task to fail (raise an error)
and trigger your On Error tab under certain conditions (see "Using the On Error tab" on

page 100). This can be done by using the scripting language's built-in error features, described
here.

Note that the value or description of the error will not be available to your error process if one is
used. However, when available, a description of the error message will be logged in the Watch

log.

VBScript

In VBSCript, the Err.rRaise method will halt the execution of the script and trigger the On Error
tab unless you previously specified on Error Resume Next. See MSDN for the Raise method
properties and this page for a list of available errors to raise. In the case of VBScript, the error
number used will determine the message shown in the log. You can also override the standard
error message by providing your own:

Dim s
s = Watch.GetJobInfo (9)

Page 276

PlanetPress. Workflow

http://msdn.microsoft.com/en-us/library/h1hea41c(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/xe43cc8d(v=vs.85).aspx

If (s = "") Then

Err.Raise 449 ' Raises Error #449: "Argument is not optional" !
Err.Raise 1999, "My Plugin","Custom error" ' Raises error #1999:
"Custom error"
Else
' Do something with Job Info 9!
Watch.Log "Job Info 9's value is: " + s, 4
End If
JavaScript

JavaScript uses the throw statement to create an exception which, if not nested inside a catch
() construct, will cause the script execution to stop and the On Error tab to be triggered.

var s;
s = Watch.GetJobInfo(9);
if (!s) |
throw 449;
} else {
// Do something with Job Info 9!
Watch.Log ("Jdob Info 9's wvalue is: " + s,4);

See also: throw on developer.mozilla.org.

Python

In Python, the raise statementis similar to JavaScript and will stop processing and trigger the
On Error tab unless an except statementis used. See the python documentation.

s = Watch.GetJobInfo (9)

if not s:

raise NameError ('Value cannot be empty')
else:

Do something with Job Info 9!

Watch.Log ("Jdob Info 9's value is: " + s,5)
Perl

In PERL, die stops execution of the script unless the unless command is used, butin order to
raise an exception and trigger the On Error tab, you must nest the die command inside an eval
statement. See the perl documentation.

Page 277

PlanetPress. Workflow

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/throw
http://docs.python.org/tutorial/errors.html#raising-exceptions
http://perldoc.perl.org/functions/die.html

Ss = SWatch->GetJobInfo (9):;

if ($S eq vvu) {
eval {die "Value cannot be empty!"};
} else {

Do something with Job Info 9!
SWatch->Log ("Job Info 9's wvalue is: ${s}",4);

}

Special workflow types

PlanetPress Workflow supports multiple input and output types, in so many different
combinations that it would be hard to give example processes for each possibility. However,
some types of processes like PDF and HTTP processes, and processes related to another
product, are important enough to pay some attention to them.

This chapter will describe each of these special workflow types and give at least one example
of an implementation that uses them.

Note

Typical OL Connect workflows are described in PlanetPress Connect's Online Help;
see Workflow processes in OL Connect projects.

HTTP Server workflow

An HTTP workflow receives requests from a client via a GET or POST request, sometimes only
with information, sometimes with attached files. An HTTP workflow is basically an XML
workflow since that is the type of file created by the HTTP Server Input task. See the "HTTP
Server workflow" on the facing page page for more details.

OL Connect Send processes

Connect Send allows for PostScript files to be received over the internet from any Windows
Desktop application. Itis in fact an application with two components. The firstis a Windows
printer driver while the other is a group of Workflow plugins (Job Processor, Get Job Data and
Get Data). These two components work together indiscriminately, each needing the other to
function.

Page 278

PlanetPress. Workflow

https://help.objectiflune.com/en/PlanetPress-connect-user-guide/2021.2/#Connect_Workflow_processes/Connect_Workflow_processes.htm

OL Connect Send (see "OL Connect Send" on page 760) needs one Workflow process to
handle the job transfer, and in licensed mode it needs at least one other process to interact with
the user. Reports about the use of OL Connect Send might be produced in yet another
Workflow process. For examples of these processes see "Workflow processes in a Connect
Send solution" on page 298.

PDF workflow

A PDF workflow uses a PDF as its job file and manipulations are generally made in the
Metadata instead of the PDF itself, since PDF files are much larger than most other data files
compatible with PlanetPress Workflow. The Metadata Tools are extensively used in the
example presented, which is a weekly sales report sent to all the sales associates of a
particular company branch. See the "PDF Workflow" on page 287 for more details.

PlanetPress Capture workflow (PlanetPress Suite only)

A Capture workflow is divided in two steps: Creating an output of documents containing the
PlanetPress Capture Fields, and retrieving the information from the Anoto Digital Pen to merge
it with the original documents. See "PlanetPress Capture Workflow" on page 289 for more
details.

SOAP workflow

As SOAP can be either a client or a server, two workflows will be presented. The SOAP Client
workflow presents PlanetPress Workflow as the client and will explore how to retrieve WSDL
information and how to make a SOAP request as a client. The SOAP Server workflow will show
how to create a process that responds to SOAP requests, and where our own WSDL is located.

HTTP Server workflow

An HTTP Server workflow is one that has one or more processes that always start with the
HTTP Server Input task and returns something to a client using a web browser. Each process
would have a specific task referred to as an "action", called from the browser itself.

HTTP Server Input tasks are typically used in one of the two following situations:

e HTML Form Action: An HTML Form in the browser that may contain text and attached
files can be filled and sent to a process with the HTTP Server Input task.

Page 279

PlanetPress. Workflow

« HTTP Data Submission: A custom application or a server sends the request to
PlanetPress Workflow using either a POST or GET command. The application or server
then waits for a response from PlanetPress Workflow.

PlanetPress Workflow can serve both static and dynamic resources to a web browser, however
itis not meant to be used as a fully featured web server, as itis not built for responsiveness nor
guaranteed uptime. It is much better to have a common web server (for example, IS or Apache)
to serve your contents and to have PlanetPress Workflow available only to process things only

it can do. For more information on how to serve HTML and PDF generated by Connect through

IIS, watch the Connect with Evie - IIS series.

Tip
Essentially the "NodeJS Server Input” on page 352 task does the same as the HTTP
Server Input task, but it uses a NodeJS Server (installed by Workflow) instead of

Workflow's custom server component. The NodeJS Server Input task is more secure,
more up to date and more standardized.

Itis configured using its three settings dialogs in the Preferences (Workflow button
> Preferences).

Note

You can control access to the PlanetPress Workflow Tools HTTP Server via the Access
Manager.

Important configuration, setup and options

Before starting to work with HTTP workflows, there are a few key points to keep in mind in
terms of configuration.

First of all, the following options are available in the PlanetPress Workflow Preference screen,
underthe HTTP Server Input 1 and HTTP Server Input 2 sections:

o Port (default value: 8080 recommended): The port number is the one in which a
browser needs to make a request to PlanetPress Workflow. By default in most web
servers, port 80 is used and, when this is the case, it is not necessary to include it. For

Page 280

PlanetPress. Workflow

https://www.youtube.com/playlist?list=PLZPOekWixAMdgCpq_fa7PzE9Mp5YRxjqz

example, if | type http://www.objectiflune.com/in my browser, it is actually accessing the
address http://www.objectiflune.com:80/, but port 80 is always hidden. The reason port
8080 is used by default is to prevent any interference with existing web servers installed
or activated on the same server as PlanetPress Workflow.

« Time-out (seconds): This determines how long the HTTP Server service will wait for the
process to finish, before returning a time out error back to the client browser. This means
that if a process takes more than 120 seconds (by default) to complete, the browser will
time out. While you can change this value, it is recommended to always keep your
processing to a minimum, since both browsers and users generally frown upon being
stopped for more than a minute, unless they are well aware of this processing time (and
even then...)

« Enable server for SSL requests: This enables secure communication between the
browser and the server via HTTPS. By enabling this option, you will need to provide for
the proper certificates, key and password. While this configuration is beyond the scope of
this topic, there are plenty of resources on the Internet to explain these systems.

« Serve HTTP resources: This is where you enable static resources in PlanetPress
Workflow. When enabling this option, the HTTP server will always look in the Resource
Folder for files requested inside of the Resource action name as a folder. This means
that, if your Resource folder is ¢ : \PlanetPress\http and your Resource action name
is static, pointing your browser to
http://127.0.0.1:8080/static/css/style.css willimmediately load and
return the file c: \PlanetPress\http\css\style.css . This does not require any
process to work - everything is handled directly by the HTTP Server Input and files are
returned immediately. This feature is very useful when dealing with stylesheets, images,
browser JavaScript, or static HTML files that do not require any processing.

Note

Itis possible to serve a default HTML file when no action is specified, for example
http://localhost:8080/ . This is done by creating an index.html file in the Resource
Folder defined above. However, resources called by this index.html must still use the
Resource action name, for example a stylesheet would still point to
http://127.0.0.1:8080/static/css/style.css OFr more simply static/css/style.css.

Page 281

PlanetPress. Workflow

http://www.objectiflune.com/
http://www.objectiflune.com/

You also need to take into consideration the options inside each of your processes that start
with the HTTP Server Input task, as they will greatly impact how this process responds. In the
process's properties, the following options will modify HTTP behavior:

« Self-Replicating Process: This option is critically important when dealing with HTTP
processes. Basically, this means that when HTTP requests are received, the process will
duplicate itself up to the specified maximum number, in order to simultaneously (and
asynchronously) handle multiple requests. See "Process properties" on page 869 for
more details.

« As soon as possible: This option needs to be checked, otherwise requests will not be
handled as they come in (this option is meant to be used on scheduled processes that run
atintervals).

« Polling Interval (sec): This option determines how much time the HTTP Server Input
waits between the moment it finishes processing a request and the moment it picks up a
new request. This should be put at 0 in order to process requests as soon as possible,
meaning immediately.

And finally, the HTTP Server Input task properties. While these are described in the "HTTP
Server Input" on page 330 task properties page, here are a few considerations to keep in mind
when using this task:

« The HTTP Action corresponds precisely to the name immediately following the first slash
of your address. That is to say, placing the action myaction here means the process
would be triggered by opening http://127.0.0.1:8080/myaction inyour
browser.

o The HTTP service accepts both POST and GET requests. Other than the presence of file
attachments, there is little difference in how these are handled. This means that visiting
/myaction?id=12345&g=test would be the same as having a form with two <input>
fields named, respectively, id and g, and submitting them with the information "12345"
and "test". In both cases, this information is located in the XML envelope that is the
original input file of a process that starts with a Server Input task.

« When doing POST requests and uploading files, always make sure to include the
"multipart" option in the <form> tag:
<form action="http://127.0.0.1:8080/myaction" method="POST"
enctype="multipart/form-data">
Otherwise, file attachments will not be received, only their file names.

« The Mime Type option is better left at Auto-Detect unless the process requires it to be
forced to a specific type. This means that if a process can either return a PDF when

Page 282

PlanetPress. Workflow

successful or an HTML page with an error message, it will not attempt to send an HTML
with a PDF mime type (which, obviously, would cause confusion).

e There is no HTTP Server Output task (see below on how to end your process)

Request/process/response cycle

Once a process using the HTTP Server Input task is created, it is important to understand the
cycle thatis triggered when such a process runs. Note that this is the process when the default
HTTP Server Input task options are used (more on how that behavior changes later):

1. Arequestis received by the HTTP service.

2. This requestis converted into an XML request file along with one or more attachments
when present.

3. The XML request file and attachments are saved in a local folder, if the HTTP Action is a
valid one (otherwise, the files are deleted).

4. The HTTP service keeps the request from the client open (it does not yet respond to it),
and waits.

5. The HTTP process corresponding to the HTTP Action captures the XML file and
attachments and the process begins.

6. The process runs its course just like any other process would (including subprocesses,
send to process, etc).

7. The very lastjob file that is active when the process finishes is then returned to the HTTP
service.

8. The HTTP service returns the file to the client and then closes the connection.

9. If, during this time, the timeout has expired (if the process takes more than 120 seconds),
the HTTP service returns a "timeout" to the client, but the process stills finishes on its
own. When the process finishes, the return file is ignored by the HTTP service.

Point 7 is critical to understand, as it has an impact on what the client receives. If a process
receives a file that is split into multiple parts and each of these parts generates and output, the
last split's output will be sent to the client. If the last output task generates a PostScript file for
printing, this PostScript is returned to the client.

In most cases, what is returned is what remains after the last task, but only if this task's

processing is done in PlanetPress Workflow. For example, if the data file is a text file and this
file is sent to PlanetPress Image using the Image connector, it is a text file that is returned, not

Page 283

PlanetPress. Workflow

the output of the Imaging. Similarly, ending a process with the Delete task does not return an
empty file, it returns the actual data file.

Actually the most used way of returning a response is this: generate an HTML file using either
"Create File" on page 312 or "Load External File" on page 422, then use the "Delete" on
page 656 task as a last output. The HTML is thus returned to the client.

Example HTTP Workflows

o "HTTP PDF Invoice Request" below (GET)
« "HTTP brochure request" on page 286 (Customer Information+ POST)
« "Capture Web Manager Workflow" on page 296 (Capture + HTTP)

HTTP PDF Invoice Request

This straightforward workflow simply receives a GET request from a browser, loads an existing
PDF invoice from a folder on the hard drive, and returns it to the browser. To do this, a client (or
a web service) would request the following page:

http://[ppworkflowserver:8080/getinvoice?in=INV999999
Breakdown of this URL:

« http:// : transfer protocol. This could be HTTPS if the SSL certificates are activated in the
preferences.

« ppworkflowserver : name of the machine. This could also be an IP (192.168.1.123) ora
full domain name (www.myserver.com), depending on the connectivity between the client
and PlanetPress Workflow Server.

« :8080 : The default PlanetPress Workflow HTTP Port, setin the preferences.
« I/getinvoice : The HTTP Action Name, as setin the HTTP Server Input task.

e ?in=INV999999 : A GET Variable, specifying that the variable named invoicenum
(invoice number) would have a value of INV999999 , or any other "valid" invoice number.

Page 284

PlanetPress. Workflow

Process illustration

HTTP Server Input

| S
ﬁ gelinvoice

N File Size Condition
-]

R—J'ﬂ']/r IF fil: size: less than 1 Kb

-

Create File

= ctitles Irvoice Mot

Delete
Permanently

Load External File
wrnlget(’ frequest[1] values|

Delete
% |Pemanent
e d

Task breakdown

« The HTTP Server Input task receives a request through the /getinvoice HTTP Action.
Because this task either returns an HTML page with an error message or a PDF, the
MIME type is Auto-Detect.

« It checks whether the invoice request exists by checking if the size of the file is /ess than
1kb using "File Size Condition" on page 479. The condition returns "true" if the file is not
found:
c:\PlanetPress\archives\pdfiinvoices\xmlget('/request[1]/values[1]/invoicenum
[1],Value,KeepCase,NoTrim).pdf
Here, the xmlget() function grabs the invoicenum variable from the GET request, which
would be INV999999 pdf in the specified folder.

« Ifthe file is not found, then a simple, basic HTML page is created indicating the invoice
was not found. For this, a "Create File" on page 312 task will suffice, followed by the
"Delete" on page 656 output task. As mentioned in "HTTP Server workflow" on page 279,
deleting the data file only means you are not doing anything with it locally - it is still
returned to the client.

Page 285

PlanetPress. Workflow

Tip
Instead of creating a web page from scratch, you could create a web page from a
Connect Web template; use the "Create Web Content" on page 621 task.

« If, however, the file is found, then it is loaded with the "Load External File" on page 422
task, and then deleted (for the same reasons).

HTTP brochure request

This workflow builds on the knowledge acquired in "HTTP PDF Invoice Request" on page 284
and uses a single process, but in this case it also uses a PlanetPress Design document (see
"PlanetPress Design documents" on page 45) which merges the data received from a browser
form with the document to generate a PDF brochure, which is sent via email.

Resources

« HTTPBrochureRequest.zip (PlanetPress Workflow Configuration)

« InformationBrochure.zip (PlanetPress Design Document)

Installation

o Download both files and unzip them.

Open InformationBrochure.pp7 and send it to PlanetPress Workflow.

Open HTTPBrochureRequest.pw7 and send the configuration to your local PlanetPress
Workflow service.

Open your browserto http://localhost:8080/generatebrochure
Task breakdown

« The HTTP Server Input receives the initial request from the browser.

« Because this is a demonstration, a backup is made of the XML request. It's not suggested
to do this every time, especially on servers receiving a large number of requests, as these
files do take some amount of space for each request.

Page 286

PlanetPress. Workflow

« A condition checks whether the form has been submitted, by verifying that one of the
required fields is empty. Ifitis, it means this is the initial request, so the condition
becomes true.

« Ifthis is the initial request, an HTML page is created which contains a form asking
the client for a required full name and email, and optional company name. A
checkmark also offers to subscribe to a newsletter (itis unchecked by default!). The
form submits back to the same URL, meaning itis handled by the same process.

« The file is renamed with the .html extension, so that both the HTTP service and the
browser will recognize it as an HTML page. And then, as usual, it is deleted (but still
returned to the browser).

« When the condition is false, it means that there is something in the Full Name field. In this
case, we know that the form was filled and submitted back to the process, and we handle
the request as such.

« First, we add the full name, email and company information to job informations, in order
for them to be available for the rest of the process.

o Then, we have a small condition that verifies if the user checked the "Newsletter" box. If
so, the conditional branch is triggered. Note that this condition is put inside its own branch
because otherwise, the rest of the process would not run when the newsletter is selected.
Since we want both to happen, the branch is there with a "stub" if the condition is false.

PDF Workflow

A PDF workflow, in essence, is one that does not contain any Connect template or Design
document and only uses PDF files as data files. The idea is that a PDF file, because itis a
formatted document in and of itself, doesn't need to go through a merge process before it can
be printed.

PlanetPress Workflow provides a few tasks specifically designed to work with PDFs:

« "Merge PDF Files" on page 341
« "PDF Splitter" on page 466
« "Create PDF" on page 397

In most cases, this kind of workflow also implies the use of Metadata tasks (see "Metadata

tasks" on page 560).
You can use Metadata tasks to group, sort and sequence (split) the PDF data. The Create PDF
task will apply the active Metadata to the PDF data file before creating the PDF output.

Page 287

PlanetPress. Workflow

Things to keep in mind while working with Metadata are set forth in another topic: "Working with
Metadata" on page 79.

Note

In Connectitis also possible to group, sort and split PDF data using "OL Connect tasks"
on page 591.

Example: Daily sales report from PDF files

This workflow makes heavy use of PDF tasks and Metadata, and assumes that you are using
PlanetPress Workflow version 7.3 or higher.

This single process workflow generates a daily sales report for any sales representative inside
of a company which made at least one sale. It does this by capturing the invoices generated
within a specific day, putting all the invoices for each sales representative in a single PDF and
then sending it to the sales representative. It does this using several specific Metadata tasks as
well as a quick lookup in an external Excel spreadsheet.

Resources

o PDF-DailySalesReport-Workflow.zip

Task breakdown

« The initial inputis the "Merge PDF Files" on page 341, which retrieves and merges all the
PDF files inside of the specified folder. Once a single PDF is created, the task also
optimizes the PDF (to avoid duplicating images and font definitions for each page) as well
as generates a basic Metadata structure containing a single document with one Data
Page per captured PDF.

« The "Metadata Level Creation" on page 569 creates the Document level of the Metadata
by placing each PDF data file in its own Document level. It does this by detecting when
the Address in the document changes.

« Then, the "Metadata Fields Management" on page 563 adds a few fields at the Document
level in order to properly tag each document with the appropriate information, in this case
the Customer ID, Country and Rep ID. These fields are used for the following Metadata
tasks.

Page 288

PlanetPress. Workflow

« The "Metadata Filter" on page 567 follows by removing any invoice that is notin the US.
Note that the Metadata filter is an *inclusive™* filter, meaning that the filter includes the
parts of the Metadata where the result of the filter is true, and filters out anything else.

« The "Metadata Sorter" on page 572 then re-orders the Metadata documents by Rep ID, so
that all of the invoices for any particular sales representative are all together.

« "Lookup in Microsoft® Excel® Documents" on page 499 then uses the Rep ID field to
retrieve each sales representative's email from a specific Excel spreadsheet.

« The "Metadata Sequencer" on page 571 acts like a splitter, where the separation
happens whenever the Rep ID changes. Since documents are sorted with that field, each
sequence can contain one or more document, but they will all be for the same Rep ID.

« "Create PDF" on page 397 is then used to generate a single PDF for each sales
representative. Because Create PDF works in conjunction with Metadata and because it
can be used in pass-through mode, in this instance it will only take the relevant PDF
pages from the original data file in order to create a single PDF file. Other than the
extraction of these pages, the original concatenated data file is untouched.

« Finally, the outputis done using a "Send to Folder" on page 681 in this case. Obviously,
this should be a "Send Email" on page 677 output, but since we don't want to spam
anyone, instead we place the PDF in a folder with the Rep ID's email as a folder name.

PlanetPress Capture Workflow

PlanetPress Capture, introduced in PlanetPress 7.2 and enhanced ever since, is a set of tools
that is used to simplify digital archiving processes by capturing information from a special pen
which records everything it writes on paper, as long as this paper contains special Anoto
Patterns.

Warning

There are important considerations to keep in mind when dealing with PlanetPress
Capture. Please review them in "PlanetPress Capture Implementation Restrictions" on
page 745.

In order to properly build a PlanetPress Capture workflow, itis very important to understand the
terminology, implications and limitations of the technology. This is the first part of this section:

« "PlanetPress Capture Glossary" on page 731

« "General considerations" on page 734

Page 289

PlanetPress. Workflow

» "Security Considerations" on page 736
« "20,000 Patterns" on page 738

« "PlanetPress Capture Implementation Restrictions" on page 745

There are also 2 external tools that are used to communicate the pen's data to PlanetPress
Workflow:

« "Anoto penDirector" on page 743
« "PlanetPress Mobile Application" on page 745

Creating a Capture-Ready document

This is done when creating your PlanetPress Design document. Adding one or more
PlanetPress Capture fields to a PlanetPress Design document creates a capture-ready
document, which can be used in the workflow. For more information, see the PlanetPress
Design User Guide.

Generating the Capture Patterns

Once your document is created, the Capture Fields Generator action task is used to apply the
capture patterns to each of your documents and send them to the printer. This printing process
will consist of:

« Retrieving your data file.
« Creating metadata (See "Create Metadata" on page 560).

» Separating each individual document in the metadata (this can be done in your Design
document or through the "Metadata Level Creation" on page 569 action task).

« Using the "Capture Fields Generator" on page 543 action task to generate the capture
patterns

 Printing your documents.
Capturing and Archiving

After the printed documents have been inked with the Anoto Digital Pen, the PGC files from the
pen must be processed and merged with the appropriate documents in the PlanetPress
Capture Database. A workflow process that receives PGC files and reads them in turn consists
of the following actions:

Page 290

PlanetPress. Workflow

http://help.objectiflune.com/en/planetpress-design-user-guide/
http://help.objectiflune.com/en/planetpress-design-user-guide/

o An"HTTP Server Input" on page 330 task or "Folder Capture" on page 320 task that
receives the PGC.

« The "Capture Fields Processor" on page 546, which converts each PGC in an EPS layer,
adds this layer to the PDF in the database, releases patterns and closes documents.

« Optionally, a "Capture Condition" on page 538 task to do post-processing using the
Capture Fields data.

o A"Get Capture Document" on page 556 action task to retrieve each documentin the
database and output a PDF file

« Any existing output such as Output to Folder, email, ftp, etc.

Technical

Because of timeout limitations, it is generally a good idea to use the Send immediate
response to client option of the HTTP Server Input task, especially when processing a
large amount of documents from the pen. Additionally, HTTP Server Processes should
always be self-replicating and have a short polling interval set in their properties.

Managing and Post-Processing

There are a couple of things that can be done even after documents have been inked. As long
as a document remains open, itis still present in the Capture database and be used in a
process:

« The "Find Capture Documents" on page 552 input task is used to retrieve a list of
documents under specific criteria.

e The Capture Condition and Get Capture Document tasks are used to effect post-
processing and retrieve document from the Capture database.

Error Handling

Whenever an error occurs during the Capture Field Processor phase, it is of course important to
be able to handles these errors. For this purpose, the "PGC to PDF Converter" on page 558
task was added with PlanetPress 7.4, adding the ability to quickly and directly convert a PGC
file to a blank PDF file containing the ink data as an EPS layer. This is useful when, for
example, data is received for a document that's already been closed.

Page 291

PlanetPress. Workflow

« The "Input Error Bin" on page 335 input task is triggered when the process sends data to
the error process.

« A"PGC to PDF Converter" on page 558 task converts the PGC to a PDF

« Any existing output is used here, for example an email notification.
The Examples

« "Basic Functional Capture Workflow" below
« "Capture Post Processing Workflow" on the facing page

» "Capture Web Manager Workflow" on page 296

Basic Functional Capture Workflow

This workflow is the most basic and simple workflow that you can use with PlanetPress
Capture. In small implementations with only one simple document, this may be the only thing
required for a functional workflow since, even in this simple state, it can be enough to automate
the archive of your digital documents.

Generator Process

The workflow requires two separate processes that will be triggered at different times. The first
process, the generator process, produces printable output by merging a data file with a
Capture-Ready PlanetPress Design document. For each document page produced, an Anoto
Pattern is assigned to the document and locked, and a page is produced in the output.
Depending on the setup used, this may produce on or more print jobs or PDFs as an output.

— jFolder Capture

J o heource

Create Metadata
l] irvoice, ptk,

Capture Fields Generator
invoice. ptk,

Printer Queue Output

-,ﬁ Frinter Queuel

Page 292

PlanetPress. Workflow

« Any input task
"Create Metadata" on page 560

« "Capture Fields Generator" on page 543

Print output

PGC Handling Process

The second process is the PGC Handling process. It receives data from the Anoto Digital pen,
updates the Capture database and releases patterns as appropriate.

Folder Capture

¥ o haource

Capture Fields Proces
@ Proceszs PGLC File

Get Capture Documen
% Get all documents

Send To Folder

_J o hout

o "HTTP Server Input" on page 330 or "Folder Capture" on page 320 input task
« "Capture Fields Processor" on page 546

"Get Capture Document" on page 556

Archive or Print output

Capture Post Processing Workflow

Though the "Basic Functional Capture Workflow" on the previous page is minimal functional
one, it will most likely not be enough for most actual implementations. The goal with
PlanetPress Capture (and PlanetPress Workflow in general) being to automate as much as
possible, there are some tools within the PlanetPress Capture tasks that can greatly help with
this goal.

There are two places where post-processing can happen: after the "Capture Fields Processor"
on page 546 while handling incoming ink data, or after the "Find Capture Documents" on
page 552 task that is part of an automated process or after a user request.

Page 293

PlanetPress. Workflow

Post-Processing is generally done using the "Capture Condition" on page 538 task, which
verifies the presence or state of the ink on the document or on specific fields.

After PGC Handling

Here is an example of a process that receives ink data, updates the database, and then verifies
whether or not a field that indicates manager attention is required (for example, a box noting the
wrong number of items in a delivery slip). If attention is required, the document is sent via email
to the manager. Otherwise, the document is simply archived.

i HTTF Server Input
_b processpgo
Process PG File

j Capture Fields Processor

Capture Condition

L

]
/I' Capture Figld condition ‘
et Capture Document
% Get all documents

| Send Email
s Mizrazaft Outlook,

Get Capture Document
Get all documents)
Cloze document after retrieval

Output to SharePoint
SI http: #fzharepaintarchive
=

Task Breakdown:

o The HTTP Server Input receives a POST request sent either by the Anoto penDirector or
the PlanetPress Mobile Application. This requests contains information sent by the pen
as well as a PGC file as an attachment. Because we're only concerned about the PGC,
the task is configured to ignore the XML envelope as well as loop through each
attachments (of which there is only one). So, the output of the task is the PGC file alone.

Page 294

PlanetPress. Workflow

« The Capture Fields Processor then uses the PGC file to update any documents in the
database that the pen wrote on, and closes those documents in the database when they
are complete.

« Capture Condition is where we can check whether a specific field (a "RequireManager"
field) has ink contained in it, and if it does, the branch on the right is triggered.

« In the branch, Get Capture Document retrieves a PDF version of the document and
sends it as an attachment to an email sent directly to a manager using Send Email.

« Otherwise, Get Capture Document is used again, but this time the PDF is stored in a
SharePoint Server using the Output to SharePoint connector.

After Retrieving Information from the Capture Database

There are two basic ways in which the Find Capture Document task can be used. First, in an
automated process that runs at specified intervals. For example, the following process which
sends a daily report of all incomplete and "in error" documents to an agent who would
presumably take action on each document through the document manager.

Page 295

PlanetPress. Workflow

|_\j Eind EaSpturE Documer
ohtent Status
LE:I IEDntent Statuz

Metadata Sequencer
Sequence on level
Docurment after 1
inztance(z).

Capture Condition

.\@ ;

F T Dacument Conditian

Create File
1I31|3I:h-1 eta[Cugtomerl D[0].

: JnE.GrDup[D].DDcument[D]

Set Job Infoz and Vari
X[repurtcnntentsl =
Zireportcontents o

Delete
Permanently

Create File
_IG_IetM etalCustamer D{0].

- JDE.Gmup[D].DDcument[D]

Set Job Infoz and ¥ari

K[repurtcnntents] =
Eireportcontentz o

Delete
Permanently

= | Send Email
L icrosaft Qutlook,

Capture Web Manager Workflow

This example is both a more involved workflow for Capture, and an interesting implementation
of an HTTP Workflow. Before looking at this example, it would be best to become familiar with
both "PlanetPress Capture Workflow" on page 289 and "HTTP Server workflow" on page 279.

Page 296

PlanetPress. Workflow

The example is too complex to display as images in this guide, so it is rather available for
download.

Resources

o Capture Web Manager Workflow Configuration (PW7)
o Capture Web Manager PlanetPress Design Document (PP7)

Note

This example is compatible with PlanetPress Workflow 7.4 and higher and will not work
in older versions.

Installation

1. Download both resource files
2. Create a folder on your disk called c: \PlanetPress

3. Import the invoice.pp7 Design document into Workflow, or open it in PlanetPress Design
and send it towards your local PlanetPress Workflow server (localhost or 127.0.0.1).

4. Open the configuration file CaptureExampleProcess.pw7
5. Click the PlanetPress Workflow button (File menu) and go in Preferences.

6. Inthe HTTP Server Input 2 section, check the Serve HTTP resources option, change
the Resource action name box to static , and the Resource folder to
c:\PlanetPress\http . Then, click OK.

7. Send the configuration to your local PlanetPress Workflow server.

8. Start PlanetPress Workflow services (see "Start and stop PlanetPress Workflow Service"
on page 764).

9. Open your browser and point it to http://127.0.0.1:8080/documentlist, assuming you have
not changed the default HTTP portin the HTTP Server Input 2 section.

Explanation

You can follow along the process by looking at the comments available in each process of the
workflow file. Each comment explains both what the following plugins do, but also how it

Page 297

PlanetPress. Workflow

integrates into the workflow in general and what to keep in mind when doing an actual
implementation of such a process.

Considerations

« The workflow itself is a standalone system that does not interact with any third-party
systems, which of course does not correspond to real customer implementation. A client
will most likely need to communicate with both an ERP system that generates documents
as well as an archive software to store completed documents.

« The HTML, CSS and data file are generated whenever the process starts, in a specified
location, in order to avoid having to distribute multiple static files which would need to be
extracted and moved to a specific folder. In an actual implementation, these files would
probably be edited externally and loaded from a location on the hard drive. However, the
method of using a templa